// SPDX-License-Identifier: GPL-2.0-only /* * x_tables core - Backend for {ip,ip6,arp}_tables * * Copyright (C) 2006-2006 Harald Welte * Copyright (C) 2006-2012 Patrick McHardy * * Based on existing ip_tables code which is * Copyright (C) 1999 Paul `Rusty' Russell & Michael J. Neuling * Copyright (C) 2000-2005 Netfilter Core Team */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include MODULE_LICENSE("GPL"); MODULE_AUTHOR("Harald Welte "); MODULE_DESCRIPTION("{ip,ip6,arp,eb}_tables backend module"); #define XT_PCPU_BLOCK_SIZE 4096 #define XT_MAX_TABLE_SIZE (512 * 1024 * 1024) struct compat_delta { unsigned int offset; /* offset in kernel */ int delta; /* delta in 32bit user land */ }; struct xt_af { struct mutex mutex; struct list_head match; struct list_head target; #ifdef CONFIG_COMPAT struct mutex compat_mutex; struct compat_delta *compat_tab; unsigned int number; /* number of slots in compat_tab[] */ unsigned int cur; /* number of used slots in compat_tab[] */ #endif }; static struct xt_af *xt; static const char *const xt_prefix[NFPROTO_NUMPROTO] = { [NFPROTO_UNSPEC] = "x", [NFPROTO_IPV4] = "ip", [NFPROTO_ARP] = "arp", [NFPROTO_BRIDGE] = "eb", [NFPROTO_IPV6] = "ip6", }; /* Registration hooks for targets. */ int xt_register_target(struct xt_target *target) { u_int8_t af = target->family; mutex_lock(&xt[af].mutex); list_add(&target->list, &xt[af].target); mutex_unlock(&xt[af].mutex); return 0; } EXPORT_SYMBOL(xt_register_target); void xt_unregister_target(struct xt_target *target) { u_int8_t af = target->family; mutex_lock(&xt[af].mutex); list_del(&target->list); mutex_unlock(&xt[af].mutex); } EXPORT_SYMBOL(xt_unregister_target); int xt_register_targets(struct xt_target *target, unsigned int n) { unsigned int i; int err = 0; for (i = 0; i < n; i++) { err = xt_register_target(&target[i]); if (err) goto err; } return err; err: if (i > 0) xt_unregister_targets(target, i); return err; } EXPORT_SYMBOL(xt_register_targets); void xt_unregister_targets(struct xt_target *target, unsigned int n) { while (n-- > 0) xt_unregister_target(&target[n]); } EXPORT_SYMBOL(xt_unregister_targets); int xt_register_match(struct xt_match *match) { u_int8_t af = match->family; mutex_lock(&xt[af].mutex); list_add(&match->list, &xt[af].match); mutex_unlock(&xt[af].mutex); return 0; } EXPORT_SYMBOL(xt_register_match); void xt_unregister_match(struct xt_match *match) { u_int8_t af = match->family; mutex_lock(&xt[af].mutex); list_del(&match->list); mutex_unlock(&xt[af].mutex); } EXPORT_SYMBOL(xt_unregister_match); int xt_register_matches(struct xt_match *match, unsigned int n) { unsigned int i; int err = 0; for (i = 0; i < n; i++) { err = xt_register_match(&match[i]); if (err) goto err; } return err; err: if (i > 0) xt_unregister_matches(match, i); return err; } EXPORT_SYMBOL(xt_register_matches); void xt_unregister_matches(struct xt_match *match, unsigned int n) { while (n-- > 0) xt_unregister_match(&match[n]); } EXPORT_SYMBOL(xt_unregister_matches); /* * These are weird, but module loading must not be done with mutex * held (since they will register), and we have to have a single * function to use. */ /* Find match, grabs ref. Returns ERR_PTR() on error. */ struct xt_match *xt_find_match(u8 af, const char *name, u8 revision) { struct xt_match *m; int err = -ENOENT; if (strnlen(name, XT_EXTENSION_MAXNAMELEN) == XT_EXTENSION_MAXNAMELEN) return ERR_PTR(-EINVAL); mutex_lock(&xt[af].mutex); list_for_each_entry(m, &xt[af].match, list) { if (strcmp(m->name, name) == 0) { if (m->revision == revision) { if (try_module_get(m->me)) { mutex_unlock(&xt[af].mutex); return m; } } else err = -EPROTOTYPE; /* Found something. */ } } mutex_unlock(&xt[af].mutex); if (af != NFPROTO_UNSPEC) /* Try searching again in the family-independent list */ return xt_find_match(NFPROTO_UNSPEC, name, revision); return ERR_PTR(err); } EXPORT_SYMBOL(xt_find_match); struct xt_match * xt_request_find_match(uint8_t nfproto, const char *name, uint8_t revision) { struct xt_match *match; if (strnlen(name, XT_EXTENSION_MAXNAMELEN) == XT_EXTENSION_MAXNAMELEN) return ERR_PTR(-EINVAL); match = xt_find_match(nfproto, name, revision); if (IS_ERR(match)) { request_module("%st_%s", xt_prefix[nfproto], name); match = xt_find_match(nfproto, name, revision); } return match; } EXPORT_SYMBOL_GPL(xt_request_find_match); /* Find target, grabs ref. Returns ERR_PTR() on error. */ static struct xt_target *xt_find_target(u8 af, const char *name, u8 revision) { struct xt_target *t; int err = -ENOENT; if (strnlen(name, XT_EXTENSION_MAXNAMELEN) == XT_EXTENSION_MAXNAMELEN) return ERR_PTR(-EINVAL); mutex_lock(&xt[af].mutex); list_for_each_entry(t, &xt[af].target, list) { if (strcmp(t->name, name) == 0) { if (t->revision == revision) { if (try_module_get(t->me)) { mutex_unlock(&xt[af].mutex); return t; } } else err = -EPROTOTYPE; /* Found something. */ } } mutex_unlock(&xt[af].mutex); if (af != NFPROTO_UNSPEC) /* Try searching again in the family-independent list */ return xt_find_target(NFPROTO_UNSPEC, name, revision); return ERR_PTR(err); } struct xt_target *xt_request_find_target(u8 af, const char *name, u8 revision) { struct xt_target *target; if (strnlen(name, XT_EXTENSION_MAXNAMELEN) == XT_EXTENSION_MAXNAMELEN) return ERR_PTR(-EINVAL); target = xt_find_target(af, name, revision); if (IS_ERR(target)) { request_module("%st_%s", xt_prefix[af], name); target = xt_find_target(af, name, revision); } return target; } EXPORT_SYMBOL_GPL(xt_request_find_target); static int xt_obj_to_user(u16 __user *psize, u16 size, void __user *pname, const char *name, u8 __user *prev, u8 rev) { if (put_user(size, psize)) return -EFAULT; if (copy_to_user(pname, name, strlen(name) + 1)) return -EFAULT; if (put_user(rev, prev)) return -EFAULT; return 0; } #define XT_OBJ_TO_USER(U, K, TYPE, C_SIZE) \ xt_obj_to_user(&U->u.TYPE##_size, C_SIZE ? : K->u.TYPE##_size, \ U->u.user.name, K->u.kernel.TYPE->name, \ &U->u.user.revision, K->u.kernel.TYPE->revision) int xt_data_to_user(void __user *dst, const void *src, int usersize, int size, int aligned_size) { usersize = usersize ? : size; if (copy_to_user(dst, src, usersize)) return -EFAULT; if (usersize != aligned_size && clear_user(dst + usersize, aligned_size - usersize)) return -EFAULT; return 0; } EXPORT_SYMBOL_GPL(xt_data_to_user); #define XT_DATA_TO_USER(U, K, TYPE) \ xt_data_to_user(U->data, K->data, \ K->u.kernel.TYPE->usersize, \ K->u.kernel.TYPE->TYPE##size, \ XT_ALIGN(K->u.kernel.TYPE->TYPE##size)) int xt_match_to_user(const struct xt_entry_match *m, struct xt_entry_match __user *u) { return XT_OBJ_TO_USER(u, m, match, 0) || XT_DATA_TO_USER(u, m, match); } EXPORT_SYMBOL_GPL(xt_match_to_user); int xt_target_to_user(const struct xt_entry_target *t, struct xt_entry_target __user *u) { return XT_OBJ_TO_USER(u, t, target, 0) || XT_DATA_TO_USER(u, t, target); } EXPORT_SYMBOL_GPL(xt_target_to_user); static int match_revfn(u8 af, const char *name, u8 revision, int *bestp) { const struct xt_match *m; int have_rev = 0; mutex_lock(&xt[af].mutex); list_for_each_entry(m, &xt[af].match, list) { if (strcmp(m->name, name) == 0) { if (m->revision > *bestp) *bestp = m->revision; if (m->revision == revision) have_rev = 1; } } mutex_unlock(&xt[af].mutex); if (af != NFPROTO_UNSPEC && !have_rev) return match_revfn(NFPROTO_UNSPEC, name, revision, bestp); return have_rev; } static int target_revfn(u8 af, const char *name, u8 revision, int *bestp) { const struct xt_target *t; int have_rev = 0; mutex_lock(&xt[af].mutex); list_for_each_entry(t, &xt[af].target, list) { if (strcmp(t->name, name) == 0) { if (t->revision > *bestp) *bestp = t->revision; if (t->revision == revision) have_rev = 1; } } mutex_unlock(&xt[af].mutex); if (af != NFPROTO_UNSPEC && !have_rev) return target_revfn(NFPROTO_UNSPEC, name, revision, bestp); return have_rev; } /* Returns true or false (if no such extension at all) */ int xt_find_revision(u8 af, const char *name, u8 revision, int target, int *err) { int have_rev, best = -1; if (target == 1) have_rev = target_revfn(af, name, revision, &best); else have_rev = match_revfn(af, name, revision, &best); /* Nothing at all? Return 0 to try loading module. */ if (best == -1) { *err = -ENOENT; return 0; } *err = best; if (!have_rev) *err = -EPROTONOSUPPORT; return 1; } EXPORT_SYMBOL_GPL(xt_find_revision); static char * textify_hooks(char *buf, size_t size, unsigned int mask, uint8_t nfproto) { static const char *const inetbr_names[] = { "PREROUTING", "INPUT", "FORWARD", "OUTPUT", "POSTROUTING", "BROUTING", }; static const char *const arp_names[] = { "INPUT", "FORWARD", "OUTPUT", }; const char *const *names; unsigned int i, max; char *p = buf; bool np = false; int res; names = (nfproto == NFPROTO_ARP) ? arp_names : inetbr_names; max = (nfproto == NFPROTO_ARP) ? ARRAY_SIZE(arp_names) : ARRAY_SIZE(inetbr_names); *p = '\0'; for (i = 0; i < max; ++i) { if (!(mask & (1 << i))) continue; res = snprintf(p, size, "%s%s", np ? "/" : "", names[i]); if (res > 0) { size -= res; p += res; } np = true; } return buf; } /** * xt_check_proc_name - check that name is suitable for /proc file creation * * @name: file name candidate * @size: length of buffer * * some x_tables modules wish to create a file in /proc. * This function makes sure that the name is suitable for this * purpose, it checks that name is NUL terminated and isn't a 'special' * name, like "..". * * returns negative number on error or 0 if name is useable. */ int xt_check_proc_name(const char *name, unsigned int size) { if (name[0] == '\0') return -EINVAL; if (strnlen(name, size) == size) return -ENAMETOOLONG; if (strcmp(name, ".") == 0 || strcmp(name, "..") == 0 || strchr(name, '/')) return -EINVAL; return 0; } EXPORT_SYMBOL(xt_check_proc_name); int xt_check_match(struct xt_mtchk_param *par, unsigned int size, u16 proto, bool inv_proto) { int ret; if (XT_ALIGN(par->match->matchsize) != size && par->match->matchsize != -1) { /* * ebt_among is exempt from centralized matchsize checking * because it uses a dynamic-size data set. */ pr_err_ratelimited("%s_tables: %s.%u match: invalid size %u (kernel) != (user) %u\n", xt_prefix[par->family], par->match->name, par->match->revision, XT_ALIGN(par->match->matchsize), size); return -EINVAL; } if (par->match->table != NULL && strcmp(par->match->table, par->table) != 0) { pr_info_ratelimited("%s_tables: %s match: only valid in %s table, not %s\n", xt_prefix[par->family], par->match->name, par->match->table, par->table); return -EINVAL; } if (par->match->hooks && (par->hook_mask & ~par->match->hooks) != 0) { char used[64], allow[64]; pr_info_ratelimited("%s_tables: %s match: used from hooks %s, but only valid from %s\n", xt_prefix[par->family], par->match->name, textify_hooks(used, sizeof(used), par->hook_mask, par->family), textify_hooks(allow, sizeof(allow), par->match->hooks, par->family)); return -EINVAL; } if (par->match->proto && (par->match->proto != proto || inv_proto)) { pr_info_ratelimited("%s_tables: %s match: only valid for protocol %u\n", xt_prefix[par->family], par->match->name, par->match->proto); return -EINVAL; } if (par->match->checkentry != NULL) { ret = par->match->checkentry(par); if (ret < 0) return ret; else if (ret > 0) /* Flag up potential errors. */ return -EIO; } return 0; } EXPORT_SYMBOL_GPL(xt_check_match); /** xt_check_entry_match - check that matches end before start of target * * @match: beginning of xt_entry_match * @target: beginning of this rules target (alleged end of matches) * @alignment: alignment requirement of match structures * * Validates that all matches add up to the beginning of the target, * and that each match covers at least the base structure size. * * Return: 0 on success, negative errno on failure. */ static int xt_check_entry_match(const char *match, const char *target, const size_t alignment) { const struct xt_entry_match *pos; int length = target - match; if (length == 0) /* no matches */ return 0; pos = (struct xt_entry_match *)match; do { if ((unsigned long)pos % alignment) return -EINVAL; if (length < (int)sizeof(struct xt_entry_match)) return -EINVAL; if (pos->u.match_size < sizeof(struct xt_entry_match)) return -EINVAL; if (pos->u.match_size > length) return -EINVAL; length -= pos->u.match_size; pos = ((void *)((char *)(pos) + (pos)->u.match_size)); } while (length > 0); return 0; } /** xt_check_table_hooks - check hook entry points are sane * * @info xt_table_info to check * @valid_hooks - hook entry points that we can enter from * * Validates that the hook entry and underflows points are set up. * * Return: 0 on success, negative errno on failure. */ int xt_check_table_hooks(const struct xt_table_info *info, unsigned int valid_hooks) { const char *err = "unsorted underflow"; unsigned int i, max_uflow, max_entry; bool check_hooks = false; BUILD_BUG_ON(ARRAY_SIZE(info->hook_entry) != ARRAY_SIZE(info->underflow)); max_entry = 0; max_uflow = 0; for (i = 0; i < ARRAY_SIZE(info->hook_entry); i++) { if (!(valid_hooks & (1 << i))) continue; if (info->hook_entry[i] == 0xFFFFFFFF) return -EINVAL; if (info->underflow[i] == 0xFFFFFFFF) return -EINVAL; if (check_hooks) { if (max_uflow > info->underflow[i]) goto error; if (max_uflow == info->underflow[i]) { err = "duplicate underflow"; goto error; } if (max_entry > info->hook_entry[i]) { err = "unsorted entry"; goto error; } if (max_entry == info->hook_entry[i]) { err = "duplicate entry"; goto error; } } max_entry = info->hook_entry[i]; max_uflow = info->underflow[i]; check_hooks = true; } return 0; error: pr_err_ratelimited("%s at hook %d\n", err, i); return -EINVAL; } EXPORT_SYMBOL(xt_check_table_hooks); static bool verdict_ok(int verdict) { if (verdict > 0) return true; if (verdict < 0) { int v = -verdict - 1; if (verdict == XT_RETURN) return true; switch (v) { case NF_ACCEPT: return true; case NF_DROP: return true; case NF_QUEUE: return true; default: break; } return false; } return false; } static bool error_tg_ok(unsigned int usersize, unsigned int kernsize, const char *msg, unsigned int msglen) { return usersize == kernsize && strnlen(msg, msglen) < msglen; } #ifdef CONFIG_COMPAT int xt_compat_add_offset(u_int8_t af, unsigned int offset, int delta) { struct xt_af *xp = &xt[af]; WARN_ON(!mutex_is_locked(&xt[af].compat_mutex)); if (WARN_ON(!xp->compat_tab)) return -ENOMEM; if (xp->cur >= xp->number) return -EINVAL; if (xp->cur) delta += xp->compat_tab[xp->cur - 1].delta; xp->compat_tab[xp->cur].offset = offset; xp->compat_tab[xp->cur].delta = delta; xp->cur++; return 0; } EXPORT_SYMBOL_GPL(xt_compat_add_offset); void xt_compat_flush_offsets(u_int8_t af) { WARN_ON(!mutex_is_locked(&xt[af].compat_mutex)); if (xt[af].compat_tab) { vfree(xt[af].compat_tab); xt[af].compat_tab = NULL; xt[af].number = 0; xt[af].cur = 0; } } EXPORT_SYMBOL_GPL(xt_compat_flush_offsets); int xt_compat_calc_jump(u_int8_t af, unsigned int offset) { struct compat_delta *tmp = xt[af].compat_tab; int mid, left = 0, right = xt[af].cur - 1; while (left <= right) { mid = (left + right) >> 1; if (offset > tmp[mid].offset) left = mid + 1; else if (offset < tmp[mid].offset) right = mid - 1; else return mid ? tmp[mid - 1].delta : 0; } return left ? tmp[left - 1].delta : 0; } EXPORT_SYMBOL_GPL(xt_compat_calc_jump); int xt_compat_init_offsets(u8 af, unsigned int number) { size_t mem; WARN_ON(!mutex_is_locked(&xt[af].compat_mutex)); if (!number || number > (INT_MAX / sizeof(struct compat_delta))) return -EINVAL; if (WARN_ON(xt[af].compat_tab)) return -EINVAL; mem = sizeof(struct compat_delta) * number; if (mem > XT_MAX_TABLE_SIZE) return -ENOMEM; xt[af].compat_tab = vmalloc(mem); if (!xt[af].compat_tab) return -ENOMEM; xt[af].number = number; xt[af].cur = 0; return 0; } EXPORT_SYMBOL(xt_compat_init_offsets); int xt_compat_match_offset(const struct xt_match *match) { u_int16_t csize = match->compatsize ? : match->matchsize; return XT_ALIGN(match->matchsize) - COMPAT_XT_ALIGN(csize); } EXPORT_SYMBOL_GPL(xt_compat_match_offset); void xt_compat_match_from_user(struct xt_entry_match *m, void **dstptr, unsigned int *size) { const struct xt_match *match = m->u.kernel.match; struct compat_xt_entry_match *cm = (struct compat_xt_entry_match *)m; int off = xt_compat_match_offset(match); u_int16_t msize = cm->u.user.match_size; char name[sizeof(m->u.user.name)]; m = *dstptr; memcpy(m, cm, sizeof(*cm)); if (match->compat_from_user) match->compat_from_user(m->data, cm->data); else memcpy(m->data, cm->data, msize - sizeof(*cm)); msize += off; m->u.user.match_size = msize; strlcpy(name, match->name, sizeof(name)); module_put(match->me); strlcpy(m->u.user.name, name, sizeof(m->u.user.name)); *size += off; *dstptr += msize; } EXPORT_SYMBOL_GPL(xt_compat_match_from_user); #define COMPAT_XT_DATA_TO_USER(U, K, TYPE, C_SIZE) \ xt_data_to_user(U->data, K->data, \ K->u.kernel.TYPE->usersize, \ C_SIZE, \ COMPAT_XT_ALIGN(C_SIZE)) int xt_compat_match_to_user(const struct xt_entry_match *m, void __user **dstptr, unsigned int *size) { const struct xt_match *match = m->u.kernel.match; struct compat_xt_entry_match __user *cm = *dstptr; int off = xt_compat_match_offset(match); u_int16_t msize = m->u.user.match_size - off; if (XT_OBJ_TO_USER(cm, m, match, msize)) return -EFAULT; if (match->compat_to_user) { if (match->compat_to_user((void __user *)cm->data, m->data)) return -EFAULT; } else { if (COMPAT_XT_DATA_TO_USER(cm, m, match, msize - sizeof(*cm))) return -EFAULT; } *size -= off; *dstptr += msize; return 0; } EXPORT_SYMBOL_GPL(xt_compat_match_to_user); /* non-compat version may have padding after verdict */ struct compat_xt_standard_target { struct compat_xt_entry_target t; compat_uint_t verdict; }; struct compat_xt_error_target { struct compat_xt_entry_target t; char errorname[XT_FUNCTION_MAXNAMELEN]; }; int xt_compat_check_entry_offsets(const void *base, const char *elems, unsigned int target_offset, unsigned int next_offset) { long size_of_base_struct = elems - (const char *)base; const struct compat_xt_entry_target *t; const char *e = base; if (target_offset < size_of_base_struct) return -EINVAL; if (target_offset + sizeof(*t) > next_offset) return -EINVAL; t = (void *)(e + target_offset); if (t->u.target_size < sizeof(*t)) return -EINVAL; if (target_offset + t->u.target_size > next_offset) return -EINVAL; if (strcmp(t->u.user.name, XT_STANDARD_TARGET) == 0) { const struct compat_xt_standard_target *st = (const void *)t; if (COMPAT_XT_ALIGN(target_offset + sizeof(*st)) != next_offset) return -EINVAL; if (!verdict_ok(st->verdict)) return -EINVAL; } else if (strcmp(t->u.user.name, XT_ERROR_TARGET) == 0) { const struct compat_xt_error_target *et = (const void *)t; if (!error_tg_ok(t->u.target_size, sizeof(*et), et->errorname, sizeof(et->errorname))) return -EINVAL; } /* compat_xt_entry match has less strict alignment requirements, * otherwise they are identical. In case of padding differences * we need to add compat version of xt_check_entry_match. */ BUILD_BUG_ON(sizeof(struct compat_xt_entry_match) != sizeof(struct xt_entry_match)); return xt_check_entry_match(elems, base + target_offset, __alignof__(struct compat_xt_entry_match)); } EXPORT_SYMBOL(xt_compat_check_entry_offsets); #endif /* CONFIG_COMPAT */ /** * xt_check_entry_offsets - validate arp/ip/ip6t_entry * * @base: pointer to arp/ip/ip6t_entry * @elems: pointer to first xt_entry_match, i.e. ip(6)t_entry->elems * @target_offset: the arp/ip/ip6_t->target_offset * @next_offset: the arp/ip/ip6_t->next_offset * * validates that target_offset and next_offset are sane and that all * match sizes (if any) align with the target offset. * * This function does not validate the targets or matches themselves, it * only tests that all the offsets and sizes are correct, that all * match structures are aligned, and that the last structure ends where * the target structure begins. * * Also see xt_compat_check_entry_offsets for CONFIG_COMPAT version. * * The arp/ip/ip6t_entry structure @base must have passed following tests: * - it must point to a valid memory location * - base to base + next_offset must be accessible, i.e. not exceed allocated * length. * * A well-formed entry looks like this: * * ip(6)t_entry match [mtdata] match [mtdata] target [tgdata] ip(6)t_entry * e->elems[]-----' | | * matchsize | | * matchsize | | * | | * target_offset---------------------------------' | * next_offset---------------------------------------------------' * * elems[]: flexible array member at end of ip(6)/arpt_entry struct. * This is where matches (if any) and the target reside. * target_offset: beginning of target. * next_offset: start of the next rule; also: size of this rule. * Since targets have a minimum size, target_offset + minlen <= next_offset. * * Every match stores its size, sum of sizes must not exceed target_offset. * * Return: 0 on success, negative errno on failure. */ int xt_check_entry_offsets(const void *base, const char *elems, unsigned int target_offset, unsigned int next_offset) { long size_of_base_struct = elems - (const char *)base; const struct xt_entry_target *t; const char *e = base; /* target start is within the ip/ip6/arpt_entry struct */ if (target_offset < size_of_base_struct) return -EINVAL; if (target_offset + sizeof(*t) > next_offset) return -EINVAL; t = (void *)(e + target_offset); if (t->u.target_size < sizeof(*t)) return -EINVAL; if (target_offset + t->u.target_size > next_offset) return -EINVAL; if (strcmp(t->u.user.name, XT_STANDARD_TARGET) == 0) { const struct xt_standard_target *st = (const void *)t; if (XT_ALIGN(target_offset + sizeof(*st)) != next_offset) return -EINVAL; if (!verdict_ok(st->verdict)) return -EINVAL; } else if (strcmp(t->u.user.name, XT_ERROR_TARGET) == 0) { const struct xt_error_target *et = (const void *)t; if (!error_tg_ok(t->u.target_size, sizeof(*et), et->errorname, sizeof(et->errorname))) return -EINVAL; } return xt_check_entry_match(elems, base + target_offset, __alignof__(struct xt_entry_match)); } EXPORT_SYMBOL(xt_check_entry_offsets); /** * xt_alloc_entry_offsets - allocate array to store rule head offsets * * @size: number of entries * * Return: NULL or kmalloc'd or vmalloc'd array */ unsigned int *xt_alloc_entry_offsets(unsigned int size) { if (size > XT_MAX_TABLE_SIZE / sizeof(unsigned int)) return NULL; return kvmalloc_array(size, sizeof(unsigned int), GFP_KERNEL | __GFP_ZERO); } EXPORT_SYMBOL(xt_alloc_entry_offsets); /** * xt_find_jump_offset - check if target is a valid jump offset * * @offsets: array containing all valid rule start offsets of a rule blob * @target: the jump target to search for * @size: entries in @offset */ bool xt_find_jump_offset(const unsigned int *offsets, unsigned int target, unsigned int size) { int m, low = 0, hi = size; while (hi > low) { m = (low + hi) / 2u; if (offsets[m] > target) hi = m; else if (offsets[m] < target) low = m + 1; else return true; } return false; } EXPORT_SYMBOL(xt_find_jump_offset); int xt_check_target(struct xt_tgchk_param *par, unsigned int size, u16 proto, bool inv_proto) { int ret; if (XT_ALIGN(par->target->targetsize) != size) { pr_err_ratelimited("%s_tables: %s.%u target: invalid size %u (kernel) != (user) %u\n", xt_prefix[par->family], par->target->name, par->target->revision, XT_ALIGN(par->target->targetsize), size); return -EINVAL; } if (par->target->table != NULL && strcmp(par->target->table, par->table) != 0) { pr_info_ratelimited("%s_tables: %s target: only valid in %s table, not %s\n", xt_prefix[par->family], par->target->name, par->target->table, par->table); return -EINVAL; } if (par->target->hooks && (par->hook_mask & ~par->target->hooks) != 0) { char used[64], allow[64]; pr_info_ratelimited("%s_tables: %s target: used from hooks %s, but only usable from %s\n", xt_prefix[par->family], par->target->name, textify_hooks(used, sizeof(used), par->hook_mask, par->family), textify_hooks(allow, sizeof(allow), par->target->hooks, par->family)); return -EINVAL; } if (par->target->proto && (par->target->proto != proto || inv_proto)) { pr_info_ratelimited("%s_tables: %s target: only valid for protocol %u\n", xt_prefix[par->family], par->target->name, par->target->proto); return -EINVAL; } if (par->target->checkentry != NULL) { ret = par->target->checkentry(par); if (ret < 0) return ret; else if (ret > 0) /* Flag up potential errors. */ return -EIO; } return 0; } EXPORT_SYMBOL_GPL(xt_check_target); /** * xt_copy_counters_from_user - copy counters and metadata from userspace * * @user: src pointer to userspace memory * @len: alleged size of userspace memory * @info: where to store the xt_counters_info metadata * @compat: true if we setsockopt call is done by 32bit task on 64bit kernel * * Copies counter meta data from @user and stores it in @info. * * vmallocs memory to hold the counters, then copies the counter data * from @user to the new memory and returns a pointer to it. * * If @compat is true, @info gets converted automatically to the 64bit * representation. * * The metadata associated with the counters is stored in @info. * * Return: returns pointer that caller has to test via IS_ERR(). * If IS_ERR is false, caller has to vfree the pointer. */ void *xt_copy_counters_from_user(const void __user *user, unsigned int len, struct xt_counters_info *info, bool compat) { void *mem; u64 size; #ifdef CONFIG_COMPAT if (compat) { /* structures only differ in size due to alignment */ struct compat_xt_counters_info compat_tmp; if (len <= sizeof(compat_tmp)) return ERR_PTR(-EINVAL); len -= sizeof(compat_tmp); if (copy_from_user(&compat_tmp, user, sizeof(compat_tmp)) != 0) return ERR_PTR(-EFAULT); memcpy(info->name, compat_tmp.name, sizeof(info->name) - 1); info->num_counters = compat_tmp.num_counters; user += sizeof(compat_tmp); } else #endif { if (len <= sizeof(*info)) return ERR_PTR(-EINVAL); len -= sizeof(*info); if (copy_from_user(info, user, sizeof(*info)) != 0) return ERR_PTR(-EFAULT); user += sizeof(*info); } info->name[sizeof(info->name) - 1] = '\0'; size = sizeof(struct xt_counters); size *= info->num_counters; if (size != (u64)len) return ERR_PTR(-EINVAL); mem = vmalloc(len); if (!mem) return ERR_PTR(-ENOMEM); if (copy_from_user(mem, user, len) == 0) return mem; vfree(mem); return ERR_PTR(-EFAULT); } EXPORT_SYMBOL_GPL(xt_copy_counters_from_user); #ifdef CONFIG_COMPAT int xt_compat_target_offset(const struct xt_target *target) { u_int16_t csize = target->compatsize ? : target->targetsize; return XT_ALIGN(target->targetsize) - COMPAT_XT_ALIGN(csize); } EXPORT_SYMBOL_GPL(xt_compat_target_offset); void xt_compat_target_from_user(struct xt_entry_target *t, void **dstptr, unsigned int *size) { const struct xt_target *target = t->u.kernel.target; struct compat_xt_entry_target *ct = (struct compat_xt_entry_target *)t; int off = xt_compat_target_offset(target); u_int16_t tsize = ct->u.user.target_size; char name[sizeof(t->u.user.name)]; t = *dstptr; memcpy(t, ct, sizeof(*ct)); if (target->compat_from_user) target->compat_from_user(t->data, ct->data); else memcpy(t->data, ct->data, tsize - sizeof(*ct)); tsize += off; t->u.user.target_size = tsize; strlcpy(name, target->name, sizeof(name)); module_put(target->me); strlcpy(t->u.user.name, name, sizeof(t->u.user.name)); *size += off; *dstptr += tsize; } EXPORT_SYMBOL_GPL(xt_compat_target_from_user); int xt_compat_target_to_user(const struct xt_entry_target *t, void __user **dstptr, unsigned int *size) { const struct xt_target *target = t->u.kernel.target; struct compat_xt_entry_target __user *ct = *dstptr; int off = xt_compat_target_offset(target); u_int16_t tsize = t->u.user.target_size - off; if (XT_OBJ_TO_USER(ct, t, target, tsize)) return -EFAULT; if (target->compat_to_user) { if (target->compat_to_user((void __user *)ct->data, t->data)) return -EFAULT; } else { if (COMPAT_XT_DATA_TO_USER(ct, t, target, tsize - sizeof(*ct))) return -EFAULT; } *size -= off; *dstptr += tsize; return 0; } EXPORT_SYMBOL_GPL(xt_compat_target_to_user); #endif struct xt_table_info *xt_alloc_table_info(unsigned int size) { struct xt_table_info *info = NULL; size_t sz = sizeof(*info) + size; if (sz < sizeof(*info) || sz >= XT_MAX_TABLE_SIZE) return NULL; info = kvmalloc(sz, GFP_KERNEL_ACCOUNT); if (!info) return NULL; memset(info, 0, sizeof(*info)); info->size = size; return info; } EXPORT_SYMBOL(xt_alloc_table_info); void xt_free_table_info(struct xt_table_info *info) { int cpu; if (info->jumpstack != NULL) { for_each_possible_cpu(cpu) kvfree(info->jumpstack[cpu]); kvfree(info->jumpstack); } kvfree(info); } EXPORT_SYMBOL(xt_free_table_info); /* Find table by name, grabs mutex & ref. Returns ERR_PTR on error. */ struct xt_table *xt_find_table_lock(struct net *net, u_int8_t af, const char *name) { struct xt_table *t, *found = NULL; mutex_lock(&xt[af].mutex); list_for_each_entry(t, &net->xt.tables[af], list) if (strcmp(t->name, name) == 0 && try_module_get(t->me)) return t; if (net == &init_net) goto out; /* Table doesn't exist in this netns, re-try init */ list_for_each_entry(t, &init_net.xt.tables[af], list) { int err; if (strcmp(t->name, name)) continue; if (!try_module_get(t->me)) goto out; mutex_unlock(&xt[af].mutex); err = t->table_init(net); if (err < 0) { module_put(t->me); return ERR_PTR(err); } found = t; mutex_lock(&xt[af].mutex); break; } if (!found) goto out; /* and once again: */ list_for_each_entry(t, &net->xt.tables[af], list) if (strcmp(t->name, name) == 0) return t; module_put(found->me); out: mutex_unlock(&xt[af].mutex); return ERR_PTR(-ENOENT); } EXPORT_SYMBOL_GPL(xt_find_table_lock); struct xt_table *xt_request_find_table_lock(struct net *net, u_int8_t af, const char *name) { struct xt_table *t = xt_find_table_lock(net, af, name); #ifdef CONFIG_MODULES if (IS_ERR(t)) { int err = request_module("%stable_%s", xt_prefix[af], name); if (err < 0) return ERR_PTR(err); t = xt_find_table_lock(net, af, name); } #endif return t; } EXPORT_SYMBOL_GPL(xt_request_find_table_lock); void xt_table_unlock(struct xt_table *table) { mutex_unlock(&xt[table->af].mutex); } EXPORT_SYMBOL_GPL(xt_table_unlock); #ifdef CONFIG_COMPAT void xt_compat_lock(u_int8_t af) { mutex_lock(&xt[af].compat_mutex); } EXPORT_SYMBOL_GPL(xt_compat_lock); void xt_compat_unlock(u_int8_t af) { mutex_unlock(&xt[af].compat_mutex); } EXPORT_SYMBOL_GPL(xt_compat_unlock); #endif DEFINE_PER_CPU(seqcount_t, xt_recseq); EXPORT_PER_CPU_SYMBOL_GPL(xt_recseq); struct static_key xt_tee_enabled __read_mostly; EXPORT_SYMBOL_GPL(xt_tee_enabled); static int xt_jumpstack_alloc(struct xt_table_info *i) { unsigned int size; int cpu; size = sizeof(void **) * nr_cpu_ids; if (size > PAGE_SIZE) i->jumpstack = kvzalloc(size, GFP_KERNEL); else i->jumpstack = kzalloc(size, GFP_KERNEL); if (i->jumpstack == NULL) return -ENOMEM; /* ruleset without jumps -- no stack needed */ if (i->stacksize == 0) return 0; /* Jumpstack needs to be able to record two full callchains, one * from the first rule set traversal, plus one table reentrancy * via -j TEE without clobbering the callchain that brought us to * TEE target. * * This is done by allocating two jumpstacks per cpu, on reentry * the upper half of the stack is used. * * see the jumpstack setup in ipt_do_table() for more details. */ size = sizeof(void *) * i->stacksize * 2u; for_each_possible_cpu(cpu) { i->jumpstack[cpu] = kvmalloc_node(size, GFP_KERNEL, cpu_to_node(cpu)); if (i->jumpstack[cpu] == NULL) /* * Freeing will be done later on by the callers. The * chain is: xt_replace_table -> __do_replace -> * do_replace -> xt_free_table_info. */ return -ENOMEM; } return 0; } struct xt_counters *xt_counters_alloc(unsigned int counters) { struct xt_counters *mem; if (counters == 0 || counters > INT_MAX / sizeof(*mem)) return NULL; counters *= sizeof(*mem); if (counters > XT_MAX_TABLE_SIZE) return NULL; return vzalloc(counters); } EXPORT_SYMBOL(xt_counters_alloc); struct xt_table_info * xt_replace_table(struct xt_table *table, unsigned int num_counters, struct xt_table_info *newinfo, int *error) { struct xt_table_info *private; unsigned int cpu; int ret; ret = xt_jumpstack_alloc(newinfo); if (ret < 0) { *error = ret; return NULL; } /* Do the substitution. */ local_bh_disable(); private = table->private; /* Check inside lock: is the old number correct? */ if (num_counters != private->number) { pr_debug("num_counters != table->private->number (%u/%u)\n", num_counters, private->number); local_bh_enable(); *error = -EAGAIN; return NULL; } newinfo->initial_entries = private->initial_entries; /* * Ensure contents of newinfo are visible before assigning to * private. */ smp_wmb(); table->private = newinfo; /* make sure all cpus see new ->private value */ smp_mb(); /* * Even though table entries have now been swapped, other CPU's * may still be using the old entries... */ local_bh_enable(); /* ... so wait for even xt_recseq on all cpus */ for_each_possible_cpu(cpu) { seqcount_t *s = &per_cpu(xt_recseq, cpu); u32 seq = raw_read_seqcount(s); if (seq & 1) { do { cond_resched(); cpu_relax(); } while (seq == raw_read_seqcount(s)); } } #ifdef CONFIG_AUDIT if (audit_enabled) { audit_log(audit_context(), GFP_KERNEL, AUDIT_NETFILTER_CFG, "table=%s family=%u entries=%u", table->name, table->af, private->number); } #endif return private; } EXPORT_SYMBOL_GPL(xt_replace_table); struct xt_table *xt_register_table(struct net *net, const struct xt_table *input_table, struct xt_table_info *bootstrap, struct xt_table_info *newinfo) { int ret; struct xt_table_info *private; struct xt_table *t, *table; /* Don't add one object to multiple lists. */ table = kmemdup(input_table, sizeof(struct xt_table), GFP_KERNEL); if (!table) { ret = -ENOMEM; goto out; } mutex_lock(&xt[table->af].mutex); /* Don't autoload: we'd eat our tail... */ list_for_each_entry(t, &net->xt.tables[table->af], list) { if (strcmp(t->name, table->name) == 0) { ret = -EEXIST; goto unlock; } } /* Simplifies replace_table code. */ table->private = bootstrap; if (!xt_replace_table(table, 0, newinfo, &ret)) goto unlock; private = table->private; pr_debug("table->private->number = %u\n", private->number); /* save number of initial entries */ private->initial_entries = private->number; list_add(&table->list, &net->xt.tables[table->af]); mutex_unlock(&xt[table->af].mutex); return table; unlock: mutex_unlock(&xt[table->af].mutex); kfree(table); out: return ERR_PTR(ret); } EXPORT_SYMBOL_GPL(xt_register_table); void *xt_unregister_table(struct xt_table *table) { struct xt_table_info *private; mutex_lock(&xt[table->af].mutex); private = table->private; list_del(&table->list); mutex_unlock(&xt[table->af].mutex); kfree(table); return private; } EXPORT_SYMBOL_GPL(xt_unregister_table); #ifdef CONFIG_PROC_FS static void *xt_table_seq_start(struct seq_file *seq, loff_t *pos) { struct net *net = seq_file_net(seq); u_int8_t af = (unsigned long)PDE_DATA(file_inode(seq->file)); mutex_lock(&xt[af].mutex); return seq_list_start(&net->xt.tables[af], *pos); } static void *xt_table_seq_next(struct seq_file *seq, void *v, loff_t *pos) { struct net *net = seq_file_net(seq); u_int8_t af = (unsigned long)PDE_DATA(file_inode(seq->file)); return seq_list_next(v, &net->xt.tables[af], pos); } static void xt_table_seq_stop(struct seq_file *seq, void *v) { u_int8_t af = (unsigned long)PDE_DATA(file_inode(seq->file)); mutex_unlock(&xt[af].mutex); } static int xt_table_seq_show(struct seq_file *seq, void *v) { struct xt_table *table = list_entry(v, struct xt_table, list); if (*table->name) seq_printf(seq, "%s\n", table->name); return 0; } static const struct seq_operations xt_table_seq_ops = { .start = xt_table_seq_start, .next = xt_table_seq_next, .stop = xt_table_seq_stop, .show = xt_table_seq_show, }; /* * Traverse state for ip{,6}_{tables,matches} for helping crossing * the multi-AF mutexes. */ struct nf_mttg_trav { struct list_head *head, *curr; uint8_t class; }; enum { MTTG_TRAV_INIT, MTTG_TRAV_NFP_UNSPEC, MTTG_TRAV_NFP_SPEC, MTTG_TRAV_DONE, }; static void *xt_mttg_seq_next(struct seq_file *seq, void *v, loff_t *ppos, bool is_target) { static const uint8_t next_class[] = { [MTTG_TRAV_NFP_UNSPEC] = MTTG_TRAV_NFP_SPEC, [MTTG_TRAV_NFP_SPEC] = MTTG_TRAV_DONE, }; uint8_t nfproto = (unsigned long)PDE_DATA(file_inode(seq->file)); struct nf_mttg_trav *trav = seq->private; if (ppos != NULL) ++(*ppos); switch (trav->class) { case MTTG_TRAV_INIT: trav->class = MTTG_TRAV_NFP_UNSPEC; mutex_lock(&xt[NFPROTO_UNSPEC].mutex); trav->head = trav->curr = is_target ? &xt[NFPROTO_UNSPEC].target : &xt[NFPROTO_UNSPEC].match; break; case MTTG_TRAV_NFP_UNSPEC: trav->curr = trav->curr->next; if (trav->curr != trav->head) break; mutex_unlock(&xt[NFPROTO_UNSPEC].mutex); mutex_lock(&xt[nfproto].mutex); trav->head = trav->curr = is_target ? &xt[nfproto].target : &xt[nfproto].match; trav->class = next_class[trav->class]; break; case MTTG_TRAV_NFP_SPEC: trav->curr = trav->curr->next; if (trav->curr != trav->head) break; /* fall through */ default: return NULL; } return trav; } static void *xt_mttg_seq_start(struct seq_file *seq, loff_t *pos, bool is_target) { struct nf_mttg_trav *trav = seq->private; unsigned int j; trav->class = MTTG_TRAV_INIT; for (j = 0; j < *pos; ++j) if (xt_mttg_seq_next(seq, NULL, NULL, is_target) == NULL) return NULL; return trav; } static void xt_mttg_seq_stop(struct seq_file *seq, void *v) { uint8_t nfproto = (unsigned long)PDE_DATA(file_inode(seq->file)); struct nf_mttg_trav *trav = seq->private; switch (trav->class) { case MTTG_TRAV_NFP_UNSPEC: mutex_unlock(&xt[NFPROTO_UNSPEC].mutex); break; case MTTG_TRAV_NFP_SPEC: mutex_unlock(&xt[nfproto].mutex); break; } } static void *xt_match_seq_start(struct seq_file *seq, loff_t *pos) { return xt_mttg_seq_start(seq, pos, false); } static void *xt_match_seq_next(struct seq_file *seq, void *v, loff_t *ppos) { return xt_mttg_seq_next(seq, v, ppos, false); } static int xt_match_seq_show(struct seq_file *seq, void *v) { const struct nf_mttg_trav *trav = seq->private; const struct xt_match *match; switch (trav->class) { case MTTG_TRAV_NFP_UNSPEC: case MTTG_TRAV_NFP_SPEC: if (trav->curr == trav->head) return 0; match = list_entry(trav->curr, struct xt_match, list); if (*match->name) seq_printf(seq, "%s\n", match->name); } return 0; } static const struct seq_operations xt_match_seq_ops = { .start = xt_match_seq_start, .next = xt_match_seq_next, .stop = xt_mttg_seq_stop, .show = xt_match_seq_show, }; static void *xt_target_seq_start(struct seq_file *seq, loff_t *pos) { return xt_mttg_seq_start(seq, pos, true); } static void *xt_target_seq_next(struct seq_file *seq, void *v, loff_t *ppos) { return xt_mttg_seq_next(seq, v, ppos, true); } static int xt_target_seq_show(struct seq_file *seq, void *v) { const struct nf_mttg_trav *trav = seq->private; const struct xt_target *target; switch (trav->class) { case MTTG_TRAV_NFP_UNSPEC: case MTTG_TRAV_NFP_SPEC: if (trav->curr == trav->head) return 0; target = list_entry(trav->curr, struct xt_target, list); if (*target->name) seq_printf(seq, "%s\n", target->name); } return 0; } static const struct seq_operations xt_target_seq_ops = { .start = xt_target_seq_start, .next = xt_target_seq_next, .stop = xt_mttg_seq_stop, .show = xt_target_seq_show, }; #define FORMAT_TABLES "_tables_names" #define FORMAT_MATCHES "_tables_matches" #define FORMAT_TARGETS "_tables_targets" #endif /* CONFIG_PROC_FS */ /** * xt_hook_ops_alloc - set up hooks for a new table * @table: table with metadata needed to set up hooks * @fn: Hook function * * This function will create the nf_hook_ops that the x_table needs * to hand to xt_hook_link_net(). */ struct nf_hook_ops * xt_hook_ops_alloc(const struct xt_table *table, nf_hookfn *fn) { unsigned int hook_mask = table->valid_hooks; uint8_t i, num_hooks = hweight32(hook_mask); uint8_t hooknum; struct nf_hook_ops *ops; if (!num_hooks) return ERR_PTR(-EINVAL); ops = kcalloc(num_hooks, sizeof(*ops), GFP_KERNEL); if (ops == NULL) return ERR_PTR(-ENOMEM); for (i = 0, hooknum = 0; i < num_hooks && hook_mask != 0; hook_mask >>= 1, ++hooknum) { if (!(hook_mask & 1)) continue; ops[i].hook = fn; ops[i].pf = table->af; ops[i].hooknum = hooknum; ops[i].priority = table->priority; ++i; } return ops; } EXPORT_SYMBOL_GPL(xt_hook_ops_alloc); int xt_proto_init(struct net *net, u_int8_t af) { #ifdef CONFIG_PROC_FS char buf[XT_FUNCTION_MAXNAMELEN]; struct proc_dir_entry *proc; kuid_t root_uid; kgid_t root_gid; #endif if (af >= ARRAY_SIZE(xt_prefix)) return -EINVAL; #ifdef CONFIG_PROC_FS root_uid = make_kuid(net->user_ns, 0); root_gid = make_kgid(net->user_ns, 0); strlcpy(buf, xt_prefix[af], sizeof(buf)); strlcat(buf, FORMAT_TABLES, sizeof(buf)); proc = proc_create_net_data(buf, 0440, net->proc_net, &xt_table_seq_ops, sizeof(struct seq_net_private), (void *)(unsigned long)af); if (!proc) goto out; if (uid_valid(root_uid) && gid_valid(root_gid)) proc_set_user(proc, root_uid, root_gid); strlcpy(buf, xt_prefix[af], sizeof(buf)); strlcat(buf, FORMAT_MATCHES, sizeof(buf)); proc = proc_create_seq_private(buf, 0440, net->proc_net, &xt_match_seq_ops, sizeof(struct nf_mttg_trav), (void *)(unsigned long)af); if (!proc) goto out_remove_tables; if (uid_valid(root_uid) && gid_valid(root_gid)) proc_set_user(proc, root_uid, root_gid); strlcpy(buf, xt_prefix[af], sizeof(buf)); strlcat(buf, FORMAT_TARGETS, sizeof(buf)); proc = proc_create_seq_private(buf, 0440, net->proc_net, &xt_target_seq_ops, sizeof(struct nf_mttg_trav), (void *)(unsigned long)af); if (!proc) goto out_remove_matches; if (uid_valid(root_uid) && gid_valid(root_gid)) proc_set_user(proc, root_uid, root_gid); #endif return 0; #ifdef CONFIG_PROC_FS out_remove_matches: strlcpy(buf, xt_prefix[af], sizeof(buf)); strlcat(buf, FORMAT_MATCHES, sizeof(buf)); remove_proc_entry(buf, net->proc_net); out_remove_tables: strlcpy(buf, xt_prefix[af], sizeof(buf)); strlcat(buf, FORMAT_TABLES, sizeof(buf)); remove_proc_entry(buf, net->proc_net); out: return -1; #endif } EXPORT_SYMBOL_GPL(xt_proto_init); void xt_proto_fini(struct net *net, u_int8_t af) { #ifdef CONFIG_PROC_FS char buf[XT_FUNCTION_MAXNAMELEN]; strlcpy(buf, xt_prefix[af], sizeof(buf)); strlcat(buf, FORMAT_TABLES, sizeof(buf)); remove_proc_entry(buf, net->proc_net); strlcpy(buf, xt_prefix[af], sizeof(buf)); strlcat(buf, FORMAT_TARGETS, sizeof(buf)); remove_proc_entry(buf, net->proc_net); strlcpy(buf, xt_prefix[af], sizeof(buf)); strlcat(buf, FORMAT_MATCHES, sizeof(buf)); remove_proc_entry(buf, net->proc_net); #endif /*CONFIG_PROC_FS*/ } EXPORT_SYMBOL_GPL(xt_proto_fini); /** * xt_percpu_counter_alloc - allocate x_tables rule counter * * @state: pointer to xt_percpu allocation state * @counter: pointer to counter struct inside the ip(6)/arpt_entry struct * * On SMP, the packet counter [ ip(6)t_entry->counters.pcnt ] will then * contain the address of the real (percpu) counter. * * Rule evaluation needs to use xt_get_this_cpu_counter() helper * to fetch the real percpu counter. * * To speed up allocation and improve data locality, a 4kb block is * allocated. Freeing any counter may free an entire block, so all * counters allocated using the same state must be freed at the same * time. * * xt_percpu_counter_alloc_state contains the base address of the * allocated page and the current sub-offset. * * returns false on error. */ bool xt_percpu_counter_alloc(struct xt_percpu_counter_alloc_state *state, struct xt_counters *counter) { BUILD_BUG_ON(XT_PCPU_BLOCK_SIZE < (sizeof(*counter) * 2)); if (nr_cpu_ids <= 1) return true; if (!state->mem) { state->mem = __alloc_percpu(XT_PCPU_BLOCK_SIZE, XT_PCPU_BLOCK_SIZE); if (!state->mem) return false; } counter->pcnt = (__force unsigned long)(state->mem + state->off); state->off += sizeof(*counter); if (state->off > (XT_PCPU_BLOCK_SIZE - sizeof(*counter))) { state->mem = NULL; state->off = 0; } return true; } EXPORT_SYMBOL_GPL(xt_percpu_counter_alloc); void xt_percpu_counter_free(struct xt_counters *counters) { unsigned long pcnt = counters->pcnt; if (nr_cpu_ids > 1 && (pcnt & (XT_PCPU_BLOCK_SIZE - 1)) == 0) free_percpu((void __percpu *)pcnt); } EXPORT_SYMBOL_GPL(xt_percpu_counter_free); static int __net_init xt_net_init(struct net *net) { int i; for (i = 0; i < NFPROTO_NUMPROTO; i++) INIT_LIST_HEAD(&net->xt.tables[i]); return 0; } static void __net_exit xt_net_exit(struct net *net) { int i; for (i = 0; i < NFPROTO_NUMPROTO; i++) WARN_ON_ONCE(!list_empty(&net->xt.tables[i])); } static struct pernet_operations xt_net_ops = { .init = xt_net_init, .exit = xt_net_exit, }; static int __init xt_init(void) { unsigned int i; int rv; for_each_possible_cpu(i) { seqcount_init(&per_cpu(xt_recseq, i)); } xt = kcalloc(NFPROTO_NUMPROTO, sizeof(struct xt_af), GFP_KERNEL); if (!xt) return -ENOMEM; for (i = 0; i < NFPROTO_NUMPROTO; i++) { mutex_init(&xt[i].mutex); #ifdef CONFIG_COMPAT mutex_init(&xt[i].compat_mutex); xt[i].compat_tab = NULL; #endif INIT_LIST_HEAD(&xt[i].target); INIT_LIST_HEAD(&xt[i].match); } rv = register_pernet_subsys(&xt_net_ops); if (rv < 0) kfree(xt); return rv; } static void __exit xt_fini(void) { unregister_pernet_subsys(&xt_net_ops); kfree(xt); } module_init(xt_init); module_exit(xt_fini);