/* * A driver for the PCMCIA Smartcard Reader "Omnikey CardMan Mobile 4000" * * cm4000_cs.c support.linux@omnikey.com * * Tue Oct 23 11:32:43 GMT 2001 herp - cleaned up header files * Sun Jan 20 10:11:15 MET 2002 herp - added modversion header files * Thu Nov 14 16:34:11 GMT 2002 mh - added PPS functionality * Tue Nov 19 16:36:27 GMT 2002 mh - added SUSPEND/RESUME functionailty * Wed Jul 28 12:55:01 CEST 2004 mh - kernel 2.6 adjustments * * current version: 2.4.0gm4 * * (C) 2000,2001,2002,2003,2004 Omnikey AG * * (C) 2005-2006 Harald Welte * - Adhere to Kernel process/coding-style.rst * - Port to 2.6.13 "new" style PCMCIA * - Check for copy_{from,to}_user return values * - Use nonseekable_open() * - add class interface for udev device creation * * All rights reserved. Licensed under dual BSD/GPL license. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* #define ATR_CSUM */ #define reader_to_dev(x) (&x->p_dev->dev) /* n (debug level) is ignored */ /* additional debug output may be enabled by re-compiling with * CM4000_DEBUG set */ /* #define CM4000_DEBUG */ #define DEBUGP(n, rdr, x, args...) do { \ dev_dbg(reader_to_dev(rdr), "%s:" x, \ __func__ , ## args); \ } while (0) static DEFINE_MUTEX(cmm_mutex); #define T_1SEC (HZ) #define T_10MSEC msecs_to_jiffies(10) #define T_20MSEC msecs_to_jiffies(20) #define T_40MSEC msecs_to_jiffies(40) #define T_50MSEC msecs_to_jiffies(50) #define T_100MSEC msecs_to_jiffies(100) #define T_500MSEC msecs_to_jiffies(500) static void cm4000_release(struct pcmcia_device *link); static int major; /* major number we get from the kernel */ /* note: the first state has to have number 0 always */ #define M_FETCH_ATR 0 #define M_TIMEOUT_WAIT 1 #define M_READ_ATR_LEN 2 #define M_READ_ATR 3 #define M_ATR_PRESENT 4 #define M_BAD_CARD 5 #define M_CARDOFF 6 #define LOCK_IO 0 #define LOCK_MONITOR 1 #define IS_AUTOPPS_ACT 6 #define IS_PROCBYTE_PRESENT 7 #define IS_INVREV 8 #define IS_ANY_T0 9 #define IS_ANY_T1 10 #define IS_ATR_PRESENT 11 #define IS_ATR_VALID 12 #define IS_CMM_ABSENT 13 #define IS_BAD_LENGTH 14 #define IS_BAD_CSUM 15 #define IS_BAD_CARD 16 #define REG_FLAGS0(x) (x + 0) #define REG_FLAGS1(x) (x + 1) #define REG_NUM_BYTES(x) (x + 2) #define REG_BUF_ADDR(x) (x + 3) #define REG_BUF_DATA(x) (x + 4) #define REG_NUM_SEND(x) (x + 5) #define REG_BAUDRATE(x) (x + 6) #define REG_STOPBITS(x) (x + 7) struct cm4000_dev { struct pcmcia_device *p_dev; unsigned char atr[MAX_ATR]; unsigned char rbuf[512]; unsigned char sbuf[512]; wait_queue_head_t devq; /* when removing cardman must not be zeroed! */ wait_queue_head_t ioq; /* if IO is locked, wait on this Q */ wait_queue_head_t atrq; /* wait for ATR valid */ wait_queue_head_t readq; /* used by write to wake blk.read */ /* warning: do not move this fields. * initialising to zero depends on it - see ZERO_DEV below. */ unsigned char atr_csum; unsigned char atr_len_retry; unsigned short atr_len; unsigned short rlen; /* bytes avail. after write */ unsigned short rpos; /* latest read pos. write zeroes */ unsigned char procbyte; /* T=0 procedure byte */ unsigned char mstate; /* state of card monitor */ unsigned char cwarn; /* slow down warning */ unsigned char flags0; /* cardman IO-flags 0 */ unsigned char flags1; /* cardman IO-flags 1 */ unsigned int mdelay; /* variable monitor speeds, in jiffies */ unsigned int baudv; /* baud value for speed */ unsigned char ta1; unsigned char proto; /* T=0, T=1, ... */ unsigned long flags; /* lock+flags (MONITOR,IO,ATR) * for concurrent access */ unsigned char pts[4]; struct timer_list timer; /* used to keep monitor running */ int monitor_running; }; #define ZERO_DEV(dev) \ memset(&dev->atr_csum,0, \ sizeof(struct cm4000_dev) - \ offsetof(struct cm4000_dev, atr_csum)) static struct pcmcia_device *dev_table[CM4000_MAX_DEV]; static struct class *cmm_class; /* This table doesn't use spaces after the comma between fields and thus * violates process/coding-style.rst. However, I don't really think wrapping it around will * make it any clearer to read -HW */ static unsigned char fi_di_table[10][14] = { /*FI 00 01 02 03 04 05 06 07 08 09 10 11 12 13 */ /*DI */ /* 0 */ {0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11}, /* 1 */ {0x01,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x91,0x11,0x11,0x11,0x11}, /* 2 */ {0x02,0x12,0x22,0x32,0x11,0x11,0x11,0x11,0x11,0x92,0xA2,0xB2,0x11,0x11}, /* 3 */ {0x03,0x13,0x23,0x33,0x43,0x53,0x63,0x11,0x11,0x93,0xA3,0xB3,0xC3,0xD3}, /* 4 */ {0x04,0x14,0x24,0x34,0x44,0x54,0x64,0x11,0x11,0x94,0xA4,0xB4,0xC4,0xD4}, /* 5 */ {0x00,0x15,0x25,0x35,0x45,0x55,0x65,0x11,0x11,0x95,0xA5,0xB5,0xC5,0xD5}, /* 6 */ {0x06,0x16,0x26,0x36,0x46,0x56,0x66,0x11,0x11,0x96,0xA6,0xB6,0xC6,0xD6}, /* 7 */ {0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11,0x11}, /* 8 */ {0x08,0x11,0x28,0x38,0x48,0x58,0x68,0x11,0x11,0x98,0xA8,0xB8,0xC8,0xD8}, /* 9 */ {0x09,0x19,0x29,0x39,0x49,0x59,0x69,0x11,0x11,0x99,0xA9,0xB9,0xC9,0xD9} }; #ifndef CM4000_DEBUG #define xoutb outb #define xinb inb #else static inline void xoutb(unsigned char val, unsigned short port) { pr_debug("outb(val=%.2x,port=%.4x)\n", val, port); outb(val, port); } static inline unsigned char xinb(unsigned short port) { unsigned char val; val = inb(port); pr_debug("%.2x=inb(%.4x)\n", val, port); return val; } #endif static inline unsigned char invert_revert(unsigned char ch) { return bitrev8(~ch); } static void str_invert_revert(unsigned char *b, int len) { int i; for (i = 0; i < len; i++) b[i] = invert_revert(b[i]); } #define ATRLENCK(dev,pos) \ if (pos>=dev->atr_len || pos>=MAX_ATR) \ goto return_0; static unsigned int calc_baudv(unsigned char fidi) { unsigned int wcrcf, wbrcf, fi_rfu, di_rfu; fi_rfu = 372; di_rfu = 1; /* FI */ switch ((fidi >> 4) & 0x0F) { case 0x00: wcrcf = 372; break; case 0x01: wcrcf = 372; break; case 0x02: wcrcf = 558; break; case 0x03: wcrcf = 744; break; case 0x04: wcrcf = 1116; break; case 0x05: wcrcf = 1488; break; case 0x06: wcrcf = 1860; break; case 0x07: wcrcf = fi_rfu; break; case 0x08: wcrcf = fi_rfu; break; case 0x09: wcrcf = 512; break; case 0x0A: wcrcf = 768; break; case 0x0B: wcrcf = 1024; break; case 0x0C: wcrcf = 1536; break; case 0x0D: wcrcf = 2048; break; default: wcrcf = fi_rfu; break; } /* DI */ switch (fidi & 0x0F) { case 0x00: wbrcf = di_rfu; break; case 0x01: wbrcf = 1; break; case 0x02: wbrcf = 2; break; case 0x03: wbrcf = 4; break; case 0x04: wbrcf = 8; break; case 0x05: wbrcf = 16; break; case 0x06: wbrcf = 32; break; case 0x07: wbrcf = di_rfu; break; case 0x08: wbrcf = 12; break; case 0x09: wbrcf = 20; break; default: wbrcf = di_rfu; break; } return (wcrcf / wbrcf); } static unsigned short io_read_num_rec_bytes(unsigned int iobase, unsigned short *s) { unsigned short tmp; tmp = *s = 0; do { *s = tmp; tmp = inb(REG_NUM_BYTES(iobase)) | (inb(REG_FLAGS0(iobase)) & 4 ? 0x100 : 0); } while (tmp != *s); return *s; } static int parse_atr(struct cm4000_dev *dev) { unsigned char any_t1, any_t0; unsigned char ch, ifno; int ix, done; DEBUGP(3, dev, "-> parse_atr: dev->atr_len = %i\n", dev->atr_len); if (dev->atr_len < 3) { DEBUGP(5, dev, "parse_atr: atr_len < 3\n"); return 0; } if (dev->atr[0] == 0x3f) set_bit(IS_INVREV, &dev->flags); else clear_bit(IS_INVREV, &dev->flags); ix = 1; ifno = 1; ch = dev->atr[1]; dev->proto = 0; /* XXX PROTO */ any_t1 = any_t0 = done = 0; dev->ta1 = 0x11; /* defaults to 9600 baud */ do { if (ifno == 1 && (ch & 0x10)) { /* read first interface byte and TA1 is present */ dev->ta1 = dev->atr[2]; DEBUGP(5, dev, "Card says FiDi is 0x%.2x\n", dev->ta1); ifno++; } else if ((ifno == 2) && (ch & 0x10)) { /* TA(2) */ dev->ta1 = 0x11; ifno++; } DEBUGP(5, dev, "Yi=%.2x\n", ch & 0xf0); ix += ((ch & 0x10) >> 4) /* no of int.face chars */ +((ch & 0x20) >> 5) + ((ch & 0x40) >> 6) + ((ch & 0x80) >> 7); /* ATRLENCK(dev,ix); */ if (ch & 0x80) { /* TDi */ ch = dev->atr[ix]; if ((ch & 0x0f)) { any_t1 = 1; DEBUGP(5, dev, "card is capable of T=1\n"); } else { any_t0 = 1; DEBUGP(5, dev, "card is capable of T=0\n"); } } else done = 1; } while (!done); DEBUGP(5, dev, "ix=%d noHist=%d any_t1=%d\n", ix, dev->atr[1] & 15, any_t1); if (ix + 1 + (dev->atr[1] & 0x0f) + any_t1 != dev->atr_len) { DEBUGP(5, dev, "length error\n"); return 0; } if (any_t0) set_bit(IS_ANY_T0, &dev->flags); if (any_t1) { /* compute csum */ dev->atr_csum = 0; #ifdef ATR_CSUM for (i = 1; i < dev->atr_len; i++) dev->atr_csum ^= dev->atr[i]; if (dev->atr_csum) { set_bit(IS_BAD_CSUM, &dev->flags); DEBUGP(5, dev, "bad checksum\n"); goto return_0; } #endif if (any_t0 == 0) dev->proto = 1; /* XXX PROTO */ set_bit(IS_ANY_T1, &dev->flags); } return 1; } struct card_fixup { char atr[12]; u_int8_t atr_len; u_int8_t stopbits; }; static struct card_fixup card_fixups[] = { { /* ACOS */ .atr = { 0x3b, 0xb3, 0x11, 0x00, 0x00, 0x41, 0x01 }, .atr_len = 7, .stopbits = 0x03, }, { /* Motorola */ .atr = {0x3b, 0x76, 0x13, 0x00, 0x00, 0x80, 0x62, 0x07, 0x41, 0x81, 0x81 }, .atr_len = 11, .stopbits = 0x04, }, }; static void set_cardparameter(struct cm4000_dev *dev) { int i; unsigned int iobase = dev->p_dev->resource[0]->start; u_int8_t stopbits = 0x02; /* ISO default */ DEBUGP(3, dev, "-> set_cardparameter\n"); dev->flags1 = dev->flags1 | (((dev->baudv - 1) & 0x0100) >> 8); xoutb(dev->flags1, REG_FLAGS1(iobase)); DEBUGP(5, dev, "flags1 = 0x%02x\n", dev->flags1); /* set baudrate */ xoutb((unsigned char)((dev->baudv - 1) & 0xFF), REG_BAUDRATE(iobase)); DEBUGP(5, dev, "baudv = %i -> write 0x%02x\n", dev->baudv, ((dev->baudv - 1) & 0xFF)); /* set stopbits */ for (i = 0; i < ARRAY_SIZE(card_fixups); i++) { if (!memcmp(dev->atr, card_fixups[i].atr, card_fixups[i].atr_len)) stopbits = card_fixups[i].stopbits; } xoutb(stopbits, REG_STOPBITS(iobase)); DEBUGP(3, dev, "<- set_cardparameter\n"); } static int set_protocol(struct cm4000_dev *dev, struct ptsreq *ptsreq) { unsigned long tmp, i; unsigned short num_bytes_read; unsigned char pts_reply[4]; ssize_t rc; unsigned int iobase = dev->p_dev->resource[0]->start; rc = 0; DEBUGP(3, dev, "-> set_protocol\n"); DEBUGP(5, dev, "ptsreq->Protocol = 0x%.8x, ptsreq->Flags=0x%.8x, " "ptsreq->pts1=0x%.2x, ptsreq->pts2=0x%.2x, " "ptsreq->pts3=0x%.2x\n", (unsigned int)ptsreq->protocol, (unsigned int)ptsreq->flags, ptsreq->pts1, ptsreq->pts2, ptsreq->pts3); /* Fill PTS structure */ dev->pts[0] = 0xff; dev->pts[1] = 0x00; tmp = ptsreq->protocol; while ((tmp = (tmp >> 1)) > 0) dev->pts[1]++; dev->proto = dev->pts[1]; /* Set new protocol */ dev->pts[1] = (0x01 << 4) | (dev->pts[1]); /* Correct Fi/Di according to CM4000 Fi/Di table */ DEBUGP(5, dev, "Ta(1) from ATR is 0x%.2x\n", dev->ta1); /* set Fi/Di according to ATR TA(1) */ dev->pts[2] = fi_di_table[dev->ta1 & 0x0F][(dev->ta1 >> 4) & 0x0F]; /* Calculate PCK character */ dev->pts[3] = dev->pts[0] ^ dev->pts[1] ^ dev->pts[2]; DEBUGP(5, dev, "pts0=%.2x, pts1=%.2x, pts2=%.2x, pts3=%.2x\n", dev->pts[0], dev->pts[1], dev->pts[2], dev->pts[3]); /* check card convention */ if (test_bit(IS_INVREV, &dev->flags)) str_invert_revert(dev->pts, 4); /* reset SM */ xoutb(0x80, REG_FLAGS0(iobase)); /* Enable access to the message buffer */ DEBUGP(5, dev, "Enable access to the messages buffer\n"); dev->flags1 = 0x20 /* T_Active */ | (test_bit(IS_INVREV, &dev->flags) ? 0x02 : 0x00) /* inv parity */ | ((dev->baudv >> 8) & 0x01); /* MSB-baud */ xoutb(dev->flags1, REG_FLAGS1(iobase)); DEBUGP(5, dev, "Enable message buffer -> flags1 = 0x%.2x\n", dev->flags1); /* write challenge to the buffer */ DEBUGP(5, dev, "Write challenge to buffer: "); for (i = 0; i < 4; i++) { xoutb(i, REG_BUF_ADDR(iobase)); xoutb(dev->pts[i], REG_BUF_DATA(iobase)); /* buf data */ #ifdef CM4000_DEBUG pr_debug("0x%.2x ", dev->pts[i]); } pr_debug("\n"); #else } #endif /* set number of bytes to write */ DEBUGP(5, dev, "Set number of bytes to write\n"); xoutb(0x04, REG_NUM_SEND(iobase)); /* Trigger CARDMAN CONTROLLER */ xoutb(0x50, REG_FLAGS0(iobase)); /* Monitor progress */ /* wait for xmit done */ DEBUGP(5, dev, "Waiting for NumRecBytes getting valid\n"); for (i = 0; i < 100; i++) { if (inb(REG_FLAGS0(iobase)) & 0x08) { DEBUGP(5, dev, "NumRecBytes is valid\n"); break; } usleep_range(10000, 11000); } if (i == 100) { DEBUGP(5, dev, "Timeout waiting for NumRecBytes getting " "valid\n"); rc = -EIO; goto exit_setprotocol; } DEBUGP(5, dev, "Reading NumRecBytes\n"); for (i = 0; i < 100; i++) { io_read_num_rec_bytes(iobase, &num_bytes_read); if (num_bytes_read >= 4) { DEBUGP(2, dev, "NumRecBytes = %i\n", num_bytes_read); if (num_bytes_read > 4) { rc = -EIO; goto exit_setprotocol; } break; } usleep_range(10000, 11000); } /* check whether it is a short PTS reply? */ if (num_bytes_read == 3) i = 0; if (i == 100) { DEBUGP(5, dev, "Timeout reading num_bytes_read\n"); rc = -EIO; goto exit_setprotocol; } DEBUGP(5, dev, "Reset the CARDMAN CONTROLLER\n"); xoutb(0x80, REG_FLAGS0(iobase)); /* Read PPS reply */ DEBUGP(5, dev, "Read PPS reply\n"); for (i = 0; i < num_bytes_read; i++) { xoutb(i, REG_BUF_ADDR(iobase)); pts_reply[i] = inb(REG_BUF_DATA(iobase)); } #ifdef CM4000_DEBUG DEBUGP(2, dev, "PTSreply: "); for (i = 0; i < num_bytes_read; i++) { pr_debug("0x%.2x ", pts_reply[i]); } pr_debug("\n"); #endif /* CM4000_DEBUG */ DEBUGP(5, dev, "Clear Tactive in Flags1\n"); xoutb(0x20, REG_FLAGS1(iobase)); /* Compare ptsreq and ptsreply */ if ((dev->pts[0] == pts_reply[0]) && (dev->pts[1] == pts_reply[1]) && (dev->pts[2] == pts_reply[2]) && (dev->pts[3] == pts_reply[3])) { /* setcardparameter according to PPS */ dev->baudv = calc_baudv(dev->pts[2]); set_cardparameter(dev); } else if ((dev->pts[0] == pts_reply[0]) && ((dev->pts[1] & 0xef) == pts_reply[1]) && ((pts_reply[0] ^ pts_reply[1]) == pts_reply[2])) { /* short PTS reply, set card parameter to default values */ dev->baudv = calc_baudv(0x11); set_cardparameter(dev); } else rc = -EIO; exit_setprotocol: DEBUGP(3, dev, "<- set_protocol\n"); return rc; } static int io_detect_cm4000(unsigned int iobase, struct cm4000_dev *dev) { /* note: statemachine is assumed to be reset */ if (inb(REG_FLAGS0(iobase)) & 8) { clear_bit(IS_ATR_VALID, &dev->flags); set_bit(IS_CMM_ABSENT, &dev->flags); return 0; /* detect CMM = 1 -> failure */ } /* xoutb(0x40, REG_FLAGS1(iobase)); detectCMM */ xoutb(dev->flags1 | 0x40, REG_FLAGS1(iobase)); if ((inb(REG_FLAGS0(iobase)) & 8) == 0) { clear_bit(IS_ATR_VALID, &dev->flags); set_bit(IS_CMM_ABSENT, &dev->flags); return 0; /* detect CMM=0 -> failure */ } /* clear detectCMM again by restoring original flags1 */ xoutb(dev->flags1, REG_FLAGS1(iobase)); return 1; } static void terminate_monitor(struct cm4000_dev *dev) { /* tell the monitor to stop and wait until * it terminates. */ DEBUGP(3, dev, "-> terminate_monitor\n"); wait_event_interruptible(dev->devq, test_and_set_bit(LOCK_MONITOR, (void *)&dev->flags)); /* now, LOCK_MONITOR has been set. * allow a last cycle in the monitor. * the monitor will indicate that it has * finished by clearing this bit. */ DEBUGP(5, dev, "Now allow last cycle of monitor!\n"); while (test_bit(LOCK_MONITOR, (void *)&dev->flags)) msleep(25); DEBUGP(5, dev, "Delete timer\n"); del_timer_sync(&dev->timer); #ifdef CM4000_DEBUG dev->monitor_running = 0; #endif DEBUGP(3, dev, "<- terminate_monitor\n"); } /* * monitor the card every 50msec. as a side-effect, retrieve the * atr once a card is inserted. another side-effect of retrieving the * atr is that the card will be powered on, so there is no need to * power on the card explicitly from the application: the driver * is already doing that for you. */ static void monitor_card(struct timer_list *t) { struct cm4000_dev *dev = from_timer(dev, t, timer); unsigned int iobase = dev->p_dev->resource[0]->start; unsigned short s; struct ptsreq ptsreq; int i, atrc; DEBUGP(7, dev, "-> monitor_card\n"); /* if someone has set the lock for us: we're done! */ if (test_and_set_bit(LOCK_MONITOR, &dev->flags)) { DEBUGP(4, dev, "About to stop monitor\n"); /* no */ dev->rlen = dev->rpos = dev->atr_csum = dev->atr_len_retry = dev->cwarn = 0; dev->mstate = M_FETCH_ATR; clear_bit(LOCK_MONITOR, &dev->flags); /* close et al. are sleeping on devq, so wake it */ wake_up_interruptible(&dev->devq); DEBUGP(2, dev, "<- monitor_card (we are done now)\n"); return; } /* try to lock io: if it is already locked, just add another timer */ if (test_and_set_bit(LOCK_IO, (void *)&dev->flags)) { DEBUGP(4, dev, "Couldn't get IO lock\n"); goto return_with_timer; } /* is a card/a reader inserted at all ? */ dev->flags0 = xinb(REG_FLAGS0(iobase)); DEBUGP(7, dev, "dev->flags0 = 0x%2x\n", dev->flags0); DEBUGP(7, dev, "smartcard present: %s\n", dev->flags0 & 1 ? "yes" : "no"); DEBUGP(7, dev, "cardman present: %s\n", dev->flags0 == 0xff ? "no" : "yes"); if ((dev->flags0 & 1) == 0 /* no smartcard inserted */ || dev->flags0 == 0xff) { /* no cardman inserted */ /* no */ dev->rlen = dev->rpos = dev->atr_csum = dev->atr_len_retry = dev->cwarn = 0; dev->mstate = M_FETCH_ATR; dev->flags &= 0x000000ff; /* only keep IO and MONITOR locks */ if (dev->flags0 == 0xff) { DEBUGP(4, dev, "set IS_CMM_ABSENT bit\n"); set_bit(IS_CMM_ABSENT, &dev->flags); } else if (test_bit(IS_CMM_ABSENT, &dev->flags)) { DEBUGP(4, dev, "clear IS_CMM_ABSENT bit " "(card is removed)\n"); clear_bit(IS_CMM_ABSENT, &dev->flags); } goto release_io; } else if ((dev->flags0 & 1) && test_bit(IS_CMM_ABSENT, &dev->flags)) { /* cardman and card present but cardman was absent before * (after suspend with inserted card) */ DEBUGP(4, dev, "clear IS_CMM_ABSENT bit (card is inserted)\n"); clear_bit(IS_CMM_ABSENT, &dev->flags); } if (test_bit(IS_ATR_VALID, &dev->flags) == 1) { DEBUGP(7, dev, "believe ATR is already valid (do nothing)\n"); goto release_io; } switch (dev->mstate) { unsigned char flags0; case M_CARDOFF: DEBUGP(4, dev, "M_CARDOFF\n"); flags0 = inb(REG_FLAGS0(iobase)); if (flags0 & 0x02) { /* wait until Flags0 indicate power is off */ dev->mdelay = T_10MSEC; } else { /* Flags0 indicate power off and no card inserted now; * Reset CARDMAN CONTROLLER */ xoutb(0x80, REG_FLAGS0(iobase)); /* prepare for fetching ATR again: after card off ATR * is read again automatically */ dev->rlen = dev->rpos = dev->atr_csum = dev->atr_len_retry = dev->cwarn = 0; dev->mstate = M_FETCH_ATR; /* minimal gap between CARDOFF and read ATR is 50msec */ dev->mdelay = T_50MSEC; } break; case M_FETCH_ATR: DEBUGP(4, dev, "M_FETCH_ATR\n"); xoutb(0x80, REG_FLAGS0(iobase)); DEBUGP(4, dev, "Reset BAUDV to 9600\n"); dev->baudv = 0x173; /* 9600 */ xoutb(0x02, REG_STOPBITS(iobase)); /* stopbits=2 */ xoutb(0x73, REG_BAUDRATE(iobase)); /* baud value */ xoutb(0x21, REG_FLAGS1(iobase)); /* T_Active=1, baud value */ /* warm start vs. power on: */ xoutb(dev->flags0 & 2 ? 0x46 : 0x44, REG_FLAGS0(iobase)); dev->mdelay = T_40MSEC; dev->mstate = M_TIMEOUT_WAIT; break; case M_TIMEOUT_WAIT: DEBUGP(4, dev, "M_TIMEOUT_WAIT\n"); /* numRecBytes */ io_read_num_rec_bytes(iobase, &dev->atr_len); dev->mdelay = T_10MSEC; dev->mstate = M_READ_ATR_LEN; break; case M_READ_ATR_LEN: DEBUGP(4, dev, "M_READ_ATR_LEN\n"); /* infinite loop possible, since there is no timeout */ #define MAX_ATR_LEN_RETRY 100 if (dev->atr_len == io_read_num_rec_bytes(iobase, &s)) { if (dev->atr_len_retry++ >= MAX_ATR_LEN_RETRY) { /* + XX msec */ dev->mdelay = T_10MSEC; dev->mstate = M_READ_ATR; } } else { dev->atr_len = s; dev->atr_len_retry = 0; /* set new timeout */ } DEBUGP(4, dev, "Current ATR_LEN = %i\n", dev->atr_len); break; case M_READ_ATR: DEBUGP(4, dev, "M_READ_ATR\n"); xoutb(0x80, REG_FLAGS0(iobase)); /* reset SM */ for (i = 0; i < dev->atr_len; i++) { xoutb(i, REG_BUF_ADDR(iobase)); dev->atr[i] = inb(REG_BUF_DATA(iobase)); } /* Deactivate T_Active flags */ DEBUGP(4, dev, "Deactivate T_Active flags\n"); dev->flags1 = 0x01; xoutb(dev->flags1, REG_FLAGS1(iobase)); /* atr is present (which doesn't mean it's valid) */ set_bit(IS_ATR_PRESENT, &dev->flags); if (dev->atr[0] == 0x03) str_invert_revert(dev->atr, dev->atr_len); atrc = parse_atr(dev); if (atrc == 0) { /* atr invalid */ dev->mdelay = 0; dev->mstate = M_BAD_CARD; } else { dev->mdelay = T_50MSEC; dev->mstate = M_ATR_PRESENT; set_bit(IS_ATR_VALID, &dev->flags); } if (test_bit(IS_ATR_VALID, &dev->flags) == 1) { DEBUGP(4, dev, "monitor_card: ATR valid\n"); /* if ta1 == 0x11, no PPS necessary (default values) */ /* do not do PPS with multi protocol cards */ if ((test_bit(IS_AUTOPPS_ACT, &dev->flags) == 0) && (dev->ta1 != 0x11) && !(test_bit(IS_ANY_T0, &dev->flags) && test_bit(IS_ANY_T1, &dev->flags))) { DEBUGP(4, dev, "Perform AUTOPPS\n"); set_bit(IS_AUTOPPS_ACT, &dev->flags); ptsreq.protocol = (0x01 << dev->proto); ptsreq.flags = 0x01; ptsreq.pts1 = 0x00; ptsreq.pts2 = 0x00; ptsreq.pts3 = 0x00; if (set_protocol(dev, &ptsreq) == 0) { DEBUGP(4, dev, "AUTOPPS ret SUCC\n"); clear_bit(IS_AUTOPPS_ACT, &dev->flags); wake_up_interruptible(&dev->atrq); } else { DEBUGP(4, dev, "AUTOPPS failed: " "repower using defaults\n"); /* prepare for repowering */ clear_bit(IS_ATR_PRESENT, &dev->flags); clear_bit(IS_ATR_VALID, &dev->flags); dev->rlen = dev->rpos = dev->atr_csum = dev->atr_len_retry = dev->cwarn = 0; dev->mstate = M_FETCH_ATR; dev->mdelay = T_50MSEC; } } else { /* for cards which use slightly different * params (extra guard time) */ set_cardparameter(dev); if (test_bit(IS_AUTOPPS_ACT, &dev->flags) == 1) DEBUGP(4, dev, "AUTOPPS already active " "2nd try:use default values\n"); if (dev->ta1 == 0x11) DEBUGP(4, dev, "No AUTOPPS necessary " "TA(1)==0x11\n"); if (test_bit(IS_ANY_T0, &dev->flags) && test_bit(IS_ANY_T1, &dev->flags)) DEBUGP(4, dev, "Do NOT perform AUTOPPS " "with multiprotocol cards\n"); clear_bit(IS_AUTOPPS_ACT, &dev->flags); wake_up_interruptible(&dev->atrq); } } else { DEBUGP(4, dev, "ATR invalid\n"); wake_up_interruptible(&dev->atrq); } break; case M_BAD_CARD: DEBUGP(4, dev, "M_BAD_CARD\n"); /* slow down warning, but prompt immediately after insertion */ if (dev->cwarn == 0 || dev->cwarn == 10) { set_bit(IS_BAD_CARD, &dev->flags); dev_warn(&dev->p_dev->dev, MODULE_NAME ": "); if (test_bit(IS_BAD_CSUM, &dev->flags)) { DEBUGP(4, dev, "ATR checksum (0x%.2x, should " "be zero) failed\n", dev->atr_csum); } #ifdef CM4000_DEBUG else if (test_bit(IS_BAD_LENGTH, &dev->flags)) { DEBUGP(4, dev, "ATR length error\n"); } else { DEBUGP(4, dev, "card damaged or wrong way " "inserted\n"); } #endif dev->cwarn = 0; wake_up_interruptible(&dev->atrq); /* wake open */ } dev->cwarn++; dev->mdelay = T_100MSEC; dev->mstate = M_FETCH_ATR; break; default: DEBUGP(7, dev, "Unknown action\n"); break; /* nothing */ } release_io: DEBUGP(7, dev, "release_io\n"); clear_bit(LOCK_IO, &dev->flags); wake_up_interruptible(&dev->ioq); /* whoever needs IO */ return_with_timer: DEBUGP(7, dev, "<- monitor_card (returns with timer)\n"); mod_timer(&dev->timer, jiffies + dev->mdelay); clear_bit(LOCK_MONITOR, &dev->flags); } /* Interface to userland (file_operations) */ static ssize_t cmm_read(struct file *filp, __user char *buf, size_t count, loff_t *ppos) { struct cm4000_dev *dev = filp->private_data; unsigned int iobase = dev->p_dev->resource[0]->start; ssize_t rc; int i, j, k; DEBUGP(2, dev, "-> cmm_read(%s,%d)\n", current->comm, current->pid); if (count == 0) /* according to manpage */ return 0; if (!pcmcia_dev_present(dev->p_dev) || /* device removed */ test_bit(IS_CMM_ABSENT, &dev->flags)) return -ENODEV; if (test_bit(IS_BAD_CSUM, &dev->flags)) return -EIO; /* also see the note about this in cmm_write */ if (wait_event_interruptible (dev->atrq, ((filp->f_flags & O_NONBLOCK) || (test_bit(IS_ATR_PRESENT, (void *)&dev->flags) != 0)))) { if (filp->f_flags & O_NONBLOCK) return -EAGAIN; return -ERESTARTSYS; } if (test_bit(IS_ATR_VALID, &dev->flags) == 0) return -EIO; /* this one implements blocking IO */ if (wait_event_interruptible (dev->readq, ((filp->f_flags & O_NONBLOCK) || (dev->rpos < dev->rlen)))) { if (filp->f_flags & O_NONBLOCK) return -EAGAIN; return -ERESTARTSYS; } /* lock io */ if (wait_event_interruptible (dev->ioq, ((filp->f_flags & O_NONBLOCK) || (test_and_set_bit(LOCK_IO, (void *)&dev->flags) == 0)))) { if (filp->f_flags & O_NONBLOCK) return -EAGAIN; return -ERESTARTSYS; } rc = 0; dev->flags0 = inb(REG_FLAGS0(iobase)); if ((dev->flags0 & 1) == 0 /* no smartcard inserted */ || dev->flags0 == 0xff) { /* no cardman inserted */ clear_bit(IS_ATR_VALID, &dev->flags); if (dev->flags0 & 1) { set_bit(IS_CMM_ABSENT, &dev->flags); rc = -ENODEV; } else { rc = -EIO; } goto release_io; } DEBUGP(4, dev, "begin read answer\n"); j = min(count, (size_t)(dev->rlen - dev->rpos)); k = dev->rpos; if (k + j > 255) j = 256 - k; DEBUGP(4, dev, "read1 j=%d\n", j); for (i = 0; i < j; i++) { xoutb(k++, REG_BUF_ADDR(iobase)); dev->rbuf[i] = xinb(REG_BUF_DATA(iobase)); } j = min(count, (size_t)(dev->rlen - dev->rpos)); if (k + j > 255) { DEBUGP(4, dev, "read2 j=%d\n", j); dev->flags1 |= 0x10; /* MSB buf addr set */ xoutb(dev->flags1, REG_FLAGS1(iobase)); for (; i < j; i++) { xoutb(k++, REG_BUF_ADDR(iobase)); dev->rbuf[i] = xinb(REG_BUF_DATA(iobase)); } } if (dev->proto == 0 && count > dev->rlen - dev->rpos && i) { DEBUGP(4, dev, "T=0 and count > buffer\n"); dev->rbuf[i] = dev->rbuf[i - 1]; dev->rbuf[i - 1] = dev->procbyte; j++; } count = j; dev->rpos = dev->rlen + 1; /* Clear T1Active */ DEBUGP(4, dev, "Clear T1Active\n"); dev->flags1 &= 0xdf; xoutb(dev->flags1, REG_FLAGS1(iobase)); xoutb(0, REG_FLAGS1(iobase)); /* clear detectCMM */ /* last check before exit */ if (!io_detect_cm4000(iobase, dev)) { rc = -ENODEV; goto release_io; } if (test_bit(IS_INVREV, &dev->flags) && count > 0) str_invert_revert(dev->rbuf, count); if (copy_to_user(buf, dev->rbuf, count)) rc = -EFAULT; release_io: clear_bit(LOCK_IO, &dev->flags); wake_up_interruptible(&dev->ioq); DEBUGP(2, dev, "<- cmm_read returns: rc = %zi\n", (rc < 0 ? rc : count)); return rc < 0 ? rc : count; } static ssize_t cmm_write(struct file *filp, const char __user *buf, size_t count, loff_t *ppos) { struct cm4000_dev *dev = filp->private_data; unsigned int iobase = dev->p_dev->resource[0]->start; unsigned short s; unsigned char tmp; unsigned char infolen; unsigned char sendT0; unsigned short nsend; unsigned short nr; ssize_t rc; int i; DEBUGP(2, dev, "-> cmm_write(%s,%d)\n", current->comm, current->pid); if (count == 0) /* according to manpage */ return 0; if (dev->proto == 0 && count < 4) { /* T0 must have at least 4 bytes */ DEBUGP(4, dev, "T0 short write\n"); return -EIO; } nr = count & 0x1ff; /* max bytes to write */ sendT0 = dev->proto ? 0 : nr > 5 ? 0x08 : 0; if (!pcmcia_dev_present(dev->p_dev) || /* device removed */ test_bit(IS_CMM_ABSENT, &dev->flags)) return -ENODEV; if (test_bit(IS_BAD_CSUM, &dev->flags)) { DEBUGP(4, dev, "bad csum\n"); return -EIO; } /* * wait for atr to become valid. * note: it is important to lock this code. if we dont, the monitor * could be run between test_bit and the call to sleep on the * atr-queue. if *then* the monitor detects atr valid, it will wake up * any process on the atr-queue, *but* since we have been interrupted, * we do not yet sleep on this queue. this would result in a missed * wake_up and the calling process would sleep forever (until * interrupted). also, do *not* restore_flags before sleep_on, because * this could result in the same situation! */ if (wait_event_interruptible (dev->atrq, ((filp->f_flags & O_NONBLOCK) || (test_bit(IS_ATR_PRESENT, (void *)&dev->flags) != 0)))) { if (filp->f_flags & O_NONBLOCK) return -EAGAIN; return -ERESTARTSYS; } if (test_bit(IS_ATR_VALID, &dev->flags) == 0) { /* invalid atr */ DEBUGP(4, dev, "invalid ATR\n"); return -EIO; } /* lock io */ if (wait_event_interruptible (dev->ioq, ((filp->f_flags & O_NONBLOCK) || (test_and_set_bit(LOCK_IO, (void *)&dev->flags) == 0)))) { if (filp->f_flags & O_NONBLOCK) return -EAGAIN; return -ERESTARTSYS; } if (copy_from_user(dev->sbuf, buf, ((count > 512) ? 512 : count))) return -EFAULT; rc = 0; dev->flags0 = inb(REG_FLAGS0(iobase)); if ((dev->flags0 & 1) == 0 /* no smartcard inserted */ || dev->flags0 == 0xff) { /* no cardman inserted */ clear_bit(IS_ATR_VALID, &dev->flags); if (dev->flags0 & 1) { set_bit(IS_CMM_ABSENT, &dev->flags); rc = -ENODEV; } else { DEBUGP(4, dev, "IO error\n"); rc = -EIO; } goto release_io; } xoutb(0x80, REG_FLAGS0(iobase)); /* reset SM */ if (!io_detect_cm4000(iobase, dev)) { rc = -ENODEV; goto release_io; } /* reflect T=0 send/read mode in flags1 */ dev->flags1 |= (sendT0); set_cardparameter(dev); /* dummy read, reset flag procedure received */ tmp = inb(REG_FLAGS1(iobase)); dev->flags1 = 0x20 /* T_Active */ | (sendT0) | (test_bit(IS_INVREV, &dev->flags) ? 2 : 0)/* inverse parity */ | (((dev->baudv - 1) & 0x0100) >> 8); /* MSB-Baud */ DEBUGP(1, dev, "set dev->flags1 = 0x%.2x\n", dev->flags1); xoutb(dev->flags1, REG_FLAGS1(iobase)); /* xmit data */ DEBUGP(4, dev, "Xmit data\n"); for (i = 0; i < nr; i++) { if (i >= 256) { dev->flags1 = 0x20 /* T_Active */ | (sendT0) /* SendT0 */ /* inverse parity: */ | (test_bit(IS_INVREV, &dev->flags) ? 2 : 0) | (((dev->baudv - 1) & 0x0100) >> 8) /* MSB-Baud */ | 0x10; /* set address high */ DEBUGP(4, dev, "dev->flags = 0x%.2x - set address " "high\n", dev->flags1); xoutb(dev->flags1, REG_FLAGS1(iobase)); } if (test_bit(IS_INVREV, &dev->flags)) { DEBUGP(4, dev, "Apply inverse convention for 0x%.2x " "-> 0x%.2x\n", (unsigned char)dev->sbuf[i], invert_revert(dev->sbuf[i])); xoutb(i, REG_BUF_ADDR(iobase)); xoutb(invert_revert(dev->sbuf[i]), REG_BUF_DATA(iobase)); } else { xoutb(i, REG_BUF_ADDR(iobase)); xoutb(dev->sbuf[i], REG_BUF_DATA(iobase)); } } DEBUGP(4, dev, "Xmit done\n"); if (dev->proto == 0) { /* T=0 proto: 0 byte reply */ if (nr == 4) { DEBUGP(4, dev, "T=0 assumes 0 byte reply\n"); xoutb(i, REG_BUF_ADDR(iobase)); if (test_bit(IS_INVREV, &dev->flags)) xoutb(0xff, REG_BUF_DATA(iobase)); else xoutb(0x00, REG_BUF_DATA(iobase)); } /* numSendBytes */ if (sendT0) nsend = nr; else { if (nr == 4) nsend = 5; else { nsend = 5 + (unsigned char)dev->sbuf[4]; if (dev->sbuf[4] == 0) nsend += 0x100; } } } else nsend = nr; /* T0: output procedure byte */ if (test_bit(IS_INVREV, &dev->flags)) { DEBUGP(4, dev, "T=0 set Procedure byte (inverse-reverse) " "0x%.2x\n", invert_revert(dev->sbuf[1])); xoutb(invert_revert(dev->sbuf[1]), REG_NUM_BYTES(iobase)); } else { DEBUGP(4, dev, "T=0 set Procedure byte 0x%.2x\n", dev->sbuf[1]); xoutb(dev->sbuf[1], REG_NUM_BYTES(iobase)); } DEBUGP(1, dev, "set NumSendBytes = 0x%.2x\n", (unsigned char)(nsend & 0xff)); xoutb((unsigned char)(nsend & 0xff), REG_NUM_SEND(iobase)); DEBUGP(1, dev, "Trigger CARDMAN CONTROLLER (0x%.2x)\n", 0x40 /* SM_Active */ | (dev->flags0 & 2 ? 0 : 4) /* power on if needed */ |(dev->proto ? 0x10 : 0x08) /* T=1/T=0 */ |(nsend & 0x100) >> 8 /* MSB numSendBytes */ ); xoutb(0x40 /* SM_Active */ | (dev->flags0 & 2 ? 0 : 4) /* power on if needed */ |(dev->proto ? 0x10 : 0x08) /* T=1/T=0 */ |(nsend & 0x100) >> 8, /* MSB numSendBytes */ REG_FLAGS0(iobase)); /* wait for xmit done */ if (dev->proto == 1) { DEBUGP(4, dev, "Wait for xmit done\n"); for (i = 0; i < 1000; i++) { if (inb(REG_FLAGS0(iobase)) & 0x08) break; msleep_interruptible(10); } if (i == 1000) { DEBUGP(4, dev, "timeout waiting for xmit done\n"); rc = -EIO; goto release_io; } } /* T=1: wait for infoLen */ infolen = 0; if (dev->proto) { /* wait until infoLen is valid */ for (i = 0; i < 6000; i++) { /* max waiting time of 1 min */ io_read_num_rec_bytes(iobase, &s); if (s >= 3) { infolen = inb(REG_FLAGS1(iobase)); DEBUGP(4, dev, "infolen=%d\n", infolen); break; } msleep_interruptible(10); } if (i == 6000) { DEBUGP(4, dev, "timeout waiting for infoLen\n"); rc = -EIO; goto release_io; } } else clear_bit(IS_PROCBYTE_PRESENT, &dev->flags); /* numRecBytes | bit9 of numRecytes */ io_read_num_rec_bytes(iobase, &dev->rlen); for (i = 0; i < 600; i++) { /* max waiting time of 2 sec */ if (dev->proto) { if (dev->rlen >= infolen + 4) break; } msleep_interruptible(10); /* numRecBytes | bit9 of numRecytes */ io_read_num_rec_bytes(iobase, &s); if (s > dev->rlen) { DEBUGP(1, dev, "NumRecBytes inc (reset timeout)\n"); i = 0; /* reset timeout */ dev->rlen = s; } /* T=0: we are done when numRecBytes doesn't * increment any more and NoProcedureByte * is set and numRecBytes == bytes sent + 6 * (header bytes + data + 1 for sw2) * except when the card replies an error * which means, no data will be sent back. */ else if (dev->proto == 0) { if ((inb(REG_BUF_ADDR(iobase)) & 0x80)) { /* no procedure byte received since last read */ DEBUGP(1, dev, "NoProcedure byte set\n"); /* i=0; */ } else { /* procedure byte received since last read */ DEBUGP(1, dev, "NoProcedure byte unset " "(reset timeout)\n"); dev->procbyte = inb(REG_FLAGS1(iobase)); DEBUGP(1, dev, "Read procedure byte 0x%.2x\n", dev->procbyte); i = 0; /* resettimeout */ } if (inb(REG_FLAGS0(iobase)) & 0x08) { DEBUGP(1, dev, "T0Done flag (read reply)\n"); break; } } if (dev->proto) infolen = inb(REG_FLAGS1(iobase)); } if (i == 600) { DEBUGP(1, dev, "timeout waiting for numRecBytes\n"); rc = -EIO; goto release_io; } else { if (dev->proto == 0) { DEBUGP(1, dev, "Wait for T0Done bit to be set\n"); for (i = 0; i < 1000; i++) { if (inb(REG_FLAGS0(iobase)) & 0x08) break; msleep_interruptible(10); } if (i == 1000) { DEBUGP(1, dev, "timeout waiting for T0Done\n"); rc = -EIO; goto release_io; } dev->procbyte = inb(REG_FLAGS1(iobase)); DEBUGP(4, dev, "Read procedure byte 0x%.2x\n", dev->procbyte); io_read_num_rec_bytes(iobase, &dev->rlen); DEBUGP(4, dev, "Read NumRecBytes = %i\n", dev->rlen); } } /* T=1: read offset=zero, T=0: read offset=after challenge */ dev->rpos = dev->proto ? 0 : nr == 4 ? 5 : nr > dev->rlen ? 5 : nr; DEBUGP(4, dev, "dev->rlen = %i, dev->rpos = %i, nr = %i\n", dev->rlen, dev->rpos, nr); release_io: DEBUGP(4, dev, "Reset SM\n"); xoutb(0x80, REG_FLAGS0(iobase)); /* reset SM */ if (rc < 0) { DEBUGP(4, dev, "Write failed but clear T_Active\n"); dev->flags1 &= 0xdf; xoutb(dev->flags1, REG_FLAGS1(iobase)); } clear_bit(LOCK_IO, &dev->flags); wake_up_interruptible(&dev->ioq); wake_up_interruptible(&dev->readq); /* tell read we have data */ /* ITSEC E2: clear write buffer */ memset((char *)dev->sbuf, 0, 512); /* return error or actually written bytes */ DEBUGP(2, dev, "<- cmm_write\n"); return rc < 0 ? rc : nr; } static void start_monitor(struct cm4000_dev *dev) { DEBUGP(3, dev, "-> start_monitor\n"); if (!dev->monitor_running) { DEBUGP(5, dev, "create, init and add timer\n"); timer_setup(&dev->timer, monitor_card, 0); dev->monitor_running = 1; mod_timer(&dev->timer, jiffies); } else DEBUGP(5, dev, "monitor already running\n"); DEBUGP(3, dev, "<- start_monitor\n"); } static void stop_monitor(struct cm4000_dev *dev) { DEBUGP(3, dev, "-> stop_monitor\n"); if (dev->monitor_running) { DEBUGP(5, dev, "stopping monitor\n"); terminate_monitor(dev); /* reset monitor SM */ clear_bit(IS_ATR_VALID, &dev->flags); clear_bit(IS_ATR_PRESENT, &dev->flags); } else DEBUGP(5, dev, "monitor already stopped\n"); DEBUGP(3, dev, "<- stop_monitor\n"); } static long cmm_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) { struct cm4000_dev *dev = filp->private_data; unsigned int iobase = dev->p_dev->resource[0]->start; struct inode *inode = file_inode(filp); struct pcmcia_device *link; int size; int rc; void __user *argp = (void __user *)arg; #ifdef CM4000_DEBUG char *ioctl_names[CM_IOC_MAXNR + 1] = { [_IOC_NR(CM_IOCGSTATUS)] "CM_IOCGSTATUS", [_IOC_NR(CM_IOCGATR)] "CM_IOCGATR", [_IOC_NR(CM_IOCARDOFF)] "CM_IOCARDOFF", [_IOC_NR(CM_IOCSPTS)] "CM_IOCSPTS", [_IOC_NR(CM_IOSDBGLVL)] "CM4000_DBGLVL", }; DEBUGP(3, dev, "cmm_ioctl(device=%d.%d) %s\n", imajor(inode), iminor(inode), ioctl_names[_IOC_NR(cmd)]); #endif mutex_lock(&cmm_mutex); rc = -ENODEV; link = dev_table[iminor(inode)]; if (!pcmcia_dev_present(link)) { DEBUGP(4, dev, "DEV_OK false\n"); goto out; } if (test_bit(IS_CMM_ABSENT, &dev->flags)) { DEBUGP(4, dev, "CMM_ABSENT flag set\n"); goto out; } rc = -EINVAL; if (_IOC_TYPE(cmd) != CM_IOC_MAGIC) { DEBUGP(4, dev, "ioctype mismatch\n"); goto out; } if (_IOC_NR(cmd) > CM_IOC_MAXNR) { DEBUGP(4, dev, "iocnr mismatch\n"); goto out; } size = _IOC_SIZE(cmd); rc = -EFAULT; DEBUGP(4, dev, "iocdir=%.4x iocr=%.4x iocw=%.4x iocsize=%d cmd=%.4x\n", _IOC_DIR(cmd), _IOC_READ, _IOC_WRITE, size, cmd); if (_IOC_DIR(cmd) & _IOC_READ) { if (!access_ok(argp, size)) goto out; } if (_IOC_DIR(cmd) & _IOC_WRITE) { if (!access_ok(argp, size)) goto out; } rc = 0; switch (cmd) { case CM_IOCGSTATUS: DEBUGP(4, dev, " ... in CM_IOCGSTATUS\n"); { int status; /* clear other bits, but leave inserted & powered as * they are */ status = dev->flags0 & 3; if (test_bit(IS_ATR_PRESENT, &dev->flags)) status |= CM_ATR_PRESENT; if (test_bit(IS_ATR_VALID, &dev->flags)) status |= CM_ATR_VALID; if (test_bit(IS_CMM_ABSENT, &dev->flags)) status |= CM_NO_READER; if (test_bit(IS_BAD_CARD, &dev->flags)) status |= CM_BAD_CARD; if (copy_to_user(argp, &status, sizeof(int))) rc = -EFAULT; } break; case CM_IOCGATR: DEBUGP(4, dev, "... in CM_IOCGATR\n"); { struct atreq __user *atreq = argp; int tmp; /* allow nonblocking io and being interrupted */ if (wait_event_interruptible (dev->atrq, ((filp->f_flags & O_NONBLOCK) || (test_bit(IS_ATR_PRESENT, (void *)&dev->flags) != 0)))) { if (filp->f_flags & O_NONBLOCK) rc = -EAGAIN; else rc = -ERESTARTSYS; break; } rc = -EFAULT; if (test_bit(IS_ATR_VALID, &dev->flags) == 0) { tmp = -1; if (copy_to_user(&(atreq->atr_len), &tmp, sizeof(int))) break; } else { if (copy_to_user(atreq->atr, dev->atr, dev->atr_len)) break; tmp = dev->atr_len; if (copy_to_user(&(atreq->atr_len), &tmp, sizeof(int))) break; } rc = 0; break; } case CM_IOCARDOFF: #ifdef CM4000_DEBUG DEBUGP(4, dev, "... in CM_IOCARDOFF\n"); if (dev->flags0 & 0x01) { DEBUGP(4, dev, " Card inserted\n"); } else { DEBUGP(2, dev, " No card inserted\n"); } if (dev->flags0 & 0x02) { DEBUGP(4, dev, " Card powered\n"); } else { DEBUGP(2, dev, " Card not powered\n"); } #endif /* is a card inserted and powered? */ if ((dev->flags0 & 0x01) && (dev->flags0 & 0x02)) { /* get IO lock */ if (wait_event_interruptible (dev->ioq, ((filp->f_flags & O_NONBLOCK) || (test_and_set_bit(LOCK_IO, (void *)&dev->flags) == 0)))) { if (filp->f_flags & O_NONBLOCK) rc = -EAGAIN; else rc = -ERESTARTSYS; break; } /* Set Flags0 = 0x42 */ DEBUGP(4, dev, "Set Flags0=0x42 \n"); xoutb(0x42, REG_FLAGS0(iobase)); clear_bit(IS_ATR_PRESENT, &dev->flags); clear_bit(IS_ATR_VALID, &dev->flags); dev->mstate = M_CARDOFF; clear_bit(LOCK_IO, &dev->flags); if (wait_event_interruptible (dev->atrq, ((filp->f_flags & O_NONBLOCK) || (test_bit(IS_ATR_VALID, (void *)&dev->flags) != 0)))) { if (filp->f_flags & O_NONBLOCK) rc = -EAGAIN; else rc = -ERESTARTSYS; break; } } /* release lock */ clear_bit(LOCK_IO, &dev->flags); wake_up_interruptible(&dev->ioq); rc = 0; break; case CM_IOCSPTS: { struct ptsreq krnptsreq; if (copy_from_user(&krnptsreq, argp, sizeof(struct ptsreq))) { rc = -EFAULT; break; } rc = 0; DEBUGP(4, dev, "... in CM_IOCSPTS\n"); /* wait for ATR to get valid */ if (wait_event_interruptible (dev->atrq, ((filp->f_flags & O_NONBLOCK) || (test_bit(IS_ATR_PRESENT, (void *)&dev->flags) != 0)))) { if (filp->f_flags & O_NONBLOCK) rc = -EAGAIN; else rc = -ERESTARTSYS; break; } /* get IO lock */ if (wait_event_interruptible (dev->ioq, ((filp->f_flags & O_NONBLOCK) || (test_and_set_bit(LOCK_IO, (void *)&dev->flags) == 0)))) { if (filp->f_flags & O_NONBLOCK) rc = -EAGAIN; else rc = -ERESTARTSYS; break; } if ((rc = set_protocol(dev, &krnptsreq)) != 0) { /* auto power_on again */ dev->mstate = M_FETCH_ATR; clear_bit(IS_ATR_VALID, &dev->flags); } /* release lock */ clear_bit(LOCK_IO, &dev->flags); wake_up_interruptible(&dev->ioq); } break; #ifdef CM4000_DEBUG case CM_IOSDBGLVL: rc = -ENOTTY; break; #endif default: DEBUGP(4, dev, "... in default (unknown IOCTL code)\n"); rc = -ENOTTY; } out: mutex_unlock(&cmm_mutex); return rc; } static int cmm_open(struct inode *inode, struct file *filp) { struct cm4000_dev *dev; struct pcmcia_device *link; int minor = iminor(inode); int ret; if (minor >= CM4000_MAX_DEV) return -ENODEV; mutex_lock(&cmm_mutex); link = dev_table[minor]; if (link == NULL || !pcmcia_dev_present(link)) { ret = -ENODEV; goto out; } if (link->open) { ret = -EBUSY; goto out; } dev = link->priv; filp->private_data = dev; DEBUGP(2, dev, "-> cmm_open(device=%d.%d process=%s,%d)\n", imajor(inode), minor, current->comm, current->pid); /* init device variables, they may be "polluted" after close * or, the device may never have been closed (i.e. open failed) */ ZERO_DEV(dev); /* opening will always block since the * monitor will be started by open, which * means we have to wait for ATR becoming * valid = block until valid (or card * inserted) */ if (filp->f_flags & O_NONBLOCK) { ret = -EAGAIN; goto out; } dev->mdelay = T_50MSEC; /* start monitoring the cardstatus */ start_monitor(dev); link->open = 1; /* only one open per device */ DEBUGP(2, dev, "<- cmm_open\n"); ret = stream_open(inode, filp); out: mutex_unlock(&cmm_mutex); return ret; } static int cmm_close(struct inode *inode, struct file *filp) { struct cm4000_dev *dev; struct pcmcia_device *link; int minor = iminor(inode); if (minor >= CM4000_MAX_DEV) return -ENODEV; link = dev_table[minor]; if (link == NULL) return -ENODEV; dev = link->priv; DEBUGP(2, dev, "-> cmm_close(maj/min=%d.%d)\n", imajor(inode), minor); stop_monitor(dev); ZERO_DEV(dev); link->open = 0; /* only one open per device */ wake_up(&dev->devq); /* socket removed? */ DEBUGP(2, dev, "cmm_close\n"); return 0; } static void cmm_cm4000_release(struct pcmcia_device * link) { struct cm4000_dev *dev = link->priv; /* dont terminate the monitor, rather rely on * close doing that for us. */ DEBUGP(3, dev, "-> cmm_cm4000_release\n"); while (link->open) { printk(KERN_INFO MODULE_NAME ": delaying release until " "process has terminated\n"); /* note: don't interrupt us: * close the applications which own * the devices _first_ ! */ wait_event(dev->devq, (link->open == 0)); } /* dev->devq=NULL; this cannot be zeroed earlier */ DEBUGP(3, dev, "<- cmm_cm4000_release\n"); return; } /*==== Interface to PCMCIA Layer =======================================*/ static int cm4000_config_check(struct pcmcia_device *p_dev, void *priv_data) { return pcmcia_request_io(p_dev); } static int cm4000_config(struct pcmcia_device * link, int devno) { link->config_flags |= CONF_AUTO_SET_IO; /* read the config-tuples */ if (pcmcia_loop_config(link, cm4000_config_check, NULL)) goto cs_release; if (pcmcia_enable_device(link)) goto cs_release; return 0; cs_release: cm4000_release(link); return -ENODEV; } static int cm4000_suspend(struct pcmcia_device *link) { struct cm4000_dev *dev; dev = link->priv; stop_monitor(dev); return 0; } static int cm4000_resume(struct pcmcia_device *link) { struct cm4000_dev *dev; dev = link->priv; if (link->open) start_monitor(dev); return 0; } static void cm4000_release(struct pcmcia_device *link) { cmm_cm4000_release(link); /* delay release until device closed */ pcmcia_disable_device(link); } static int cm4000_probe(struct pcmcia_device *link) { struct cm4000_dev *dev; int i, ret; for (i = 0; i < CM4000_MAX_DEV; i++) if (dev_table[i] == NULL) break; if (i == CM4000_MAX_DEV) { printk(KERN_NOTICE MODULE_NAME ": all devices in use\n"); return -ENODEV; } /* create a new cm4000_cs device */ dev = kzalloc(sizeof(struct cm4000_dev), GFP_KERNEL); if (dev == NULL) return -ENOMEM; dev->p_dev = link; link->priv = dev; dev_table[i] = link; init_waitqueue_head(&dev->devq); init_waitqueue_head(&dev->ioq); init_waitqueue_head(&dev->atrq); init_waitqueue_head(&dev->readq); ret = cm4000_config(link, i); if (ret) { dev_table[i] = NULL; kfree(dev); return ret; } device_create(cmm_class, NULL, MKDEV(major, i), NULL, "cmm%d", i); return 0; } static void cm4000_detach(struct pcmcia_device *link) { struct cm4000_dev *dev = link->priv; int devno; /* find device */ for (devno = 0; devno < CM4000_MAX_DEV; devno++) if (dev_table[devno] == link) break; if (devno == CM4000_MAX_DEV) return; stop_monitor(dev); cm4000_release(link); dev_table[devno] = NULL; kfree(dev); device_destroy(cmm_class, MKDEV(major, devno)); return; } static const struct file_operations cm4000_fops = { .owner = THIS_MODULE, .read = cmm_read, .write = cmm_write, .unlocked_ioctl = cmm_ioctl, .open = cmm_open, .release= cmm_close, .llseek = no_llseek, }; static const struct pcmcia_device_id cm4000_ids[] = { PCMCIA_DEVICE_MANF_CARD(0x0223, 0x0002), PCMCIA_DEVICE_PROD_ID12("CardMan", "4000", 0x2FB368CA, 0xA2BD8C39), PCMCIA_DEVICE_NULL, }; MODULE_DEVICE_TABLE(pcmcia, cm4000_ids); static struct pcmcia_driver cm4000_driver = { .owner = THIS_MODULE, .name = "cm4000_cs", .probe = cm4000_probe, .remove = cm4000_detach, .suspend = cm4000_suspend, .resume = cm4000_resume, .id_table = cm4000_ids, }; static int __init cmm_init(void) { int rc; cmm_class = class_create(THIS_MODULE, "cardman_4000"); if (IS_ERR(cmm_class)) return PTR_ERR(cmm_class); major = register_chrdev(0, DEVICE_NAME, &cm4000_fops); if (major < 0) { printk(KERN_WARNING MODULE_NAME ": could not get major number\n"); class_destroy(cmm_class); return major; } rc = pcmcia_register_driver(&cm4000_driver); if (rc < 0) { unregister_chrdev(major, DEVICE_NAME); class_destroy(cmm_class); return rc; } return 0; } static void __exit cmm_exit(void) { pcmcia_unregister_driver(&cm4000_driver); unregister_chrdev(major, DEVICE_NAME); class_destroy(cmm_class); }; module_init(cmm_init); module_exit(cmm_exit); MODULE_LICENSE("Dual BSD/GPL");