// SPDX-License-Identifier: GPL-2.0 /* * Sensirion SPS30 particulate matter sensor driver * * Copyright (c) Tomasz Duszynski * * I2C slave address: 0x69 */ #include #include #include #include #include #include #include #include #include #include #include #define SPS30_CRC8_POLYNOMIAL 0x31 /* max number of bytes needed to store PM measurements or serial string */ #define SPS30_MAX_READ_SIZE 48 /* sensor measures reliably up to 3000 ug / m3 */ #define SPS30_MAX_PM 3000 /* minimum and maximum self cleaning periods in seconds */ #define SPS30_AUTO_CLEANING_PERIOD_MIN 0 #define SPS30_AUTO_CLEANING_PERIOD_MAX 604800 /* SPS30 commands */ #define SPS30_START_MEAS 0x0010 #define SPS30_STOP_MEAS 0x0104 #define SPS30_RESET 0xd304 #define SPS30_READ_DATA_READY_FLAG 0x0202 #define SPS30_READ_DATA 0x0300 #define SPS30_READ_SERIAL 0xd033 #define SPS30_START_FAN_CLEANING 0x5607 #define SPS30_AUTO_CLEANING_PERIOD 0x8004 /* not a sensor command per se, used only to distinguish write from read */ #define SPS30_READ_AUTO_CLEANING_PERIOD 0x8005 enum { PM1, PM2P5, PM4, PM10, }; enum { RESET, MEASURING, }; struct sps30_state { struct i2c_client *client; /* * Guards against concurrent access to sensor registers. * Must be held whenever sequence of commands is to be executed. */ struct mutex lock; int state; }; DECLARE_CRC8_TABLE(sps30_crc8_table); static int sps30_write_then_read(struct sps30_state *state, u8 *txbuf, int txsize, u8 *rxbuf, int rxsize) { int ret; /* * Sensor does not support repeated start so instead of * sending two i2c messages in a row we just send one by one. */ ret = i2c_master_send(state->client, txbuf, txsize); if (ret != txsize) return ret < 0 ? ret : -EIO; if (!rxbuf) return 0; ret = i2c_master_recv(state->client, rxbuf, rxsize); if (ret != rxsize) return ret < 0 ? ret : -EIO; return 0; } static int sps30_do_cmd(struct sps30_state *state, u16 cmd, u8 *data, int size) { /* * Internally sensor stores measurements in a following manner: * * PM1: upper two bytes, crc8, lower two bytes, crc8 * PM2P5: upper two bytes, crc8, lower two bytes, crc8 * PM4: upper two bytes, crc8, lower two bytes, crc8 * PM10: upper two bytes, crc8, lower two bytes, crc8 * * What follows next are number concentration measurements and * typical particle size measurement which we omit. */ u8 buf[SPS30_MAX_READ_SIZE] = { cmd >> 8, cmd }; int i, ret = 0; switch (cmd) { case SPS30_START_MEAS: buf[2] = 0x03; buf[3] = 0x00; buf[4] = crc8(sps30_crc8_table, &buf[2], 2, CRC8_INIT_VALUE); ret = sps30_write_then_read(state, buf, 5, NULL, 0); break; case SPS30_STOP_MEAS: case SPS30_RESET: case SPS30_START_FAN_CLEANING: ret = sps30_write_then_read(state, buf, 2, NULL, 0); break; case SPS30_READ_AUTO_CLEANING_PERIOD: buf[0] = SPS30_AUTO_CLEANING_PERIOD >> 8; buf[1] = (u8)SPS30_AUTO_CLEANING_PERIOD; /* fall through */ case SPS30_READ_DATA_READY_FLAG: case SPS30_READ_DATA: case SPS30_READ_SERIAL: /* every two data bytes are checksummed */ size += size / 2; ret = sps30_write_then_read(state, buf, 2, buf, size); break; case SPS30_AUTO_CLEANING_PERIOD: buf[2] = data[0]; buf[3] = data[1]; buf[4] = crc8(sps30_crc8_table, &buf[2], 2, CRC8_INIT_VALUE); buf[5] = data[2]; buf[6] = data[3]; buf[7] = crc8(sps30_crc8_table, &buf[5], 2, CRC8_INIT_VALUE); ret = sps30_write_then_read(state, buf, 8, NULL, 0); break; } if (ret) return ret; /* validate received data and strip off crc bytes */ for (i = 0; i < size; i += 3) { u8 crc = crc8(sps30_crc8_table, &buf[i], 2, CRC8_INIT_VALUE); if (crc != buf[i + 2]) { dev_err(&state->client->dev, "data integrity check failed\n"); return -EIO; } *data++ = buf[i]; *data++ = buf[i + 1]; } return 0; } static s32 sps30_float_to_int_clamped(const u8 *fp) { int val = get_unaligned_be32(fp); int mantissa = val & GENMASK(22, 0); /* this is fine since passed float is always non-negative */ int exp = val >> 23; int fraction, shift; /* special case 0 */ if (!exp && !mantissa) return 0; exp -= 127; if (exp < 0) { /* return values ranging from 1 to 99 */ return ((((1 << 23) + mantissa) * 100) >> 23) >> (-exp); } /* return values ranging from 100 to 300000 */ shift = 23 - exp; val = (1 << exp) + (mantissa >> shift); if (val >= SPS30_MAX_PM) return SPS30_MAX_PM * 100; fraction = mantissa & GENMASK(shift - 1, 0); return val * 100 + ((fraction * 100) >> shift); } static int sps30_do_meas(struct sps30_state *state, s32 *data, int size) { int i, ret, tries = 5; u8 tmp[16]; if (state->state == RESET) { ret = sps30_do_cmd(state, SPS30_START_MEAS, NULL, 0); if (ret) return ret; state->state = MEASURING; } while (tries--) { ret = sps30_do_cmd(state, SPS30_READ_DATA_READY_FLAG, tmp, 2); if (ret) return -EIO; /* new measurements ready to be read */ if (tmp[1] == 1) break; msleep_interruptible(300); } if (tries == -1) return -ETIMEDOUT; ret = sps30_do_cmd(state, SPS30_READ_DATA, tmp, sizeof(int) * size); if (ret) return ret; for (i = 0; i < size; i++) data[i] = sps30_float_to_int_clamped(&tmp[4 * i]); return 0; } static irqreturn_t sps30_trigger_handler(int irq, void *p) { struct iio_poll_func *pf = p; struct iio_dev *indio_dev = pf->indio_dev; struct sps30_state *state = iio_priv(indio_dev); int ret; struct { s32 data[4]; /* PM1, PM2P5, PM4, PM10 */ s64 ts; } scan; mutex_lock(&state->lock); ret = sps30_do_meas(state, scan.data, ARRAY_SIZE(scan.data)); mutex_unlock(&state->lock); if (ret) goto err; iio_push_to_buffers_with_timestamp(indio_dev, &scan, iio_get_time_ns(indio_dev)); err: iio_trigger_notify_done(indio_dev->trig); return IRQ_HANDLED; } static int sps30_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct sps30_state *state = iio_priv(indio_dev); int data[4], ret = -EINVAL; switch (mask) { case IIO_CHAN_INFO_PROCESSED: switch (chan->type) { case IIO_MASSCONCENTRATION: mutex_lock(&state->lock); /* read up to the number of bytes actually needed */ switch (chan->channel2) { case IIO_MOD_PM1: ret = sps30_do_meas(state, data, 1); break; case IIO_MOD_PM2P5: ret = sps30_do_meas(state, data, 2); break; case IIO_MOD_PM4: ret = sps30_do_meas(state, data, 3); break; case IIO_MOD_PM10: ret = sps30_do_meas(state, data, 4); break; } mutex_unlock(&state->lock); if (ret) return ret; *val = data[chan->address] / 100; *val2 = (data[chan->address] % 100) * 10000; return IIO_VAL_INT_PLUS_MICRO; default: return -EINVAL; } case IIO_CHAN_INFO_SCALE: switch (chan->type) { case IIO_MASSCONCENTRATION: switch (chan->channel2) { case IIO_MOD_PM1: case IIO_MOD_PM2P5: case IIO_MOD_PM4: case IIO_MOD_PM10: *val = 0; *val2 = 10000; return IIO_VAL_INT_PLUS_MICRO; default: return -EINVAL; } default: return -EINVAL; } } return -EINVAL; } static int sps30_do_cmd_reset(struct sps30_state *state) { int ret; ret = sps30_do_cmd(state, SPS30_RESET, NULL, 0); msleep(300); /* * Power-on-reset causes sensor to produce some glitch on i2c bus and * some controllers end up in error state. Recover simply by placing * some data on the bus, for example STOP_MEAS command, which * is NOP in this case. */ sps30_do_cmd(state, SPS30_STOP_MEAS, NULL, 0); state->state = RESET; return ret; } static ssize_t start_cleaning_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct sps30_state *state = iio_priv(indio_dev); int val, ret; if (kstrtoint(buf, 0, &val) || val != 1) return -EINVAL; mutex_lock(&state->lock); ret = sps30_do_cmd(state, SPS30_START_FAN_CLEANING, NULL, 0); mutex_unlock(&state->lock); if (ret) return ret; return len; } static ssize_t cleaning_period_show(struct device *dev, struct device_attribute *attr, char *buf) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct sps30_state *state = iio_priv(indio_dev); u8 tmp[4]; int ret; mutex_lock(&state->lock); ret = sps30_do_cmd(state, SPS30_READ_AUTO_CLEANING_PERIOD, tmp, 4); mutex_unlock(&state->lock); if (ret) return ret; return sprintf(buf, "%d\n", get_unaligned_be32(tmp)); } static ssize_t cleaning_period_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t len) { struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct sps30_state *state = iio_priv(indio_dev); int val, ret; u8 tmp[4]; if (kstrtoint(buf, 0, &val)) return -EINVAL; if ((val < SPS30_AUTO_CLEANING_PERIOD_MIN) || (val > SPS30_AUTO_CLEANING_PERIOD_MAX)) return -EINVAL; put_unaligned_be32(val, tmp); mutex_lock(&state->lock); ret = sps30_do_cmd(state, SPS30_AUTO_CLEANING_PERIOD, tmp, 0); if (ret) { mutex_unlock(&state->lock); return ret; } msleep(20); /* * sensor requires reset in order to return up to date self cleaning * period */ ret = sps30_do_cmd_reset(state); if (ret) dev_warn(dev, "period changed but reads will return the old value\n"); mutex_unlock(&state->lock); return len; } static ssize_t cleaning_period_available_show(struct device *dev, struct device_attribute *attr, char *buf) { return snprintf(buf, PAGE_SIZE, "[%d %d %d]\n", SPS30_AUTO_CLEANING_PERIOD_MIN, 1, SPS30_AUTO_CLEANING_PERIOD_MAX); } static IIO_DEVICE_ATTR_WO(start_cleaning, 0); static IIO_DEVICE_ATTR_RW(cleaning_period, 0); static IIO_DEVICE_ATTR_RO(cleaning_period_available, 0); static struct attribute *sps30_attrs[] = { &iio_dev_attr_start_cleaning.dev_attr.attr, &iio_dev_attr_cleaning_period.dev_attr.attr, &iio_dev_attr_cleaning_period_available.dev_attr.attr, NULL }; static const struct attribute_group sps30_attr_group = { .attrs = sps30_attrs, }; static const struct iio_info sps30_info = { .attrs = &sps30_attr_group, .read_raw = sps30_read_raw, }; #define SPS30_CHAN(_index, _mod) { \ .type = IIO_MASSCONCENTRATION, \ .modified = 1, \ .channel2 = IIO_MOD_ ## _mod, \ .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \ .address = _mod, \ .scan_index = _index, \ .scan_type = { \ .sign = 'u', \ .realbits = 19, \ .storagebits = 32, \ .endianness = IIO_CPU, \ }, \ } static const struct iio_chan_spec sps30_channels[] = { SPS30_CHAN(0, PM1), SPS30_CHAN(1, PM2P5), SPS30_CHAN(2, PM4), SPS30_CHAN(3, PM10), IIO_CHAN_SOFT_TIMESTAMP(4), }; static void sps30_stop_meas(void *data) { struct sps30_state *state = data; sps30_do_cmd(state, SPS30_STOP_MEAS, NULL, 0); } static const unsigned long sps30_scan_masks[] = { 0x0f, 0x00 }; static int sps30_probe(struct i2c_client *client) { struct iio_dev *indio_dev; struct sps30_state *state; u8 buf[32]; int ret; if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) return -EOPNOTSUPP; indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*state)); if (!indio_dev) return -ENOMEM; state = iio_priv(indio_dev); i2c_set_clientdata(client, indio_dev); state->client = client; state->state = RESET; indio_dev->dev.parent = &client->dev; indio_dev->info = &sps30_info; indio_dev->name = client->name; indio_dev->channels = sps30_channels; indio_dev->num_channels = ARRAY_SIZE(sps30_channels); indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->available_scan_masks = sps30_scan_masks; mutex_init(&state->lock); crc8_populate_msb(sps30_crc8_table, SPS30_CRC8_POLYNOMIAL); ret = sps30_do_cmd_reset(state); if (ret) { dev_err(&client->dev, "failed to reset device\n"); return ret; } ret = sps30_do_cmd(state, SPS30_READ_SERIAL, buf, sizeof(buf)); if (ret) { dev_err(&client->dev, "failed to read serial number\n"); return ret; } /* returned serial number is already NUL terminated */ dev_info(&client->dev, "serial number: %s\n", buf); ret = devm_add_action_or_reset(&client->dev, sps30_stop_meas, state); if (ret) return ret; ret = devm_iio_triggered_buffer_setup(&client->dev, indio_dev, NULL, sps30_trigger_handler, NULL); if (ret) return ret; return devm_iio_device_register(&client->dev, indio_dev); } static const struct i2c_device_id sps30_id[] = { { "sps30" }, { } }; MODULE_DEVICE_TABLE(i2c, sps30_id); static const struct of_device_id sps30_of_match[] = { { .compatible = "sensirion,sps30" }, { } }; MODULE_DEVICE_TABLE(of, sps30_of_match); static struct i2c_driver sps30_driver = { .driver = { .name = "sps30", .of_match_table = sps30_of_match, }, .id_table = sps30_id, .probe_new = sps30_probe, }; module_i2c_driver(sps30_driver); MODULE_AUTHOR("Tomasz Duszynski "); MODULE_DESCRIPTION("Sensirion SPS30 particulate matter sensor driver"); MODULE_LICENSE("GPL v2");