/* * dsock.c - Darwin socket processing functions for /dev/kmem-based lsof */ /* * Special Darwin socket info: Justin Walker, 000927 */ /* * Copyright 1994 Purdue Research Foundation, West Lafayette, Indiana * 47907. All rights reserved. * * Written by Victor A. Abell * * This software is not subject to any license of the American Telephone * and Telegraph Company or the Regents of the University of California. * * Permission is granted to anyone to use this software for any purpose on * any computer system, and to alter it and redistribute it freely, subject * to the following restrictions: * * 1. Neither the authors nor Purdue University are responsible for any * consequences of the use of this software. * * 2. The origin of this software must not be misrepresented, either by * explicit claim or by omission. Credit to the authors and Purdue * University must appear in documentation and sources. * * 3. Altered versions must be plainly marked as such, and must not be * misrepresented as being the original software. * * 4. This notice may not be removed or altered. */ #ifndef lint static char copyright[] = "@(#) Copyright 1994 Purdue Research Foundation.\nAll rights reserved.\n"; static char *rcsid = "$Id: dsock.c,v 1.11 2005/11/01 20:24:51 abe Exp $"; #endif #include "lsof.h" #if defined(HASIPv6) /* * IPv6_2_IPv4() -- macro to define the address of an IPv4 address contained * in an IPv6 address */ #define IPv6_2_IPv4(v6) (((uint8_t *)((struct in6_addr *)v6)->s6_addr)+12) #endif /* defined(HASIPv6) */ /* * process_socket() - process socket */ void process_socket(sa) KA_T sa; /* socket address in kernel */ { struct domain d; unsigned char *fa = (unsigned char *)NULL; int fam, lp; int fp = 0; struct inpcb inp; unsigned char *la = (unsigned char *)NULL; struct protosw p; struct socket s; struct tcpcb t; KA_T ta = (KA_T)NULL; struct unpcb uc, unp; struct sockaddr_un *ua = NULL; struct sockaddr_un un; int unl; #if defined(HASIPv6) struct in6pcb in6p; #endif /* defined(HASIPv6) */ #if defined(AF_SYSTEM) struct kern_event_pcb kev_cb; #endif /* defined(AF_SYSTEM) */ #if defined(AF_NDRV) char buf[IFNAMSIZ]; struct ndrv_cb ndrv_cb; struct ifnet ifnet; #endif /* defined(AF_NDRV) */ (void) snpf(Lf->type, sizeof(Lf->type), "sock"); Lf->inp_ty = 2; /* * Read the socket, protocol, and domain structures. */ if (!sa) { enter_nm("no socket address"); return; } if (kread(sa, (char *)&s, sizeof(s))) { (void) snpf(Namech, Namechl, "can't read socket struct from %s", print_kptr(sa, (char *)NULL, 0)); enter_nm(Namech); return; } if (!s.so_type) { enter_nm("no socket type"); return; } if (!s.so_proto || kread((KA_T)s.so_proto, (char *)&p, sizeof(p))) { (void) snpf(Namech, Namechl, "can't read protocol switch from %s", print_kptr((KA_T)s.so_proto, (char *)NULL, 0)); enter_nm(Namech); return; } if (!p.pr_domain || kread((KA_T)p.pr_domain, (char *)&d, sizeof(d))) { (void) snpf(Namech, Namechl, "can't read domain struct from %s", print_kptr((KA_T)p.pr_domain, (char *)NULL, 0)); enter_nm(Namech); return; } /* * Save size information. */ if (Fsize) { if (Lf->access == 'r') Lf->sz = (SZOFFTYPE)s.so_rcv.sb_cc; else if (Lf->access == 'w') Lf->sz = (SZOFFTYPE)s.so_snd.sb_cc; else Lf->sz = (SZOFFTYPE)(s.so_rcv.sb_cc + s.so_snd.sb_cc); Lf->sz_def = 1; } else Lf->off_def = 1; #if defined(HASTCPTPIQ) Lf->lts.rq = s.so_rcv.sb_cc; Lf->lts.sq = s.so_snd.sb_cc; Lf->lts.rqs = Lf->lts.sqs = 1; #endif /* defined(HASTCPTPIQ) */ #if defined(HASSOOPT) Lf->lts.ltm = (unsigned int)(s.so_linger & 0xffff); Lf->lts.opt = (unsigned int)(s.so_options & 0xffff); Lf->lts.pqlen = (unsigned int)s.so_incqlen; Lf->lts.qlen = (unsigned int)s.so_qlen; Lf->lts.qlim = (unsigned int)s.so_qlimit; Lf->lts.rbsz = (unsigned long)s.so_rcv.sb_mbmax; Lf->lts.sbsz = (unsigned long)s.so_snd.sb_mbmax; Lf->lts.pqlens = Lf->lts.qlens = Lf->lts.qlims = Lf->lts.rbszs = Lf->lts.sbszs = (unsigned char)1; #endif /* defined(HASSOOPT) */ #if defined(HASSOSTATE) Lf->lts.ss = (unsigned int)s.so_state; #endif /* defined(HASSOSTATE) */ /* * Process socket by the associated domain family. */ switch ((fam = d.dom_family)) { /* * Process an Internet domain socket. */ case AF_INET: #if defined(HASIPv6) case AF_INET6: #endif /* defined(HASIPv6) */ if (Fnet) { if (!FnetTy || ((FnetTy == 4) && (fam == AF_INET)) #if defined(HASIPv6) || ((FnetTy == 6) && (fam == AF_INET6)) #endif /* defined(HASIPv6) */ ) Lf->sf |= SELNET; } printiproto(p.pr_protocol); #if defined(HASIPv6) (void) snpf(Lf->type, sizeof(Lf->type), (fam == AF_INET) ? "IPv4" : "IPv6"); #else /* !defined(HASIPv6) */ (void) snpf(Lf->type, sizeof(Lf->type), "inet"); #endif /* defined(HASIPv6) */ #if defined(HASIPv6) if (fam == AF_INET6) { /* * Read IPv6 protocol control block. */ if (!s.so_pcb || kread((KA_T)s.so_pcb, (char *)&in6p, sizeof(in6p))) { (void) snpf(Namech, Namechl, "can't read in6pcb at %s", print_kptr((KA_T)s.so_pcb, (char *)NULL, 0)); enter_nm(Namech); return; } /* * Save IPv6 address information. */ enter_dev_ch(print_kptr((KA_T)(in6p.in6p_ppcb ? in6p.in6p_ppcb : s.so_pcb), (char *)NULL, 0)); if (p.pr_protocol == IPPROTO_TCP) ta = (KA_T)in6p.in6p_ppcb; la = (unsigned char *)&in6p.in6p_laddr; lp = (int)ntohs(in6p.in6p_lport); if (!IN6_IS_ADDR_UNSPECIFIED(&in6p.in6p_faddr) || in6p.in6p_fport) { fa = (unsigned char *)&in6p.in6p_faddr; fp = (int)ntohs(in6p.in6p_fport); } } else #endif /* defined(HASIPv6) */ { /* * Read IPv4 protocol control block. */ if (!s.so_pcb || kread((KA_T)s.so_pcb, (char *)&inp, sizeof(inp))) { if (!s.so_pcb) { (void) snpf(Namech, Namechl, "no PCB%s%s", (s.so_state & SS_CANTSENDMORE) ? ", CANTSENDMORE" : "", (s.so_state & SS_CANTRCVMORE) ? ", CANTRCVMORE" : ""); } else { (void) snpf(Namech, Namechl, "can't read inpcb at %s", print_kptr((KA_T)s.so_pcb, (char *)NULL, 0)); } enter_nm(Namech); return; } /* * Print Internet socket information. */ enter_dev_ch(print_kptr((KA_T)(inp.inp_ppcb ? inp.inp_ppcb : s.so_pcb), (char *)NULL, 0)); /* * Save IPv4 address information. */ if (p.pr_protocol == IPPROTO_TCP) ta = (KA_T)inp.inp_ppcb; la = (unsigned char *)&inp.inp_laddr; lp = (int)ntohs(inp.inp_lport); if (inp.inp_faddr.s_addr != INADDR_ANY || inp.inp_fport) { fa = (unsigned char *)&inp.inp_faddr; fp = (int)ntohs(inp.inp_fport); } } #if defined(HASIPv6) if ((fam == AF_INET6) && ((la && IN6_IS_ADDR_V4MAPPED((struct in6_addr *)la)) || ((fa && IN6_IS_ADDR_V4MAPPED((struct in6_addr *)fa))))) { /* * Adjust for IPv4 addresses mapped in IPv6 addresses. */ if (la) la = (unsigned char *)IPv6_2_IPv4(la); if (fa) fa = (unsigned char *)IPv6_2_IPv4(fa); fam = AF_INET; } #endif /* defined(HASIPv6) */ /* * Enter local and remote addresses by address family. */ if (fa || la) (void) ent_inaddr(la, lp, fa, fp, fam); if (ta && !kread(ta, (char *)&t, sizeof(t))) { Lf->lts.type = 0; Lf->lts.state.i = (int)t.t_state; #if defined(HASSOOPT) Lf->lts.kai = (unsigned int)t.t_timer[TCPT_KEEP]; #endif /* defined(HASSOOPT) */ #if defined(HASTCPOPT) Lf->lts.mss = (unsigned long)t.t_maxseg; Lf->lts.msss = (unsigned char)1; Lf->lts.topt = (unsigned int)t.t_flags; #endif /* defined(HASTCPOPT) */ } break; #if defined(AF_NDRV) /* * Process an NDRV domain socket. */ case AF_NDRV: { (void) snpf(Lf->type, sizeof(Lf->type), "ndrv"); /* * Read protocol control block. */ if (!s.so_pcb || kread((KA_T)s.so_pcb, (char *)&ndrv_cb, sizeof(ndrv_cb))) { (void) snpf(Namech, Namechl, "can't read ndrv_cb at %s", print_kptr((KA_T)s.so_pcb, (char *)NULL, 0)); enter_nm(Namech); return; } /* * Print NDRV socket information. */ enter_dev_ch(print_kptr((KA_T)(s.so_pcb), (char *)NULL, 0)); /* * Print device name, if bound */ if (!ndrv_cb.nd_if || kread((KA_T)ndrv_cb.nd_if, (char *)&ifnet, sizeof(ifnet))) { (void) snpf(Namech, Namechl, "can't read ifnet at %s", print_kptr((KA_T)ndrv_cb.nd_if, (char *)NULL, 0)); enter_nm(Namech); return; } if (!ifnet.if_name || kread((KA_T)ifnet.if_name, buf, sizeof(buf))) { (void) snpf(Namech, Namechl, "can't read ifnet.if_name at %s", print_kptr((KA_T)ifnet.if_name, (char *)NULL, 0)); enter_nm(Namech); return; } (void) snpf(Namech, Namechl, "-> %s%d", buf, ifnet.if_unit); } break; #endif /* defined(AF_NDRV) */ #if defined(pseudo_AF_KEY) /* * Process an [internal] key-management function socket */ case pseudo_AF_KEY: (void) snpf(Lf->type, sizeof(Lf->type), "key"); break; #endif /* defined(pseudo_AF_KEY) */ #if defined(AF_SYSTEM) /* * Process a SYSTEM domain socket */ case AF_SYSTEM: (void) snpf(Lf->type, sizeof(Lf->type), "systm"); /* * Read protocol control block. */ if (!s.so_pcb || kread((KA_T)s.so_pcb, (char *)&kev_cb, sizeof(kev_cb))) { (void) snpf(Namech, Namechl, "can't read kev_cb at %s", print_kptr((KA_T)s.so_pcb, (char *)NULL, 0)); enter_nm(Namech); return; } /* * Print SYSTEM socket information. */ enter_dev_ch(print_kptr((KA_T)(s.so_pcb), (char *)NULL, 0)); (void) snpf(Namech, Namechl, "[%lx:%lx:%lx]", kev_cb.vendor_code_filter, kev_cb.class_filter, kev_cb.subclass_filter); break; #endif /* defined(AF_SYSTEM) */ #if defined(AF_PPP) /* * Process a PPP domain socket */ case AF_PPP: (void) snpf(Lf->type, sizeof(Lf->type), "ppp"); break; #endif /* defined(AF_PPP) */ /* * Process a ROUTE domain socket. */ case AF_ROUTE: (void) snpf(Lf->type, sizeof(Lf->type), "rte"); if (s.so_pcb) enter_dev_ch(print_kptr((KA_T)(s.so_pcb), (char *)NULL, 0)); else (void) snpf(Namech, Namechl, "no protocol control block"); if (!Fsize) Lf->off_def = 1; break; /* * Process a Unix domain socket. */ case AF_UNIX: if (Funix) Lf->sf |= SELUNX; (void) snpf(Lf->type, sizeof(Lf->type), "unix"); /* * Read Unix protocol control block and the Unix address structure. */ enter_dev_ch(print_kptr(sa, (char *)NULL, 0)); if (!s.so_pcb || kread((KA_T)s.so_pcb, (char *)&unp, sizeof(unp))) { (void) snpf(Namech, Namechl, "can't read unpcb at %s", print_kptr((KA_T)s.so_pcb, (char *)NULL, 0)); break; } if ((struct socket *)sa != unp.unp_socket) { (void) snpf(Namech, Namechl, "unp_socket (%s) mismatch", print_kptr((KA_T)unp.unp_socket, (char *)NULL, 0)); break; } if (unp.unp_addr) { if (kread((KA_T)unp.unp_addr, (char *)&un, sizeof(un))) { (void) snpf(Namech, Namechl, "can't read unp_addr at %s", print_kptr((KA_T)unp.unp_addr, (char *)NULL, 0)); break; } ua = &un; } if (!ua) { ua = &un; (void) bzero((char *)ua, sizeof(un)); ua->sun_family = AF_UNSPEC; } /* * Print information on Unix socket that has no address bound * to it, although it may be connected to another Unix domain * socket as a pipe. */ if (ua->sun_family != AF_UNIX) { if (ua->sun_family == AF_UNSPEC) { if (unp.unp_conn) { if (kread((KA_T)unp.unp_conn, (char *)&uc, sizeof(uc))) (void) snpf(Namech, Namechl, "can't read unp_conn at %s", print_kptr((KA_T)unp.unp_conn,(char *)NULL,0)); else (void) snpf(Namech, Namechl, "->%s", print_kptr((KA_T)uc.unp_socket,(char *)NULL,0)); } else (void) snpf(Namech, Namechl, "->(none)"); } else (void) snpf(Namech, Namechl, "unknown sun_family (%d)", ua->sun_family); break; } if (ua->sun_path[0]) { unl = ua->sun_len - offsetof(struct sockaddr_un, sun_path); if ((unl < 0) || (unl >= sizeof(ua->sun_path))) unl = sizeof(ua->sun_path) - 1; ua->sun_path[unl] = '\0'; if (ua->sun_path[0] && Sfile && is_file_named(ua->sun_path, 0)) Lf->sf |= SELNM; if (ua->sun_path[0] && !Namech[0]) (void) snpf(Namech, Namechl, "%s", ua->sun_path); } else (void) snpf(Namech, Namechl, "no address"); break; default: printunkaf(fam, 1); } if (Namech[0]) enter_nm(Namech); }