/* * Copyright (c) 2017-2021 The Linux Foundation. All rights reserved. * Copyright (c) 2023 Qualcomm Innovation Center, Inc. All rights reserved. * * Permission to use, copy, modify, and/or distribute this software for * any purpose with or without fee is hereby granted, provided that the * above copyright notice and this permission notice appear in all * copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL * WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE * AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR * PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR * PERFORMANCE OF THIS SOFTWARE. */ /** * DOC: qdf_crypto.c * * This source file contains linux specific definitions for QDF crypto APIs */ /* Include Files */ #include "qdf_crypto.h" #include #include #include #include #include #include #include #if 1 #include "qdf_module.h" #endif /* Function Definitions and Documentation */ #define MAX_HMAC_ELEMENT_CNT 10 /* * xor: API to calculate xor * @a: first variable * @b: second variable * @len: length of variables */ static void xor(uint8_t *a, const uint8_t *b, size_t len) { unsigned int i; for (i = 0; i < len; i++) a[i] ^= b[i]; } int qdf_get_hash(uint8_t *type, uint8_t element_cnt, uint8_t *addr[], uint32_t *addr_len, int8_t *hash) { return qdf_get_hmac_hash(type, NULL, 0, element_cnt, addr, addr_len, hash); } int qdf_get_hmac_hash(uint8_t *type, uint8_t *key, uint32_t keylen, uint8_t element_cnt, uint8_t *addr[], uint32_t *addr_len, int8_t *hash) { int i; size_t src_len[MAX_HMAC_ELEMENT_CNT]; if (element_cnt > MAX_HMAC_ELEMENT_CNT) { QDF_TRACE(QDF_MODULE_ID_QDF, QDF_TRACE_LEVEL_ERROR, FL("Invalid element count %d"), element_cnt); return -EINVAL; } for (i = 0; i < element_cnt; i++) src_len[i] = addr_len[i]; return qdf_get_keyed_hash(type, key, keylen, (const uint8_t **)addr, src_len, element_cnt, hash); } QDF_STATUS qdf_default_hmac_sha256_kdf(uint8_t *secret, uint32_t secret_len, uint8_t *label, uint8_t *optional_data, uint32_t optional_data_len, uint8_t *key, uint32_t keylen) { uint8_t tmp_hash[SHA256_DIGEST_SIZE] = {0}; uint8_t count = 1; uint8_t *addr[4]; uint32_t len[4]; uint32_t current_position = 0, remaining_data = SHA256_DIGEST_SIZE; addr[0] = tmp_hash; len[0] = SHA256_DIGEST_SIZE; addr[1] = label; len[1] = strlen(label) + 1; addr[2] = optional_data; len[2] = optional_data_len; addr[3] = &count; len[3] = 1; if (keylen == 0 || (keylen > (WLAN_MAX_PRF_INTERATIONS_COUNT * SHA256_DIGEST_SIZE))) { qdf_err("invalid key length %d", keylen); return QDF_STATUS_E_FAILURE; } /* Create T1 */ if (qdf_get_hmac_hash(HMAC_SHA256_CRYPTO_TYPE, secret, secret_len, 3, &addr[1], &len[1], tmp_hash) < 0) { qdf_err("failed to get hmac hash"); return QDF_STATUS_E_FAILURE; } /* Update hash from tmp_hash */ qdf_mem_copy(key + current_position, tmp_hash, remaining_data); current_position += remaining_data; for (count = 2; current_position < keylen; count++) { remaining_data = keylen - current_position; if (remaining_data > SHA256_DIGEST_SIZE) remaining_data = SHA256_DIGEST_SIZE; /* Create T-n */ if (qdf_get_hmac_hash(HMAC_SHA256_CRYPTO_TYPE, secret, secret_len, 4, addr, len, tmp_hash) < 0) { qdf_err("failed to get hmac hash"); return QDF_STATUS_E_FAILURE; } /* Update hash from tmp_hash */ qdf_mem_copy(key + current_position, tmp_hash, remaining_data); current_position += remaining_data; } return QDF_STATUS_SUCCESS; } /* qdf_update_dbl from RFC 5297. Length of d is AES_BLOCK_SIZE (128 bits) */ void qdf_update_dbl(uint8_t *d) { int i; uint8_t msb, msb_prev = 0; /* left shift by 1 */ for (i = AES_BLOCK_SIZE - 1; i >= 0; i--) { msb = d[i] & 0x80; d[i] = d[i] << 1; d[i] += msb_prev ? 1 : 0; msb_prev = msb; } if (msb) d[AES_BLOCK_SIZE - 1] ^= 0x87; } static inline void xor_128(const uint8_t *a, const uint8_t *b, uint8_t *out) { uint8_t i; for (i = 0; i < AES_BLOCK_SIZE; i++) out[i] = a[i] ^ b[i]; } static inline void leftshift_onebit(const uint8_t *input, uint8_t *output) { int i, overflow = 0; for (i = (AES_BLOCK_SIZE - 1); i >= 0; i--) { output[i] = input[i] << 1; output[i] |= overflow; overflow = (input[i] & 0x80) ? 1 : 0; } } #if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 4, 0)) static void generate_subkey(struct crypto_aes_ctx *aes_ctx, uint8_t *k1, uint8_t *k2) { uint8_t l[AES_BLOCK_SIZE] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; uint8_t tmp[AES_BLOCK_SIZE]; const uint8_t const_rb[AES_BLOCK_SIZE] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x87 }; const uint8_t const_zero[AES_BLOCK_SIZE] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; aes_encrypt(aes_ctx, l, const_zero); if ((l[0] & 0x80) == 0) { /* If MSB(l) = 0, then k1 = l << 1 */ leftshift_onebit(l, k1); } else { /* Else k1 = ( l << 1 ) (+) Rb */ leftshift_onebit(l, tmp); xor_128(tmp, const_rb, k1); } if ((k1[0] & 0x80) == 0) { leftshift_onebit(k1, k2); } else { leftshift_onebit(k1, tmp); xor_128(tmp, const_rb, k2); } } #else static void generate_subkey(struct crypto_cipher *tfm, uint8_t *k1, uint8_t *k2) { uint8_t l[AES_BLOCK_SIZE], tmp[AES_BLOCK_SIZE]; const uint8_t const_rb[AES_BLOCK_SIZE] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x87 }; const uint8_t const_zero[AES_BLOCK_SIZE] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; crypto_cipher_encrypt_one(tfm, l, const_zero); if ((l[0] & 0x80) == 0) { /* If MSB(l) = 0, then k1 = l << 1 */ leftshift_onebit(l, k1); } else { /* Else k1 = ( l << 1 ) (+) Rb */ leftshift_onebit(l, tmp); xor_128(tmp, const_rb, k1); } if ((k1[0] & 0x80) == 0) { leftshift_onebit(k1, k2); } else { leftshift_onebit(k1, tmp); xor_128(tmp, const_rb, k2); } } #endif static inline void padding(const uint8_t *lastb, uint8_t *pad, uint16_t length) { uint8_t j; /* original last block */ for (j = 0; j < AES_BLOCK_SIZE; j++) { if (j < length) pad[j] = lastb[j]; else if (j == length) pad[j] = 0x80; else pad[j] = 0x00; } } #if (LINUX_VERSION_CODE >= KERNEL_VERSION(5, 4, 0)) int qdf_crypto_aes_128_cmac(const uint8_t *key, const uint8_t *data, uint16_t len, uint8_t *mic) { uint8_t x[AES_BLOCK_SIZE], y[AES_BLOCK_SIZE]; uint8_t m_last[AES_BLOCK_SIZE], padded[AES_BLOCK_SIZE]; uint8_t k1[AES_KEYSIZE_128], k2[AES_KEYSIZE_128]; int cmp_blk; int i, num_block = (len + 15) / AES_BLOCK_SIZE; struct crypto_aes_ctx aes_ctx; int ret; /* * Calculate MIC and then copy */ ret = aes_expandkey(&aes_ctx, key, AES_KEYSIZE_128); if (ret) { qdf_err("aes_expandkey failed (%d)", ret); return ret; } generate_subkey(&aes_ctx, k1, k2); if (num_block == 0) { num_block = 1; cmp_blk = 0; } else { cmp_blk = ((len % AES_BLOCK_SIZE) == 0) ? 1 : 0; } if (cmp_blk) { /* Last block is complete block */ xor_128(&data[AES_BLOCK_SIZE * (num_block - 1)], k1, m_last); } else { /* Last block is not complete block */ padding(&data[AES_BLOCK_SIZE * (num_block - 1)], padded, len % AES_BLOCK_SIZE); xor_128(padded, k2, m_last); } for (i = 0; i < AES_BLOCK_SIZE; i++) x[i] = 0; for (i = 0; i < (num_block - 1); i++) { /* y = Mi (+) x */ xor_128(x, &data[AES_BLOCK_SIZE * i], y); /* x = AES-128(KEY, y) */ aes_encrypt(&aes_ctx, x, y); } xor_128(x, m_last, y); aes_encrypt(&aes_ctx, x, y); memzero_explicit(&aes_ctx, sizeof(aes_ctx)); memcpy(mic, x, CMAC_TLEN); return 0; } #else int qdf_crypto_aes_128_cmac(const uint8_t *key, const uint8_t *data, uint16_t len, uint8_t *mic) { uint8_t x[AES_BLOCK_SIZE], y[AES_BLOCK_SIZE]; uint8_t m_last[AES_BLOCK_SIZE], padded[AES_BLOCK_SIZE]; uint8_t k1[AES_KEYSIZE_128], k2[AES_KEYSIZE_128]; int cmp_blk; int i, num_block = (len + 15) / AES_BLOCK_SIZE; struct crypto_cipher *tfm; int ret; /* * Calculate MIC and then copy */ tfm = crypto_alloc_cipher("aes", 0, CRYPTO_ALG_ASYNC); if (IS_ERR(tfm)) { ret = PTR_ERR(tfm); qdf_err("crypto_alloc_cipher failed (%d)", ret); return ret; } ret = crypto_cipher_setkey(tfm, key, AES_KEYSIZE_128); if (ret) { qdf_err("crypto_cipher_setkey failed (%d)", ret); crypto_free_cipher(tfm); return ret; } generate_subkey(tfm, k1, k2); if (num_block == 0) { num_block = 1; cmp_blk = 0; } else { cmp_blk = ((len % AES_BLOCK_SIZE) == 0) ? 1 : 0; } if (cmp_blk) { /* Last block is complete block */ xor_128(&data[AES_BLOCK_SIZE * (num_block - 1)], k1, m_last); } else { /* Last block is not complete block */ padding(&data[AES_BLOCK_SIZE * (num_block - 1)], padded, len % AES_BLOCK_SIZE); xor_128(padded, k2, m_last); } for (i = 0; i < AES_BLOCK_SIZE; i++) x[i] = 0; for (i = 0; i < (num_block - 1); i++) { /* y = Mi (+) x */ xor_128(x, &data[AES_BLOCK_SIZE * i], y); /* x = AES-128(KEY, y) */ crypto_cipher_encrypt_one(tfm, x, y); } xor_128(x, m_last, y); crypto_cipher_encrypt_one(tfm, x, y); crypto_free_cipher(tfm); memcpy(mic, x, CMAC_TLEN); return 0; } #endif /** * set_desc_flags() - set flags variable in the shash_desc struct * @desc: pointer to shash_desc struct * @tfm: pointer to crypto_shash struct * * Set the flags variable in the shash_desc struct by getting the flag * from the crypto_hash struct. The flag is not actually used, prompting * its removal from kernel code in versions 5.2 and above. Thus, for * versions 5.2 and above, do not set the flag variable of shash_desc. */ #if (LINUX_VERSION_CODE < KERNEL_VERSION(5, 2, 0)) static void set_desc_flags(struct shash_desc *desc, struct crypto_shash *tfm) { desc->flags = crypto_shash_get_flags(tfm); } #else static void set_desc_flags(struct shash_desc *desc, struct crypto_shash *tfm) { } #endif int qdf_get_keyed_hash(const char *alg, const uint8_t *key, unsigned int key_len, const uint8_t *src[], size_t *src_len, size_t num_elements, uint8_t *out) { struct crypto_shash *tfm; int ret; size_t i; tfm = crypto_alloc_shash(alg, 0, CRYPTO_ALG_ASYNC); if (IS_ERR(tfm)) { QDF_TRACE(QDF_MODULE_ID_QDF, QDF_TRACE_LEVEL_ERROR, FL("Failed to allocate transformation for %s: %ld"), alg, PTR_ERR(tfm)); return -EINVAL; } if (key && key_len) { ret = crypto_shash_setkey(tfm, key, key_len); if (ret) { QDF_TRACE(QDF_MODULE_ID_QDF, QDF_TRACE_LEVEL_ERROR, FL("Set key failed for %s, ret:%d"), alg, -ret); goto error; } } do { SHASH_DESC_ON_STACK(desc, tfm); desc->tfm = tfm; set_desc_flags(desc, tfm); ret = crypto_shash_init(desc); if (ret) { QDF_TRACE(QDF_MODULE_ID_QDF, QDF_TRACE_LEVEL_ERROR, FL("Failed to init hash for %s, ret:%d"), alg, -ret); goto error; } for (i = 0; i < num_elements; i++) { ret = crypto_shash_update(desc, src[i], src_len[i]); if (ret) { QDF_TRACE(QDF_MODULE_ID_QDF, QDF_TRACE_LEVEL_ERROR, FL("Failed to update hash for %s, ret:%d"), alg, -ret); goto error; } } ret = crypto_shash_final(desc, out); if (ret) QDF_TRACE(QDF_MODULE_ID_QDF, QDF_TRACE_LEVEL_ERROR, FL("Failed to get digest for %s, ret:%d"), alg, -ret); } while (0); error: crypto_free_shash(tfm); return ret; } qdf_export_symbol(qdf_get_keyed_hash); /* AES String to Vector from RFC 5297, 'out' should be of length AES_BLOCK_SIZE */ int qdf_aes_s2v(const uint8_t *key, unsigned int key_len, const uint8_t *s[], size_t s_len[], size_t num_s, uint8_t *out) { const char *alg = "cmac(aes)"; uint8_t d[AES_BLOCK_SIZE]; uint8_t buf[AES_BLOCK_SIZE] = { 0 }; size_t buf_len = AES_BLOCK_SIZE; const uint8_t *a[1]; unsigned int i; uint8_t *t = NULL; size_t t_len; int ret; if (num_s == 0) { /* V = AES-CMAC(K, ) */ buf[0] = 0x01; a[0] = buf; ret = qdf_get_keyed_hash(alg, key, key_len, a, &buf_len, 1, out); return ret; } /* D = AES-CMAC(K, ) */ a[0] = buf; ret = qdf_get_keyed_hash(alg, key, key_len, a, &buf_len, 1, d); if (ret) goto error; for (i = 0; i < num_s - 1; i++) { /* D = qdf_update_dbl(D) xor AES-CMAC(K, Si) */ qdf_update_dbl(d); ret = qdf_get_keyed_hash(alg, key, key_len, &s[i], &s_len[i], 1, buf); if (ret) goto error; xor(d, buf, AES_BLOCK_SIZE); } if (s_len[i] >= AES_BLOCK_SIZE) { /* len(Sn) >= 128 */ /* T = Sn xorend D */ t = qdf_mem_malloc(s_len[i]); if (!t) return -EINVAL; qdf_mem_copy(t, s[i], s_len[i]); xor(t + s_len[i] - AES_BLOCK_SIZE, d, AES_BLOCK_SIZE); t_len = s_len[i]; } else { /* len(Sn) < 128 */ /* T = qdf_update_dbl(D) xor pad(Sn) */ qdf_update_dbl(d); qdf_mem_zero(buf, AES_BLOCK_SIZE); qdf_mem_copy(buf, s[i], s_len[i]); buf[s_len[i]] = 0x80; xor(d, s[i], AES_BLOCK_SIZE); t = d; t_len = AES_BLOCK_SIZE; } /* V = AES-CMAC(K, T) */ a[0] = t; ret = qdf_get_keyed_hash(alg, key, key_len, a, &t_len, 1, out); error: if (t && t != d) qdf_mem_free(t); return ret; } #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 3, 0)) int qdf_aes_ctr(const uint8_t *key, unsigned int key_len, uint8_t *siv, const uint8_t *src, size_t src_len, uint8_t *dest, bool enc) { struct crypto_skcipher *tfm; struct skcipher_request *req = NULL; struct scatterlist sg_in, sg_out; int ret; if (!IS_VALID_CTR_KEY_LEN(key_len)) { QDF_TRACE(QDF_MODULE_ID_QDF, QDF_TRACE_LEVEL_ERROR, FL("Invalid key length: %u"), key_len); return -EINVAL; } tfm = crypto_alloc_skcipher("ctr(aes)", 0, CRYPTO_ALG_ASYNC); if (IS_ERR(tfm)) { QDF_TRACE(QDF_MODULE_ID_QDF, QDF_TRACE_LEVEL_ERROR, FL("Failed to alloc transformation for ctr(aes):%ld"), PTR_ERR(tfm)); return -EAGAIN; } req = skcipher_request_alloc(tfm, GFP_KERNEL); if (!req) { QDF_TRACE(QDF_MODULE_ID_QDF, QDF_TRACE_LEVEL_ERROR, FL("Failed to allocate request for ctr(aes)")); crypto_free_skcipher(tfm); return -EAGAIN; } ret = crypto_skcipher_setkey(tfm, key, key_len); if (ret) { QDF_TRACE(QDF_MODULE_ID_QDF, QDF_TRACE_LEVEL_ERROR, FL("Set key failed for ctr(aes), ret:%d"), -ret); skcipher_request_free(req); crypto_free_skcipher(tfm); return ret; } sg_init_one(&sg_in, src, src_len); sg_init_one(&sg_out, dest, src_len); skcipher_request_set_crypt(req, &sg_in, &sg_out, src_len, siv); if (enc) ret = crypto_skcipher_encrypt(req); else ret = crypto_skcipher_decrypt(req); if (ret) { QDF_TRACE(QDF_MODULE_ID_QDF, QDF_TRACE_LEVEL_ERROR, FL("%s failed for ctr(aes), ret:%d"), enc ? "Encryption" : "Decryption", -ret); } skcipher_request_free(req); crypto_free_skcipher(tfm); return ret; } #elif (LINUX_VERSION_CODE >= KERNEL_VERSION(3, 18, 0)) int qdf_aes_ctr(const uint8_t *key, unsigned int key_len, uint8_t *siv, const uint8_t *src, size_t src_len, uint8_t *dest, bool enc) { struct crypto_ablkcipher *tfm; struct ablkcipher_request *req = NULL; struct scatterlist sg_in, sg_out; int ret; if (!IS_VALID_CTR_KEY_LEN(key_len)) { QDF_TRACE(QDF_MODULE_ID_QDF, QDF_TRACE_LEVEL_ERROR, FL("Invalid key length: %u"), key_len); return -EINVAL; } tfm = crypto_alloc_ablkcipher("ctr(aes)", 0, CRYPTO_ALG_ASYNC); if (IS_ERR(tfm)) { QDF_TRACE(QDF_MODULE_ID_QDF, QDF_TRACE_LEVEL_ERROR, FL("Failed to alloc transformation for ctr(aes):%ld"), PTR_ERR(tfm)); return -EAGAIN; } req = ablkcipher_request_alloc(tfm, GFP_KERNEL); if (!req) { QDF_TRACE(QDF_MODULE_ID_QDF, QDF_TRACE_LEVEL_ERROR, FL("Failed to allocate request for ctr(aes)")); crypto_free_ablkcipher(tfm); return -EAGAIN; } ret = crypto_ablkcipher_setkey(tfm, key, key_len); if (ret) { QDF_TRACE(QDF_MODULE_ID_QDF, QDF_TRACE_LEVEL_ERROR, FL("Set key failed for ctr(aes), ret:%d"), -ret); ablkcipher_request_free(req); crypto_free_ablkcipher(tfm); return ret; } sg_init_one(&sg_in, src, src_len); sg_init_one(&sg_out, dest, src_len); ablkcipher_request_set_crypt(req, &sg_in, &sg_out, src_len, siv); if (enc) ret = crypto_ablkcipher_encrypt(req); else ret = crypto_ablkcipher_decrypt(req); if (ret) { QDF_TRACE(QDF_MODULE_ID_QDF, QDF_TRACE_LEVEL_ERROR, FL("%s failed for ctr(aes), ret:%d"), enc ? "Encryption" : "Decryption", -ret); } ablkcipher_request_free(req); crypto_free_ablkcipher(tfm); return ret; } #else int qdf_aes_ctr(const uint8_t *key, unsigned int key_len, uint8_t *siv, const uint8_t *src, size_t src_len, uint8_t *dest, bool enc) { return -EINVAL; } #endif #if (LINUX_VERSION_CODE >= KERNEL_VERSION(4, 4, 0)) int qdf_crypto_aes_gmac(const uint8_t *key, uint16_t key_length, uint8_t *iv, const uint8_t *aad, const uint8_t *data, uint16_t data_len, uint8_t *mic) { struct crypto_aead *tfm; int ret = 0; struct scatterlist sg[4]; uint16_t req_size; struct aead_request *req = NULL; uint8_t *aad_ptr, *input; tfm = crypto_alloc_aead("gcm(aes)", 0, CRYPTO_ALG_ASYNC); if (IS_ERR(tfm)) { ret = PTR_ERR(tfm); tfm = NULL; QDF_TRACE(QDF_MODULE_ID_QDF, QDF_TRACE_LEVEL_ERROR, "%s: crypto_alloc_aead failed (%d)", __func__, ret); goto err_tfm; } ret = crypto_aead_setkey(tfm, key, key_length); if (ret) { QDF_TRACE(QDF_MODULE_ID_QDF, QDF_TRACE_LEVEL_ERROR, "crypto_aead_setkey failed (%d)", ret); goto err_tfm; } ret = crypto_aead_setauthsize(tfm, IEEE80211_MMIE_GMAC_MICLEN); if (ret) { QDF_TRACE(QDF_MODULE_ID_QDF, QDF_TRACE_LEVEL_ERROR, "crypto_aead_setauthsize failed (%d)", ret); goto err_tfm; } /* Prepare aead request */ req_size = sizeof(*req) + crypto_aead_reqsize(tfm) + IEEE80211_MMIE_GMAC_MICLEN + AAD_LEN; req = qdf_mem_malloc(req_size); if (!req) { ret = -ENOMEM; goto err_tfm; } input = (uint8_t *)req + sizeof(*req) + crypto_aead_reqsize(tfm); aad_ptr = input + IEEE80211_MMIE_GMAC_MICLEN; qdf_mem_copy(aad_ptr, aad, AAD_LEN); /* Scatter list operations */ sg_init_table(sg, 4); sg_set_buf(&sg[0], aad_ptr, AAD_LEN); sg_set_buf(&sg[1], data, data_len); sg_set_buf(&sg[2], input, IEEE80211_MMIE_GMAC_MICLEN); sg_set_buf(&sg[3], mic, IEEE80211_MMIE_GMAC_MICLEN); aead_request_set_tfm(req, tfm); aead_request_set_crypt(req, sg, sg, 0, iv); aead_request_set_ad(req, AAD_LEN + data_len + IEEE80211_MMIE_GMAC_MICLEN); crypto_aead_encrypt(req); err_tfm: if (tfm) crypto_free_aead(tfm); if (req) qdf_mem_free(req); return ret; } #else int qdf_crypto_aes_gmac(uint8_t *key, uint16_t key_length, uint8_t *iv, uint8_t *aad, uint8_t *data, uint16_t data_len, uint8_t *mic) { return -EINVAL; } #endif