#ifdef HAVE_LIBBLKID # include #endif #include "fdiskP.h" /** * SECTION: context * @title: Context * @short_description: stores info about device, labels etc. * * The library distinguish between three types of partitioning objects. * * on-disk data * - disk label specific * - probed and read by disklabel drivers when assign device to the context * or when switch to another disk label type * - only fdisk_write_disklabel() modify on-disk data * * in-memory data * - generic data and disklabel specific data stored in struct fdisk_label * - all partitioning operations are based on in-memory data only * * struct fdisk_partition * - provides abstraction to present partitions to users * - fdisk_partition is possible to gather to fdisk_table container * - used as unified template for new partitions * - the struct fdisk_partition is always completely independent object and * any change to the object has no effect to in-memory (or on-disk) label data */ /** * fdisk_new_context: * * Returns: newly allocated libfdisk handler */ struct fdisk_context *fdisk_new_context(void) { struct fdisk_context *cxt; cxt = calloc(1, sizeof(*cxt)); if (!cxt) return NULL; DBG(CXT, ul_debugobj(cxt, "alloc")); cxt->dev_fd = -1; cxt->refcount = 1; /* * Allocate label specific structs. * * This is necessary (for example) to store label specific * context setting. */ cxt->labels[ cxt->nlabels++ ] = fdisk_new_gpt_label(cxt); cxt->labels[ cxt->nlabels++ ] = fdisk_new_dos_label(cxt); cxt->labels[ cxt->nlabels++ ] = fdisk_new_bsd_label(cxt); cxt->labels[ cxt->nlabels++ ] = fdisk_new_sgi_label(cxt); cxt->labels[ cxt->nlabels++ ] = fdisk_new_sun_label(cxt); return cxt; } static int init_nested_from_parent(struct fdisk_context *cxt, int isnew) { struct fdisk_context *parent; assert(cxt); assert(cxt->parent); parent = cxt->parent; cxt->alignment_offset = parent->alignment_offset; cxt->ask_cb = parent->ask_cb; cxt->ask_data = parent->ask_data; cxt->dev_fd = parent->dev_fd; cxt->first_lba = parent->first_lba; cxt->firstsector_bufsz = parent->firstsector_bufsz; cxt->firstsector = parent->firstsector; cxt->geom = parent->geom; cxt->grain = parent->grain; cxt->io_size = parent->io_size; cxt->last_lba = parent->last_lba; cxt->min_io_size = parent->min_io_size; cxt->optimal_io_size = parent->optimal_io_size; cxt->phy_sector_size = parent->phy_sector_size; cxt->readonly = parent->readonly; cxt->script = parent->script; fdisk_ref_script(cxt->script); cxt->sector_size = parent->sector_size; cxt->total_sectors = parent->total_sectors; cxt->user_geom = parent->user_geom; cxt->user_log_sector = parent->user_log_sector; cxt->user_pyh_sector = parent->user_pyh_sector; /* parent <--> nested independent setting, initialize for new nested * contexts only */ if (isnew) { cxt->listonly = parent->listonly; cxt->display_details = parent->display_details; cxt->display_in_cyl_units = parent->display_in_cyl_units; cxt->protect_bootbits = parent->protect_bootbits; } free(cxt->dev_path); cxt->dev_path = NULL; if (parent->dev_path) { cxt->dev_path = strdup(parent->dev_path); if (!cxt->dev_path) return -ENOMEM; } return 0; } /** * fdisk_new_nested_context: * @parent: parental context * @name: optional label name (e.g. "bsd") * * Create a new nested fdisk context for nested disk labels (e.g. BSD or PMBR). * The function also probes for the nested label on the device if device is * already assigned to parent. * * The new context is initialized according to @parent and both context shares * some settings and file descriptor to the device. The child propagate some * changes (like fdisk_assign_device()) to parent, but it does not work * vice-versa. The behavior is undefined if you assign another device to * parent. * * Returns: new context for nested partition table. */ struct fdisk_context *fdisk_new_nested_context(struct fdisk_context *parent, const char *name) { struct fdisk_context *cxt; struct fdisk_label *lb = NULL; assert(parent); cxt = calloc(1, sizeof(*cxt)); if (!cxt) return NULL; DBG(CXT, ul_debugobj(parent, "alloc nested [%p] [name=%s]", cxt, name)); cxt->refcount = 1; fdisk_ref_context(parent); cxt->parent = parent; if (init_nested_from_parent(cxt, 1) != 0) { cxt->parent = NULL; fdisk_unref_context(cxt); return NULL; } if (name) { if (strcasecmp(name, "bsd") == 0) lb = cxt->labels[ cxt->nlabels++ ] = fdisk_new_bsd_label(cxt); else if (strcasecmp(name, "dos") == 0 || strcasecmp(name, "mbr") == 0) lb = cxt->labels[ cxt->nlabels++ ] = fdisk_new_dos_label(cxt); } if (lb && parent->dev_fd >= 0) { DBG(CXT, ul_debugobj(cxt, "probing for nested %s", lb->name)); cxt->label = lb; if (lb->op->probe(cxt) == 1) __fdisk_switch_label(cxt, lb); else { DBG(CXT, ul_debugobj(cxt, "not found %s label", lb->name)); if (lb->op->deinit) lb->op->deinit(lb); cxt->label = NULL; } } return cxt; } /** * fdisk_ref_context: * @cxt: context pointer * * Increments reference counter. */ void fdisk_ref_context(struct fdisk_context *cxt) { if (cxt) cxt->refcount++; } /** * fdisk_get_label: * @cxt: context instance * @name: label name (e.g. "gpt") * * If no @name specified then returns the current context label. * * The label is allocated and maintained within the context #cxt. There is * nothing like reference counting for labels, you cannot delallocate the * label. * * Returns: label struct or NULL in case of error. */ struct fdisk_label *fdisk_get_label(struct fdisk_context *cxt, const char *name) { size_t i; assert(cxt); if (!name) return cxt->label; else if (strcasecmp(name, "mbr") == 0) name = "dos"; for (i = 0; i < cxt->nlabels; i++) if (cxt->labels[i] && strcasecmp(cxt->labels[i]->name, name) == 0) return cxt->labels[i]; DBG(CXT, ul_debugobj(cxt, "failed to found %s label driver", name)); return NULL; } /** * fdisk_next_label: * @cxt: context instance * @lb: returns pointer to the next label * * * * // print all supported labels * struct fdisk_context *cxt = fdisk_new_context(); * struct fdisk_label *lb = NULL; * * while (fdisk_next_label(cxt, &lb) == 0) * print("label name: %s\n", fdisk_label_get_name(lb)); * fdisk_unref_context(cxt); * * * * Returns: <0 in case of error, 0 on success, 1 at the end. */ int fdisk_next_label(struct fdisk_context *cxt, struct fdisk_label **lb) { size_t i; struct fdisk_label *res = NULL; if (!lb || !cxt) return -EINVAL; if (!*lb) res = cxt->labels[0]; else { for (i = 1; i < cxt->nlabels; i++) { if (*lb == cxt->labels[i - 1]) { res = cxt->labels[i]; break; } } } *lb = res; return res ? 0 : 1; } /** * fdisk_get_nlabels: * @cxt: context * * Returns: number of supported label types */ size_t fdisk_get_nlabels(struct fdisk_context *cxt) { return cxt ? cxt->nlabels : 0; } int __fdisk_switch_label(struct fdisk_context *cxt, struct fdisk_label *lb) { if (!lb || !cxt) return -EINVAL; if (lb->disabled) { DBG(CXT, ul_debugobj(cxt, "*** attempt to switch to disabled label %s -- ignore!", lb->name)); return -EINVAL; } cxt->label = lb; DBG(CXT, ul_debugobj(cxt, "--> switching context to %s!", lb->name)); return 0; } /** * fdisk_has_label: * @cxt: fdisk context * * Returns: return 1 if there is label on the device. */ int fdisk_has_label(struct fdisk_context *cxt) { return cxt && cxt->label; } /** * fdisk_has_protected_bootbits: * @cxt: fdisk context * * Returns: return 1 if boot bits protection enabled. */ int fdisk_has_protected_bootbits(struct fdisk_context *cxt) { return cxt && cxt->protect_bootbits; } /** * fdisk_enable_bootbits_protection: * @cxt: fdisk context * @enable: 1 or 0 * * The library zeroizes all the first sector when create a new disk label by * default. This function allows to control this behavior. For now it's * supported for MBR and GPT. * * Returns: 0 on success, < 0 on error. */ int fdisk_enable_bootbits_protection(struct fdisk_context *cxt, int enable) { if (!cxt) return -EINVAL; cxt->protect_bootbits = enable ? 1 : 0; return 0; } /** * fdisk_enable_wipe * @cxt: fdisk context * @enable: 1 or 0 * * The library removes all filesystem/RAID signatures before write PT. This is * no-op if any collision has not been detected by fdisk_assign_device(). See * fdisk_has_collision(). The default is not wipe a device. * * Returns: 0 on success, < 0 on error. */ int fdisk_enable_wipe(struct fdisk_context *cxt, int enable) { if (!cxt) return -EINVAL; cxt->wipe_device = enable ? 1 : 0; return 0; } /** * fdisk_has_wipe * @cxt: fdisk context * * Returns the current wipe setting. See fdisk_enable_wipe(). * * Returns: 0 on success, < 0 on error. */ int fdisk_has_wipe(struct fdisk_context *cxt) { return cxt && cxt->wipe_device; } /** * fdisk_get_collision * @cxt: fdisk context * * Returns: name of the filesystem or RAID detected on the device or NULL. */ const char *fdisk_get_collision(struct fdisk_context *cxt) { return cxt->collision; } /** * fdisk_get_npartitions: * @cxt: context * * The maximal number of the partitions depends on disklabel and does not * have to describe the real limit of PT. * * For example the limit for MBR without extend partition is 4, with extended * partition it's unlimited (so the function returns the current number of all * partitions in this case). * * And for example for GPT it depends on space allocated on disk for array of * entry records (usually 128). * * It's fine to use fdisk_get_npartitions() in loops, but don't forget that * partition may be unused (see fdisk_is_partition_used()). * * * * struct fdisk_partition *pa = NULL; * size_t i, nmax = fdisk_get_npartitions(cxt); * * for (i = 0; i < nmax; i++) { * if (!fdisk_is_partition_used(cxt, i)) * continue; * ... do something ... * } * * * * Note that the recommended way to list partitions is to use * fdisk_get_partitions() and struct fdisk_table than ask disk driver for each * individual partitions. * * Returns: maximal number of partitions for the current label. */ size_t fdisk_get_npartitions(struct fdisk_context *cxt) { return cxt && cxt->label ? cxt->label->nparts_max : 0; } /** * fdisk_is_labeltype: * @cxt: fdisk context * @id: FDISK_DISKLABEL_* * * See also fdisk_is_label() macro in libfdisk.h. * * Returns: return 1 if the current label is @id */ int fdisk_is_labeltype(struct fdisk_context *cxt, enum fdisk_labeltype id) { assert(cxt); return cxt->label && (unsigned)fdisk_label_get_type(cxt->label) == id; } /** * fdisk_get_parent: * @cxt: nested fdisk context * * Returns: pointer to parental context, or NULL */ struct fdisk_context *fdisk_get_parent(struct fdisk_context *cxt) { assert(cxt); return cxt->parent; } static void reset_context(struct fdisk_context *cxt) { size_t i; DBG(CXT, ul_debugobj(cxt, "*** resetting context")); /* reset drives' private data */ for (i = 0; i < cxt->nlabels; i++) fdisk_deinit_label(cxt->labels[i]); if (cxt->parent) { /* the first sector may be independent on parent */ if (cxt->parent->firstsector != cxt->firstsector) free(cxt->firstsector); } else { /* we close device only in primary context */ if (cxt->dev_fd > -1) close(cxt->dev_fd); free(cxt->firstsector); } free(cxt->dev_path); cxt->dev_path = NULL; free(cxt->collision); cxt->collision = NULL; cxt->dev_fd = -1; cxt->firstsector = NULL; cxt->firstsector_bufsz = 0; fdisk_zeroize_device_properties(cxt); fdisk_unref_script(cxt->script); cxt->script = NULL; cxt->label = NULL; } /* * This function prints a warning if the device is not wiped (e.g. wipefs(8). * Please don't call this function if there is already a PT. * * Returns: 0 if nothing found, < 0 on error, 1 if found a signature */ static int check_collisions(struct fdisk_context *cxt) { #ifdef HAVE_LIBBLKID int rc = 0; blkid_probe pr; assert(cxt); assert(cxt->dev_fd >= 0); DBG(CXT, ul_debugobj(cxt, "wipe check: initialize libblkid prober")); pr = blkid_new_probe(); if (!pr) return -ENOMEM; rc = blkid_probe_set_device(pr, cxt->dev_fd, 0, 0); if (rc) return rc; blkid_probe_enable_superblocks(pr, 1); blkid_probe_set_superblocks_flags(pr, BLKID_SUBLKS_TYPE); blkid_probe_enable_partitions(pr, 1); /* we care about the first found FS/raid, so don't call blkid_do_probe() * in loop or don't use blkid_do_fullprobe() ... */ rc = blkid_do_probe(pr); if (rc == 0) { const char *name = NULL; if (blkid_probe_lookup_value(pr, "TYPE", &name, 0) == 0 || blkid_probe_lookup_value(pr, "PTTYPE", &name, 0) == 0) { cxt->collision = strdup(name); if (!cxt->collision) rc = -ENOMEM; } } blkid_free_probe(pr); return rc; #else return 0; #endif } int fdisk_wipe_collisions(struct fdisk_context *cxt) { #ifdef HAVE_LIBBLKID blkid_probe pr; int rc; assert(cxt); assert(cxt->dev_fd >= 0); DBG(CXT, ul_debugobj(cxt, "wipe: initialize libblkid prober")); pr = blkid_new_probe(); if (!pr) return -ENOMEM; rc = blkid_probe_set_device(pr, cxt->dev_fd, 0, 0); if (rc) return rc; blkid_probe_enable_superblocks(pr, 1); blkid_probe_set_superblocks_flags(pr, BLKID_SUBLKS_MAGIC); blkid_probe_enable_partitions(pr, 1); blkid_probe_set_partitions_flags(pr, BLKID_PARTS_MAGIC); while (blkid_do_probe(pr) == 0) blkid_do_wipe(pr, FALSE); blkid_free_probe(pr); #endif return 0; } /** * fdisk_assign_device: * @cxt: context * @fname: path to the device to be handled * @readonly: how to open the device * * Open the device, discovery topology, geometry, detect disklabel and switch * the current label driver to reflect the probing result. * * Note that this function resets all generic setting in context. If the @cxt * is nested context then the device is assigned to the parental context and * necessary properties are copied to the @cxt. The change is propagated in * child->parent direction only. It's impossible to use a different device for * primary and nested contexts. * * Returns: 0 on success, < 0 on error. */ int fdisk_assign_device(struct fdisk_context *cxt, const char *fname, int readonly) { int fd; DBG(CXT, ul_debugobj(cxt, "assigning device %s", fname)); assert(cxt); /* redirect request to parent */ if (cxt->parent) { int rc, org = fdisk_is_listonly(cxt->parent); /* assign_device() is sensitive to "listonly" mode, so let's * follow the current context setting for the parent to avoid * unwanted extra warnings. */ fdisk_enable_listonly(cxt->parent, fdisk_is_listonly(cxt)); rc = fdisk_assign_device(cxt->parent, fname, readonly); fdisk_enable_listonly(cxt->parent, org); if (!rc) rc = init_nested_from_parent(cxt, 0); if (!rc) fdisk_probe_labels(cxt); return rc; } reset_context(cxt); fd = open(fname, (readonly ? O_RDONLY : O_RDWR ) | O_CLOEXEC); if (fd < 0) return -errno; cxt->readonly = readonly; cxt->dev_fd = fd; cxt->dev_path = strdup(fname); if (!cxt->dev_path) goto fail; fdisk_discover_topology(cxt); fdisk_discover_geometry(cxt); if (fdisk_read_firstsector(cxt) < 0) goto fail; /* detect labels and apply labes specific stuff (e.g geomery) * to the context */ fdisk_probe_labels(cxt); /* let's apply user geometry *after* label prober * to make it possible to override in-label setting */ fdisk_apply_user_device_properties(cxt); /* warn about obsolete stuff on the device if we aren't in * list-only mode and there is not PT yet */ if (!fdisk_is_listonly(cxt) && !fdisk_has_label(cxt) && check_collisions(cxt) < 0) goto fail; DBG(CXT, ul_debugobj(cxt, "initialized for %s [%s]", fname, readonly ? "READ-ONLY" : "READ-WRITE")); return 0; fail: DBG(CXT, ul_debugobj(cxt, "failed to assign device")); return -errno; } /** * fdisk_deassign_device: * @cxt: context * @nosync: disable fsync() * * Close device and call fsync(). If the @cxt is nested context than the * request is redirected to the parent. * * Returns: 0 on success, < 0 on error. */ int fdisk_deassign_device(struct fdisk_context *cxt, int nosync) { assert(cxt); assert(cxt->dev_fd >= 0); if (cxt->parent) { int rc = fdisk_deassign_device(cxt->parent, nosync); if (!rc) rc = init_nested_from_parent(cxt, 0); return rc; } if (cxt->readonly) close(cxt->dev_fd); else { if (fsync(cxt->dev_fd) || close(cxt->dev_fd)) { fdisk_warn(cxt, _("%s: close device failed"), cxt->dev_path); return -errno; } if (!nosync) { fdisk_info(cxt, _("Syncing disks.")); sync(); } } free(cxt->dev_path); cxt->dev_path = NULL; cxt->dev_fd = -1; return 0; } /** * fdisk_is_readonly: * @cxt: context * * Returns: 1 if device open readonly */ int fdisk_is_readonly(struct fdisk_context *cxt) { assert(cxt); return cxt->readonly; } /** * fdisk_unref_context: * @cxt: fdisk context * * Deallocates context struct. */ void fdisk_unref_context(struct fdisk_context *cxt) { unsigned i; if (!cxt) return; cxt->refcount--; if (cxt->refcount <= 0) { DBG(CXT, ul_debugobj(cxt, "freeing context %p for %s", cxt, cxt->dev_path)); reset_context(cxt); /* this is sensitive to parent<->child relationship! */ /* deallocate label's private stuff */ for (i = 0; i < cxt->nlabels; i++) { if (!cxt->labels[i]) continue; if (cxt->labels[i]->op->free) cxt->labels[i]->op->free(cxt->labels[i]); else free(cxt->labels[i]); } fdisk_unref_context(cxt->parent); cxt->parent = NULL; free(cxt); } } /** * fdisk_enable_details: * @cxt: context * @enable: true/flase * * Enables or disables "details" display mode. This function has effect to * fdisk_partition_to_string() function. * * Returns: 0 on success, < 0 on error. */ int fdisk_enable_details(struct fdisk_context *cxt, int enable) { assert(cxt); cxt->display_details = enable ? 1 : 0; return 0; } /** * fdisk_is_details: * @cxt: context * * Returns: 1 if details are enabled */ int fdisk_is_details(struct fdisk_context *cxt) { assert(cxt); return cxt->display_details == 1; } /** * fdisk_enable_listonly: * @cxt: context * @enable: true/flase * * Just list partition only, don't care about another details, mistakes, ... * * Returns: 0 on success, < 0 on error. */ int fdisk_enable_listonly(struct fdisk_context *cxt, int enable) { assert(cxt); cxt->listonly = enable ? 1 : 0; return 0; } /** * fdisk_is_listonly: * @cxt: context * * Returns: 1 if list-only mode enabled */ int fdisk_is_listonly(struct fdisk_context *cxt) { assert(cxt); return cxt->listonly == 1; } /** * fdisk_set_unit: * @cxt: context * @str: "cylinder" or "sector". * * This is pure shit, unfortunately for example Sun addresses begin of the * partition by cylinders... * * Returns: 0 on succes, <0 on error. */ int fdisk_set_unit(struct fdisk_context *cxt, const char *str) { assert(cxt); cxt->display_in_cyl_units = 0; if (!str) return 0; if (strcmp(str, "cylinder") == 0 || strcmp(str, "cylinders") == 0) cxt->display_in_cyl_units = 1; else if (strcmp(str, "sector") == 0 || strcmp(str, "sectors") == 0) cxt->display_in_cyl_units = 0; DBG(CXT, ul_debugobj(cxt, "display unit: %s", fdisk_get_unit(cxt, 0))); return 0; } /** * fdisk_get_unit: * @cxt: context * @n: FDISK_PLURAL or FDISK_SINGULAR * * Returns: unit name. */ const char *fdisk_get_unit(struct fdisk_context *cxt, int n) { assert(cxt); if (fdisk_use_cylinders(cxt)) return P_("cylinder", "cylinders", n); return P_("sector", "sectors", n); } /** * fdisk_use_cylinders: * @cxt: context * * Returns: 1 if user wants to display in cylinders. */ int fdisk_use_cylinders(struct fdisk_context *cxt) { assert(cxt); return cxt->display_in_cyl_units == 1; } /** * fdisk_get_units_per_sector: * @cxt: context * * This is necessary only for brain dead situations when we use "cylinders"; * * Returns: number of "units" per sector, default is 1 if display unit is sector. */ unsigned int fdisk_get_units_per_sector(struct fdisk_context *cxt) { assert(cxt); if (fdisk_use_cylinders(cxt)) { assert(cxt->geom.heads); return cxt->geom.heads * cxt->geom.sectors; } return 1; } /** * fdisk_get_optimal_iosize: * @cxt: context * * The optimal I/O is optional and does not have to be provided by device, * anyway libfdisk never returns zero. If the optimal I/O size is not provided * then libfdisk returns minimal I/O size or sector size. * * Returns: optimal I/O size in bytes. */ unsigned long fdisk_get_optimal_iosize(struct fdisk_context *cxt) { assert(cxt); return cxt->optimal_io_size ? cxt->optimal_io_size : cxt->io_size; } /** * fdisk_get_minimal_iosize: * @cxt: context * * Returns: minimal I/O size in bytes */ unsigned long fdisk_get_minimal_iosize(struct fdisk_context *cxt) { assert(cxt); return cxt->min_io_size; } /** * fdisk_get_physector_size: * @cxt: context * * Returns: physical sector size in bytes */ unsigned long fdisk_get_physector_size(struct fdisk_context *cxt) { assert(cxt); return cxt->phy_sector_size; } /** * fdisk_get_sector_size: * @cxt: context * * Returns: logical sector size in bytes */ unsigned long fdisk_get_sector_size(struct fdisk_context *cxt) { assert(cxt); return cxt->sector_size; } /** * fdisk_get_alignment_offset * @cxt: context * * The alignment offset is offset between logical and physical sectors. For * backward compatibility the first logical sector on 4K disks does no have to * start on the same place like physical sectors. * * Returns: alignment offset in bytes */ unsigned long fdisk_get_alignment_offset(struct fdisk_context *cxt) { assert(cxt); return cxt->alignment_offset; } /** * fdisk_get_grain_size: * @cxt: context * * Returns: grain in bytes used to align partitions (usually 1MiB) */ unsigned long fdisk_get_grain_size(struct fdisk_context *cxt) { assert(cxt); return cxt->grain; } /** * fdisk_get_first_lba: * @cxt: context * * Returns: first possible LBA on disk for data partitions. */ fdisk_sector_t fdisk_get_first_lba(struct fdisk_context *cxt) { assert(cxt); return cxt->first_lba; } /** * fdisk_set_first_lba: * @cxt: fdisk context * @lba: first possible logical sector for data * * It's strongly recommended to use the default library setting. The first LBA * is always reseted by fdisk_assign_device(), fdisk_override_geometry() * and fdisk_reset_alignment(). This is very low level function and library * does not check if your setting makes any sense. * * This function is necessary only when you want to work with very unusual * partition tables like GPT protective MBR or hybrid partition tables on * bootable media where the first partition may start on very crazy offsets. * * Returns: 0 on success, <0 on error. */ fdisk_sector_t fdisk_set_first_lba(struct fdisk_context *cxt, fdisk_sector_t lba) { assert(cxt); DBG(CXT, ul_debugobj(cxt, "setting first LBA from %ju to %ju", (uintmax_t) cxt->first_lba, (uintmax_t) lba)); cxt->first_lba = lba; return 0; } /** * fdisk_get_last_lba: * @cxt: fdisk context * * Note that the device has to be already assigned. * * Returns: last possible LBA on device */ fdisk_sector_t fdisk_get_last_lba(struct fdisk_context *cxt) { return cxt->last_lba; } /** * fdisk_set_last_lba: * @cxt: fdisk context * @lba: last possible logical sector * * It's strongly recommended to use the default library setting. The last LBA * is always reseted by fdisk_assign_device(), fdisk_override_geometry() and * fdisk_reset_alignment(). * * The default is number of sectors on the device, but maybe modified by the * current disklabel driver (for example GPT uses the end of disk for backup * header, so last_lba is smaller than total number of sectors). * * Returns: 0 on success, <0 on error. */ fdisk_sector_t fdisk_set_last_lba(struct fdisk_context *cxt, fdisk_sector_t lba) { assert(cxt); if (lba > cxt->total_sectors - 1 && lba < 1) return -ERANGE; cxt->last_lba = lba; return 0; } /** * fdisk_set_size_unit: * @cxt: fdisk context * @unit: FDISK_SIZEUNIT_* * * Sets unit for SIZE output field (see fdisk_partition_to_string()). * * Returns: 0 on success, <0 on error. */ int fdisk_set_size_unit(struct fdisk_context *cxt, int unit) { assert(cxt); cxt->sizeunit = unit; return 0; } /** * fdisk_get_size_unit: * @cxt: fdisk context * * Gets unit for SIZE output field (see fdisk_partition_to_string()). * * Returns: unit */ int fdisk_get_size_unit(struct fdisk_context *cxt) { assert(cxt); return cxt->sizeunit; } /** * fdisk_get_nsectors: * @cxt: context * * Returns: size of the device in logical sectors. */ fdisk_sector_t fdisk_get_nsectors(struct fdisk_context *cxt) { assert(cxt); return cxt->total_sectors; } /** * fdisk_get_devname: * @cxt: context * * Returns: device name. */ const char *fdisk_get_devname(struct fdisk_context *cxt) { assert(cxt); return cxt->dev_path; } /** * fdisk_get_devfd: * @cxt: context * * Retruns: device file descriptor. */ int fdisk_get_devfd(struct fdisk_context *cxt) { assert(cxt); return cxt->dev_fd; } /** * fdisk_get_geom_heads: * @cxt: context * * Returns: number of geometry heads. */ unsigned int fdisk_get_geom_heads(struct fdisk_context *cxt) { assert(cxt); return cxt->geom.heads; } /** * fdisk_get_geom_sectors: * @cxt: context * * Returns: number of geometry sectors. */ fdisk_sector_t fdisk_get_geom_sectors(struct fdisk_context *cxt) { assert(cxt); return cxt->geom.sectors; } /** * fdisk_get_geom_cylinders: * @cxt: context * * Returns: number of geometry cylinders */ fdisk_sector_t fdisk_get_geom_cylinders(struct fdisk_context *cxt) { assert(cxt); return cxt->geom.cylinders; } int fdisk_missing_geometry(struct fdisk_context *cxt) { int rc; if (!cxt || !cxt->label) return 0; rc = (fdisk_label_require_geometry(cxt->label) && (!cxt->geom.heads || !cxt->geom.sectors || !cxt->geom.cylinders)); if (rc && !fdisk_is_listonly(cxt)) fdisk_warnx(cxt, _("Incomplete geometry setting.")); return rc; }