// SPDX-License-Identifier: GPL-2.0-only /* * Keystone Queue Manager subsystem driver * * Copyright (C) 2014 Texas Instruments Incorporated - http://www.ti.com * Authors: Sandeep Nair * Cyril Chemparathy * Santosh Shilimkar */ #include #include #include #include #include #include #include #include #include #include #include #include #include "knav_qmss.h" static struct knav_device *kdev; static DEFINE_MUTEX(knav_dev_lock); /* Queue manager register indices in DTS */ #define KNAV_QUEUE_PEEK_REG_INDEX 0 #define KNAV_QUEUE_STATUS_REG_INDEX 1 #define KNAV_QUEUE_CONFIG_REG_INDEX 2 #define KNAV_QUEUE_REGION_REG_INDEX 3 #define KNAV_QUEUE_PUSH_REG_INDEX 4 #define KNAV_QUEUE_POP_REG_INDEX 5 /* Queue manager register indices in DTS for QMSS in K2G NAVSS. * There are no status and vbusm push registers on this version * of QMSS. Push registers are same as pop, So all indices above 1 * are to be re-defined */ #define KNAV_L_QUEUE_CONFIG_REG_INDEX 1 #define KNAV_L_QUEUE_REGION_REG_INDEX 2 #define KNAV_L_QUEUE_PUSH_REG_INDEX 3 /* PDSP register indices in DTS */ #define KNAV_QUEUE_PDSP_IRAM_REG_INDEX 0 #define KNAV_QUEUE_PDSP_REGS_REG_INDEX 1 #define KNAV_QUEUE_PDSP_INTD_REG_INDEX 2 #define KNAV_QUEUE_PDSP_CMD_REG_INDEX 3 #define knav_queue_idx_to_inst(kdev, idx) \ (kdev->instances + (idx << kdev->inst_shift)) #define for_each_handle_rcu(qh, inst) \ list_for_each_entry_rcu(qh, &inst->handles, list) #define for_each_instance(idx, inst, kdev) \ for (idx = 0, inst = kdev->instances; \ idx < (kdev)->num_queues_in_use; \ idx++, inst = knav_queue_idx_to_inst(kdev, idx)) /* All firmware file names end up here. List the firmware file names below. * Newest followed by older ones. Search is done from start of the array * until a firmware file is found. */ const char *knav_acc_firmwares[] = {"ks2_qmss_pdsp_acc48.bin"}; static bool device_ready; bool knav_qmss_device_ready(void) { return device_ready; } EXPORT_SYMBOL_GPL(knav_qmss_device_ready); /** * knav_queue_notify: qmss queue notfier call * * @inst: qmss queue instance like accumulator */ void knav_queue_notify(struct knav_queue_inst *inst) { struct knav_queue *qh; if (!inst) return; rcu_read_lock(); for_each_handle_rcu(qh, inst) { if (atomic_read(&qh->notifier_enabled) <= 0) continue; if (WARN_ON(!qh->notifier_fn)) continue; this_cpu_inc(qh->stats->notifies); qh->notifier_fn(qh->notifier_fn_arg); } rcu_read_unlock(); } EXPORT_SYMBOL_GPL(knav_queue_notify); static irqreturn_t knav_queue_int_handler(int irq, void *_instdata) { struct knav_queue_inst *inst = _instdata; knav_queue_notify(inst); return IRQ_HANDLED; } static int knav_queue_setup_irq(struct knav_range_info *range, struct knav_queue_inst *inst) { unsigned queue = inst->id - range->queue_base; int ret = 0, irq; if (range->flags & RANGE_HAS_IRQ) { irq = range->irqs[queue].irq; ret = request_irq(irq, knav_queue_int_handler, 0, inst->irq_name, inst); if (ret) return ret; disable_irq(irq); if (range->irqs[queue].cpu_mask) { ret = irq_set_affinity_hint(irq, range->irqs[queue].cpu_mask); if (ret) { dev_warn(range->kdev->dev, "Failed to set IRQ affinity\n"); return ret; } } } return ret; } static void knav_queue_free_irq(struct knav_queue_inst *inst) { struct knav_range_info *range = inst->range; unsigned queue = inst->id - inst->range->queue_base; int irq; if (range->flags & RANGE_HAS_IRQ) { irq = range->irqs[queue].irq; irq_set_affinity_hint(irq, NULL); free_irq(irq, inst); } } static inline bool knav_queue_is_busy(struct knav_queue_inst *inst) { return !list_empty(&inst->handles); } static inline bool knav_queue_is_reserved(struct knav_queue_inst *inst) { return inst->range->flags & RANGE_RESERVED; } static inline bool knav_queue_is_shared(struct knav_queue_inst *inst) { struct knav_queue *tmp; rcu_read_lock(); for_each_handle_rcu(tmp, inst) { if (tmp->flags & KNAV_QUEUE_SHARED) { rcu_read_unlock(); return true; } } rcu_read_unlock(); return false; } static inline bool knav_queue_match_type(struct knav_queue_inst *inst, unsigned type) { if ((type == KNAV_QUEUE_QPEND) && (inst->range->flags & RANGE_HAS_IRQ)) { return true; } else if ((type == KNAV_QUEUE_ACC) && (inst->range->flags & RANGE_HAS_ACCUMULATOR)) { return true; } else if ((type == KNAV_QUEUE_GP) && !(inst->range->flags & (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) { return true; } return false; } static inline struct knav_queue_inst * knav_queue_match_id_to_inst(struct knav_device *kdev, unsigned id) { struct knav_queue_inst *inst; int idx; for_each_instance(idx, inst, kdev) { if (inst->id == id) return inst; } return NULL; } static inline struct knav_queue_inst *knav_queue_find_by_id(int id) { if (kdev->base_id <= id && kdev->base_id + kdev->num_queues > id) { id -= kdev->base_id; return knav_queue_match_id_to_inst(kdev, id); } return NULL; } static struct knav_queue *__knav_queue_open(struct knav_queue_inst *inst, const char *name, unsigned flags) { struct knav_queue *qh; unsigned id; int ret = 0; qh = devm_kzalloc(inst->kdev->dev, sizeof(*qh), GFP_KERNEL); if (!qh) return ERR_PTR(-ENOMEM); qh->stats = alloc_percpu(struct knav_queue_stats); if (!qh->stats) { ret = -ENOMEM; goto err; } qh->flags = flags; qh->inst = inst; id = inst->id - inst->qmgr->start_queue; qh->reg_push = &inst->qmgr->reg_push[id]; qh->reg_pop = &inst->qmgr->reg_pop[id]; qh->reg_peek = &inst->qmgr->reg_peek[id]; /* first opener? */ if (!knav_queue_is_busy(inst)) { struct knav_range_info *range = inst->range; inst->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL); if (range->ops && range->ops->open_queue) ret = range->ops->open_queue(range, inst, flags); if (ret) goto err; } list_add_tail_rcu(&qh->list, &inst->handles); return qh; err: if (qh->stats) free_percpu(qh->stats); devm_kfree(inst->kdev->dev, qh); return ERR_PTR(ret); } static struct knav_queue * knav_queue_open_by_id(const char *name, unsigned id, unsigned flags) { struct knav_queue_inst *inst; struct knav_queue *qh; mutex_lock(&knav_dev_lock); qh = ERR_PTR(-ENODEV); inst = knav_queue_find_by_id(id); if (!inst) goto unlock_ret; qh = ERR_PTR(-EEXIST); if (!(flags & KNAV_QUEUE_SHARED) && knav_queue_is_busy(inst)) goto unlock_ret; qh = ERR_PTR(-EBUSY); if ((flags & KNAV_QUEUE_SHARED) && (knav_queue_is_busy(inst) && !knav_queue_is_shared(inst))) goto unlock_ret; qh = __knav_queue_open(inst, name, flags); unlock_ret: mutex_unlock(&knav_dev_lock); return qh; } static struct knav_queue *knav_queue_open_by_type(const char *name, unsigned type, unsigned flags) { struct knav_queue_inst *inst; struct knav_queue *qh = ERR_PTR(-EINVAL); int idx; mutex_lock(&knav_dev_lock); for_each_instance(idx, inst, kdev) { if (knav_queue_is_reserved(inst)) continue; if (!knav_queue_match_type(inst, type)) continue; if (knav_queue_is_busy(inst)) continue; qh = __knav_queue_open(inst, name, flags); goto unlock_ret; } unlock_ret: mutex_unlock(&knav_dev_lock); return qh; } static void knav_queue_set_notify(struct knav_queue_inst *inst, bool enabled) { struct knav_range_info *range = inst->range; if (range->ops && range->ops->set_notify) range->ops->set_notify(range, inst, enabled); } static int knav_queue_enable_notifier(struct knav_queue *qh) { struct knav_queue_inst *inst = qh->inst; bool first; if (WARN_ON(!qh->notifier_fn)) return -EINVAL; /* Adjust the per handle notifier count */ first = (atomic_inc_return(&qh->notifier_enabled) == 1); if (!first) return 0; /* nothing to do */ /* Now adjust the per instance notifier count */ first = (atomic_inc_return(&inst->num_notifiers) == 1); if (first) knav_queue_set_notify(inst, true); return 0; } static int knav_queue_disable_notifier(struct knav_queue *qh) { struct knav_queue_inst *inst = qh->inst; bool last; last = (atomic_dec_return(&qh->notifier_enabled) == 0); if (!last) return 0; /* nothing to do */ last = (atomic_dec_return(&inst->num_notifiers) == 0); if (last) knav_queue_set_notify(inst, false); return 0; } static int knav_queue_set_notifier(struct knav_queue *qh, struct knav_queue_notify_config *cfg) { knav_queue_notify_fn old_fn = qh->notifier_fn; if (!cfg) return -EINVAL; if (!(qh->inst->range->flags & (RANGE_HAS_ACCUMULATOR | RANGE_HAS_IRQ))) return -ENOTSUPP; if (!cfg->fn && old_fn) knav_queue_disable_notifier(qh); qh->notifier_fn = cfg->fn; qh->notifier_fn_arg = cfg->fn_arg; if (cfg->fn && !old_fn) knav_queue_enable_notifier(qh); return 0; } static int knav_gp_set_notify(struct knav_range_info *range, struct knav_queue_inst *inst, bool enabled) { unsigned queue; if (range->flags & RANGE_HAS_IRQ) { queue = inst->id - range->queue_base; if (enabled) enable_irq(range->irqs[queue].irq); else disable_irq_nosync(range->irqs[queue].irq); } return 0; } static int knav_gp_open_queue(struct knav_range_info *range, struct knav_queue_inst *inst, unsigned flags) { return knav_queue_setup_irq(range, inst); } static int knav_gp_close_queue(struct knav_range_info *range, struct knav_queue_inst *inst) { knav_queue_free_irq(inst); return 0; } struct knav_range_ops knav_gp_range_ops = { .set_notify = knav_gp_set_notify, .open_queue = knav_gp_open_queue, .close_queue = knav_gp_close_queue, }; static int knav_queue_get_count(void *qhandle) { struct knav_queue *qh = qhandle; struct knav_queue_inst *inst = qh->inst; return readl_relaxed(&qh->reg_peek[0].entry_count) + atomic_read(&inst->desc_count); } static void knav_queue_debug_show_instance(struct seq_file *s, struct knav_queue_inst *inst) { struct knav_device *kdev = inst->kdev; struct knav_queue *qh; int cpu = 0; int pushes = 0; int pops = 0; int push_errors = 0; int pop_errors = 0; int notifies = 0; if (!knav_queue_is_busy(inst)) return; seq_printf(s, "\tqueue id %d (%s)\n", kdev->base_id + inst->id, inst->name); for_each_handle_rcu(qh, inst) { for_each_possible_cpu(cpu) { pushes += per_cpu_ptr(qh->stats, cpu)->pushes; pops += per_cpu_ptr(qh->stats, cpu)->pops; push_errors += per_cpu_ptr(qh->stats, cpu)->push_errors; pop_errors += per_cpu_ptr(qh->stats, cpu)->pop_errors; notifies += per_cpu_ptr(qh->stats, cpu)->notifies; } seq_printf(s, "\t\thandle %p: pushes %8d, pops %8d, count %8d, notifies %8d, push errors %8d, pop errors %8d\n", qh, pushes, pops, knav_queue_get_count(qh), notifies, push_errors, pop_errors); } } static int knav_queue_debug_show(struct seq_file *s, void *v) { struct knav_queue_inst *inst; int idx; mutex_lock(&knav_dev_lock); seq_printf(s, "%s: %u-%u\n", dev_name(kdev->dev), kdev->base_id, kdev->base_id + kdev->num_queues - 1); for_each_instance(idx, inst, kdev) knav_queue_debug_show_instance(s, inst); mutex_unlock(&knav_dev_lock); return 0; } static int knav_queue_debug_open(struct inode *inode, struct file *file) { return single_open(file, knav_queue_debug_show, NULL); } static const struct file_operations knav_queue_debug_ops = { .open = knav_queue_debug_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static inline int knav_queue_pdsp_wait(u32 * __iomem addr, unsigned timeout, u32 flags) { unsigned long end; u32 val = 0; end = jiffies + msecs_to_jiffies(timeout); while (time_after(end, jiffies)) { val = readl_relaxed(addr); if (flags) val &= flags; if (!val) break; cpu_relax(); } return val ? -ETIMEDOUT : 0; } static int knav_queue_flush(struct knav_queue *qh) { struct knav_queue_inst *inst = qh->inst; unsigned id = inst->id - inst->qmgr->start_queue; atomic_set(&inst->desc_count, 0); writel_relaxed(0, &inst->qmgr->reg_push[id].ptr_size_thresh); return 0; } /** * knav_queue_open() - open a hardware queue * @name - name to give the queue handle * @id - desired queue number if any or specifes the type * of queue * @flags - the following flags are applicable to queues: * KNAV_QUEUE_SHARED - allow the queue to be shared. Queues are * exclusive by default. * Subsequent attempts to open a shared queue should * also have this flag. * * Returns a handle to the open hardware queue if successful. Use IS_ERR() * to check the returned value for error codes. */ void *knav_queue_open(const char *name, unsigned id, unsigned flags) { struct knav_queue *qh = ERR_PTR(-EINVAL); switch (id) { case KNAV_QUEUE_QPEND: case KNAV_QUEUE_ACC: case KNAV_QUEUE_GP: qh = knav_queue_open_by_type(name, id, flags); break; default: qh = knav_queue_open_by_id(name, id, flags); break; } return qh; } EXPORT_SYMBOL_GPL(knav_queue_open); /** * knav_queue_close() - close a hardware queue handle * @qh - handle to close */ void knav_queue_close(void *qhandle) { struct knav_queue *qh = qhandle; struct knav_queue_inst *inst = qh->inst; while (atomic_read(&qh->notifier_enabled) > 0) knav_queue_disable_notifier(qh); mutex_lock(&knav_dev_lock); list_del_rcu(&qh->list); mutex_unlock(&knav_dev_lock); synchronize_rcu(); if (!knav_queue_is_busy(inst)) { struct knav_range_info *range = inst->range; if (range->ops && range->ops->close_queue) range->ops->close_queue(range, inst); } free_percpu(qh->stats); devm_kfree(inst->kdev->dev, qh); } EXPORT_SYMBOL_GPL(knav_queue_close); /** * knav_queue_device_control() - Perform control operations on a queue * @qh - queue handle * @cmd - control commands * @arg - command argument * * Returns 0 on success, errno otherwise. */ int knav_queue_device_control(void *qhandle, enum knav_queue_ctrl_cmd cmd, unsigned long arg) { struct knav_queue *qh = qhandle; struct knav_queue_notify_config *cfg; int ret; switch ((int)cmd) { case KNAV_QUEUE_GET_ID: ret = qh->inst->kdev->base_id + qh->inst->id; break; case KNAV_QUEUE_FLUSH: ret = knav_queue_flush(qh); break; case KNAV_QUEUE_SET_NOTIFIER: cfg = (void *)arg; ret = knav_queue_set_notifier(qh, cfg); break; case KNAV_QUEUE_ENABLE_NOTIFY: ret = knav_queue_enable_notifier(qh); break; case KNAV_QUEUE_DISABLE_NOTIFY: ret = knav_queue_disable_notifier(qh); break; case KNAV_QUEUE_GET_COUNT: ret = knav_queue_get_count(qh); break; default: ret = -ENOTSUPP; break; } return ret; } EXPORT_SYMBOL_GPL(knav_queue_device_control); /** * knav_queue_push() - push data (or descriptor) to the tail of a queue * @qh - hardware queue handle * @data - data to push * @size - size of data to push * @flags - can be used to pass additional information * * Returns 0 on success, errno otherwise. */ int knav_queue_push(void *qhandle, dma_addr_t dma, unsigned size, unsigned flags) { struct knav_queue *qh = qhandle; u32 val; val = (u32)dma | ((size / 16) - 1); writel_relaxed(val, &qh->reg_push[0].ptr_size_thresh); this_cpu_inc(qh->stats->pushes); return 0; } EXPORT_SYMBOL_GPL(knav_queue_push); /** * knav_queue_pop() - pop data (or descriptor) from the head of a queue * @qh - hardware queue handle * @size - (optional) size of the data pop'ed. * * Returns a DMA address on success, 0 on failure. */ dma_addr_t knav_queue_pop(void *qhandle, unsigned *size) { struct knav_queue *qh = qhandle; struct knav_queue_inst *inst = qh->inst; dma_addr_t dma; u32 val, idx; /* are we accumulated? */ if (inst->descs) { if (unlikely(atomic_dec_return(&inst->desc_count) < 0)) { atomic_inc(&inst->desc_count); return 0; } idx = atomic_inc_return(&inst->desc_head); idx &= ACC_DESCS_MASK; val = inst->descs[idx]; } else { val = readl_relaxed(&qh->reg_pop[0].ptr_size_thresh); if (unlikely(!val)) return 0; } dma = val & DESC_PTR_MASK; if (size) *size = ((val & DESC_SIZE_MASK) + 1) * 16; this_cpu_inc(qh->stats->pops); return dma; } EXPORT_SYMBOL_GPL(knav_queue_pop); /* carve out descriptors and push into queue */ static void kdesc_fill_pool(struct knav_pool *pool) { struct knav_region *region; int i; region = pool->region; pool->desc_size = region->desc_size; for (i = 0; i < pool->num_desc; i++) { int index = pool->region_offset + i; dma_addr_t dma_addr; unsigned dma_size; dma_addr = region->dma_start + (region->desc_size * index); dma_size = ALIGN(pool->desc_size, SMP_CACHE_BYTES); dma_sync_single_for_device(pool->dev, dma_addr, dma_size, DMA_TO_DEVICE); knav_queue_push(pool->queue, dma_addr, dma_size, 0); } } /* pop out descriptors and close the queue */ static void kdesc_empty_pool(struct knav_pool *pool) { dma_addr_t dma; unsigned size; void *desc; int i; if (!pool->queue) return; for (i = 0;; i++) { dma = knav_queue_pop(pool->queue, &size); if (!dma) break; desc = knav_pool_desc_dma_to_virt(pool, dma); if (!desc) { dev_dbg(pool->kdev->dev, "couldn't unmap desc, continuing\n"); continue; } } WARN_ON(i != pool->num_desc); knav_queue_close(pool->queue); } /* Get the DMA address of a descriptor */ dma_addr_t knav_pool_desc_virt_to_dma(void *ph, void *virt) { struct knav_pool *pool = ph; return pool->region->dma_start + (virt - pool->region->virt_start); } EXPORT_SYMBOL_GPL(knav_pool_desc_virt_to_dma); void *knav_pool_desc_dma_to_virt(void *ph, dma_addr_t dma) { struct knav_pool *pool = ph; return pool->region->virt_start + (dma - pool->region->dma_start); } EXPORT_SYMBOL_GPL(knav_pool_desc_dma_to_virt); /** * knav_pool_create() - Create a pool of descriptors * @name - name to give the pool handle * @num_desc - numbers of descriptors in the pool * @region_id - QMSS region id from which the descriptors are to be * allocated. * * Returns a pool handle on success. * Use IS_ERR_OR_NULL() to identify error values on return. */ void *knav_pool_create(const char *name, int num_desc, int region_id) { struct knav_region *reg_itr, *region = NULL; struct knav_pool *pool, *pi; struct list_head *node; unsigned last_offset; bool slot_found; int ret; if (!kdev) return ERR_PTR(-EPROBE_DEFER); if (!kdev->dev) return ERR_PTR(-ENODEV); pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL); if (!pool) { dev_err(kdev->dev, "out of memory allocating pool\n"); return ERR_PTR(-ENOMEM); } for_each_region(kdev, reg_itr) { if (reg_itr->id != region_id) continue; region = reg_itr; break; } if (!region) { dev_err(kdev->dev, "region-id(%d) not found\n", region_id); ret = -EINVAL; goto err; } pool->queue = knav_queue_open(name, KNAV_QUEUE_GP, 0); if (IS_ERR_OR_NULL(pool->queue)) { dev_err(kdev->dev, "failed to open queue for pool(%s), error %ld\n", name, PTR_ERR(pool->queue)); ret = PTR_ERR(pool->queue); goto err; } pool->name = kstrndup(name, KNAV_NAME_SIZE - 1, GFP_KERNEL); pool->kdev = kdev; pool->dev = kdev->dev; mutex_lock(&knav_dev_lock); if (num_desc > (region->num_desc - region->used_desc)) { dev_err(kdev->dev, "out of descs in region(%d) for pool(%s)\n", region_id, name); ret = -ENOMEM; goto err_unlock; } /* Region maintains a sorted (by region offset) list of pools * use the first free slot which is large enough to accomodate * the request */ last_offset = 0; slot_found = false; node = ®ion->pools; list_for_each_entry(pi, ®ion->pools, region_inst) { if ((pi->region_offset - last_offset) >= num_desc) { slot_found = true; break; } last_offset = pi->region_offset + pi->num_desc; } node = &pi->region_inst; if (slot_found) { pool->region = region; pool->num_desc = num_desc; pool->region_offset = last_offset; region->used_desc += num_desc; list_add_tail(&pool->list, &kdev->pools); list_add_tail(&pool->region_inst, node); } else { dev_err(kdev->dev, "pool(%s) create failed: fragmented desc pool in region(%d)\n", name, region_id); ret = -ENOMEM; goto err_unlock; } mutex_unlock(&knav_dev_lock); kdesc_fill_pool(pool); return pool; err_unlock: mutex_unlock(&knav_dev_lock); err: kfree(pool->name); devm_kfree(kdev->dev, pool); return ERR_PTR(ret); } EXPORT_SYMBOL_GPL(knav_pool_create); /** * knav_pool_destroy() - Free a pool of descriptors * @pool - pool handle */ void knav_pool_destroy(void *ph) { struct knav_pool *pool = ph; if (!pool) return; if (!pool->region) return; kdesc_empty_pool(pool); mutex_lock(&knav_dev_lock); pool->region->used_desc -= pool->num_desc; list_del(&pool->region_inst); list_del(&pool->list); mutex_unlock(&knav_dev_lock); kfree(pool->name); devm_kfree(kdev->dev, pool); } EXPORT_SYMBOL_GPL(knav_pool_destroy); /** * knav_pool_desc_get() - Get a descriptor from the pool * @pool - pool handle * * Returns descriptor from the pool. */ void *knav_pool_desc_get(void *ph) { struct knav_pool *pool = ph; dma_addr_t dma; unsigned size; void *data; dma = knav_queue_pop(pool->queue, &size); if (unlikely(!dma)) return ERR_PTR(-ENOMEM); data = knav_pool_desc_dma_to_virt(pool, dma); return data; } EXPORT_SYMBOL_GPL(knav_pool_desc_get); /** * knav_pool_desc_put() - return a descriptor to the pool * @pool - pool handle */ void knav_pool_desc_put(void *ph, void *desc) { struct knav_pool *pool = ph; dma_addr_t dma; dma = knav_pool_desc_virt_to_dma(pool, desc); knav_queue_push(pool->queue, dma, pool->region->desc_size, 0); } EXPORT_SYMBOL_GPL(knav_pool_desc_put); /** * knav_pool_desc_map() - Map descriptor for DMA transfer * @pool - pool handle * @desc - address of descriptor to map * @size - size of descriptor to map * @dma - DMA address return pointer * @dma_sz - adjusted return pointer * * Returns 0 on success, errno otherwise. */ int knav_pool_desc_map(void *ph, void *desc, unsigned size, dma_addr_t *dma, unsigned *dma_sz) { struct knav_pool *pool = ph; *dma = knav_pool_desc_virt_to_dma(pool, desc); size = min(size, pool->region->desc_size); size = ALIGN(size, SMP_CACHE_BYTES); *dma_sz = size; dma_sync_single_for_device(pool->dev, *dma, size, DMA_TO_DEVICE); /* Ensure the descriptor reaches to the memory */ __iowmb(); return 0; } EXPORT_SYMBOL_GPL(knav_pool_desc_map); /** * knav_pool_desc_unmap() - Unmap descriptor after DMA transfer * @pool - pool handle * @dma - DMA address of descriptor to unmap * @dma_sz - size of descriptor to unmap * * Returns descriptor address on success, Use IS_ERR_OR_NULL() to identify * error values on return. */ void *knav_pool_desc_unmap(void *ph, dma_addr_t dma, unsigned dma_sz) { struct knav_pool *pool = ph; unsigned desc_sz; void *desc; desc_sz = min(dma_sz, pool->region->desc_size); desc = knav_pool_desc_dma_to_virt(pool, dma); dma_sync_single_for_cpu(pool->dev, dma, desc_sz, DMA_FROM_DEVICE); prefetch(desc); return desc; } EXPORT_SYMBOL_GPL(knav_pool_desc_unmap); /** * knav_pool_count() - Get the number of descriptors in pool. * @pool - pool handle * Returns number of elements in the pool. */ int knav_pool_count(void *ph) { struct knav_pool *pool = ph; return knav_queue_get_count(pool->queue); } EXPORT_SYMBOL_GPL(knav_pool_count); static void knav_queue_setup_region(struct knav_device *kdev, struct knav_region *region) { unsigned hw_num_desc, hw_desc_size, size; struct knav_reg_region __iomem *regs; struct knav_qmgr_info *qmgr; struct knav_pool *pool; int id = region->id; struct page *page; /* unused region? */ if (!region->num_desc) { dev_warn(kdev->dev, "unused region %s\n", region->name); return; } /* get hardware descriptor value */ hw_num_desc = ilog2(region->num_desc - 1) + 1; /* did we force fit ourselves into nothingness? */ if (region->num_desc < 32) { region->num_desc = 0; dev_warn(kdev->dev, "too few descriptors in region %s\n", region->name); return; } size = region->num_desc * region->desc_size; region->virt_start = alloc_pages_exact(size, GFP_KERNEL | GFP_DMA | GFP_DMA32); if (!region->virt_start) { region->num_desc = 0; dev_err(kdev->dev, "memory alloc failed for region %s\n", region->name); return; } region->virt_end = region->virt_start + size; page = virt_to_page(region->virt_start); region->dma_start = dma_map_page(kdev->dev, page, 0, size, DMA_BIDIRECTIONAL); if (dma_mapping_error(kdev->dev, region->dma_start)) { dev_err(kdev->dev, "dma map failed for region %s\n", region->name); goto fail; } region->dma_end = region->dma_start + size; pool = devm_kzalloc(kdev->dev, sizeof(*pool), GFP_KERNEL); if (!pool) { dev_err(kdev->dev, "out of memory allocating dummy pool\n"); goto fail; } pool->num_desc = 0; pool->region_offset = region->num_desc; list_add(&pool->region_inst, ®ion->pools); dev_dbg(kdev->dev, "region %s (%d): size:%d, link:%d@%d, dma:%pad-%pad, virt:%p-%p\n", region->name, id, region->desc_size, region->num_desc, region->link_index, ®ion->dma_start, ®ion->dma_end, region->virt_start, region->virt_end); hw_desc_size = (region->desc_size / 16) - 1; hw_num_desc -= 5; for_each_qmgr(kdev, qmgr) { regs = qmgr->reg_region + id; writel_relaxed((u32)region->dma_start, ®s->base); writel_relaxed(region->link_index, ®s->start_index); writel_relaxed(hw_desc_size << 16 | hw_num_desc, ®s->size_count); } return; fail: if (region->dma_start) dma_unmap_page(kdev->dev, region->dma_start, size, DMA_BIDIRECTIONAL); if (region->virt_start) free_pages_exact(region->virt_start, size); region->num_desc = 0; return; } static const char *knav_queue_find_name(struct device_node *node) { const char *name; if (of_property_read_string(node, "label", &name) < 0) name = node->name; if (!name) name = "unknown"; return name; } static int knav_queue_setup_regions(struct knav_device *kdev, struct device_node *regions) { struct device *dev = kdev->dev; struct knav_region *region; struct device_node *child; u32 temp[2]; int ret; for_each_child_of_node(regions, child) { region = devm_kzalloc(dev, sizeof(*region), GFP_KERNEL); if (!region) { dev_err(dev, "out of memory allocating region\n"); return -ENOMEM; } region->name = knav_queue_find_name(child); of_property_read_u32(child, "id", ®ion->id); ret = of_property_read_u32_array(child, "region-spec", temp, 2); if (!ret) { region->num_desc = temp[0]; region->desc_size = temp[1]; } else { dev_err(dev, "invalid region info %s\n", region->name); devm_kfree(dev, region); continue; } if (!of_get_property(child, "link-index", NULL)) { dev_err(dev, "No link info for %s\n", region->name); devm_kfree(dev, region); continue; } ret = of_property_read_u32(child, "link-index", ®ion->link_index); if (ret) { dev_err(dev, "link index not found for %s\n", region->name); devm_kfree(dev, region); continue; } INIT_LIST_HEAD(®ion->pools); list_add_tail(®ion->list, &kdev->regions); } if (list_empty(&kdev->regions)) { dev_err(dev, "no valid region information found\n"); return -ENODEV; } /* Next, we run through the regions and set things up */ for_each_region(kdev, region) knav_queue_setup_region(kdev, region); return 0; } static int knav_get_link_ram(struct knav_device *kdev, const char *name, struct knav_link_ram_block *block) { struct platform_device *pdev = to_platform_device(kdev->dev); struct device_node *node = pdev->dev.of_node; u32 temp[2]; /* * Note: link ram resources are specified in "entry" sized units. In * reality, although entries are ~40bits in hardware, we treat them as * 64-bit entities here. * * For example, to specify the internal link ram for Keystone-I class * devices, we would set the linkram0 resource to 0x80000-0x83fff. * * This gets a bit weird when other link rams are used. For example, * if the range specified is 0x0c000000-0x0c003fff (i.e., 16K entries * in MSMC SRAM), the actual memory used is 0x0c000000-0x0c020000, * which accounts for 64-bits per entry, for 16K entries. */ if (!of_property_read_u32_array(node, name , temp, 2)) { if (temp[0]) { /* * queue_base specified => using internal or onchip * link ram WARNING - we do not "reserve" this block */ block->dma = (dma_addr_t)temp[0]; block->virt = NULL; block->size = temp[1]; } else { block->size = temp[1]; /* queue_base not specific => allocate requested size */ block->virt = dmam_alloc_coherent(kdev->dev, 8 * block->size, &block->dma, GFP_KERNEL); if (!block->virt) { dev_err(kdev->dev, "failed to alloc linkram\n"); return -ENOMEM; } } } else { return -ENODEV; } return 0; } static int knav_queue_setup_link_ram(struct knav_device *kdev) { struct knav_link_ram_block *block; struct knav_qmgr_info *qmgr; for_each_qmgr(kdev, qmgr) { block = &kdev->link_rams[0]; dev_dbg(kdev->dev, "linkram0: dma:%pad, virt:%p, size:%x\n", &block->dma, block->virt, block->size); writel_relaxed((u32)block->dma, &qmgr->reg_config->link_ram_base0); if (kdev->version == QMSS_66AK2G) writel_relaxed(block->size, &qmgr->reg_config->link_ram_size0); else writel_relaxed(block->size - 1, &qmgr->reg_config->link_ram_size0); block++; if (!block->size) continue; dev_dbg(kdev->dev, "linkram1: dma:%pad, virt:%p, size:%x\n", &block->dma, block->virt, block->size); writel_relaxed(block->dma, &qmgr->reg_config->link_ram_base1); } return 0; } static int knav_setup_queue_range(struct knav_device *kdev, struct device_node *node) { struct device *dev = kdev->dev; struct knav_range_info *range; struct knav_qmgr_info *qmgr; u32 temp[2], start, end, id, index; int ret, i; range = devm_kzalloc(dev, sizeof(*range), GFP_KERNEL); if (!range) { dev_err(dev, "out of memory allocating range\n"); return -ENOMEM; } range->kdev = kdev; range->name = knav_queue_find_name(node); ret = of_property_read_u32_array(node, "qrange", temp, 2); if (!ret) { range->queue_base = temp[0] - kdev->base_id; range->num_queues = temp[1]; } else { dev_err(dev, "invalid queue range %s\n", range->name); devm_kfree(dev, range); return -EINVAL; } for (i = 0; i < RANGE_MAX_IRQS; i++) { struct of_phandle_args oirq; if (of_irq_parse_one(node, i, &oirq)) break; range->irqs[i].irq = irq_create_of_mapping(&oirq); if (range->irqs[i].irq == IRQ_NONE) break; range->num_irqs++; if (IS_ENABLED(CONFIG_SMP) && oirq.args_count == 3) { unsigned long mask; int bit; range->irqs[i].cpu_mask = devm_kzalloc(dev, cpumask_size(), GFP_KERNEL); if (!range->irqs[i].cpu_mask) return -ENOMEM; mask = (oirq.args[2] & 0x0000ff00) >> 8; for_each_set_bit(bit, &mask, BITS_PER_LONG) cpumask_set_cpu(bit, range->irqs[i].cpu_mask); } } range->num_irqs = min(range->num_irqs, range->num_queues); if (range->num_irqs) range->flags |= RANGE_HAS_IRQ; if (of_get_property(node, "qalloc-by-id", NULL)) range->flags |= RANGE_RESERVED; if (of_get_property(node, "accumulator", NULL)) { ret = knav_init_acc_range(kdev, node, range); if (ret < 0) { devm_kfree(dev, range); return ret; } } else { range->ops = &knav_gp_range_ops; } /* set threshold to 1, and flush out the queues */ for_each_qmgr(kdev, qmgr) { start = max(qmgr->start_queue, range->queue_base); end = min(qmgr->start_queue + qmgr->num_queues, range->queue_base + range->num_queues); for (id = start; id < end; id++) { index = id - qmgr->start_queue; writel_relaxed(THRESH_GTE | 1, &qmgr->reg_peek[index].ptr_size_thresh); writel_relaxed(0, &qmgr->reg_push[index].ptr_size_thresh); } } list_add_tail(&range->list, &kdev->queue_ranges); dev_dbg(dev, "added range %s: %d-%d, %d irqs%s%s%s\n", range->name, range->queue_base, range->queue_base + range->num_queues - 1, range->num_irqs, (range->flags & RANGE_HAS_IRQ) ? ", has irq" : "", (range->flags & RANGE_RESERVED) ? ", reserved" : "", (range->flags & RANGE_HAS_ACCUMULATOR) ? ", acc" : ""); kdev->num_queues_in_use += range->num_queues; return 0; } static int knav_setup_queue_pools(struct knav_device *kdev, struct device_node *queue_pools) { struct device_node *type, *range; int ret; for_each_child_of_node(queue_pools, type) { for_each_child_of_node(type, range) { ret = knav_setup_queue_range(kdev, range); /* return value ignored, we init the rest... */ } } /* ... and barf if they all failed! */ if (list_empty(&kdev->queue_ranges)) { dev_err(kdev->dev, "no valid queue range found\n"); return -ENODEV; } return 0; } static void knav_free_queue_range(struct knav_device *kdev, struct knav_range_info *range) { if (range->ops && range->ops->free_range) range->ops->free_range(range); list_del(&range->list); devm_kfree(kdev->dev, range); } static void knav_free_queue_ranges(struct knav_device *kdev) { struct knav_range_info *range; for (;;) { range = first_queue_range(kdev); if (!range) break; knav_free_queue_range(kdev, range); } } static void knav_queue_free_regions(struct knav_device *kdev) { struct knav_region *region; struct knav_pool *pool, *tmp; unsigned size; for (;;) { region = first_region(kdev); if (!region) break; list_for_each_entry_safe(pool, tmp, ®ion->pools, region_inst) knav_pool_destroy(pool); size = region->virt_end - region->virt_start; if (size) free_pages_exact(region->virt_start, size); list_del(®ion->list); devm_kfree(kdev->dev, region); } } static void __iomem *knav_queue_map_reg(struct knav_device *kdev, struct device_node *node, int index) { struct resource res; void __iomem *regs; int ret; ret = of_address_to_resource(node, index, &res); if (ret) { dev_err(kdev->dev, "Can't translate of node(%pOFn) address for index(%d)\n", node, index); return ERR_PTR(ret); } regs = devm_ioremap_resource(kdev->dev, &res); if (IS_ERR(regs)) dev_err(kdev->dev, "Failed to map register base for index(%d) node(%pOFn)\n", index, node); return regs; } static int knav_queue_init_qmgrs(struct knav_device *kdev, struct device_node *qmgrs) { struct device *dev = kdev->dev; struct knav_qmgr_info *qmgr; struct device_node *child; u32 temp[2]; int ret; for_each_child_of_node(qmgrs, child) { qmgr = devm_kzalloc(dev, sizeof(*qmgr), GFP_KERNEL); if (!qmgr) { dev_err(dev, "out of memory allocating qmgr\n"); return -ENOMEM; } ret = of_property_read_u32_array(child, "managed-queues", temp, 2); if (!ret) { qmgr->start_queue = temp[0]; qmgr->num_queues = temp[1]; } else { dev_err(dev, "invalid qmgr queue range\n"); devm_kfree(dev, qmgr); continue; } dev_info(dev, "qmgr start queue %d, number of queues %d\n", qmgr->start_queue, qmgr->num_queues); qmgr->reg_peek = knav_queue_map_reg(kdev, child, KNAV_QUEUE_PEEK_REG_INDEX); if (kdev->version == QMSS) { qmgr->reg_status = knav_queue_map_reg(kdev, child, KNAV_QUEUE_STATUS_REG_INDEX); } qmgr->reg_config = knav_queue_map_reg(kdev, child, (kdev->version == QMSS_66AK2G) ? KNAV_L_QUEUE_CONFIG_REG_INDEX : KNAV_QUEUE_CONFIG_REG_INDEX); qmgr->reg_region = knav_queue_map_reg(kdev, child, (kdev->version == QMSS_66AK2G) ? KNAV_L_QUEUE_REGION_REG_INDEX : KNAV_QUEUE_REGION_REG_INDEX); qmgr->reg_push = knav_queue_map_reg(kdev, child, (kdev->version == QMSS_66AK2G) ? KNAV_L_QUEUE_PUSH_REG_INDEX : KNAV_QUEUE_PUSH_REG_INDEX); if (kdev->version == QMSS) { qmgr->reg_pop = knav_queue_map_reg(kdev, child, KNAV_QUEUE_POP_REG_INDEX); } if (IS_ERR(qmgr->reg_peek) || ((kdev->version == QMSS) && (IS_ERR(qmgr->reg_status) || IS_ERR(qmgr->reg_pop))) || IS_ERR(qmgr->reg_config) || IS_ERR(qmgr->reg_region) || IS_ERR(qmgr->reg_push)) { dev_err(dev, "failed to map qmgr regs\n"); if (kdev->version == QMSS) { if (!IS_ERR(qmgr->reg_status)) devm_iounmap(dev, qmgr->reg_status); if (!IS_ERR(qmgr->reg_pop)) devm_iounmap(dev, qmgr->reg_pop); } if (!IS_ERR(qmgr->reg_peek)) devm_iounmap(dev, qmgr->reg_peek); if (!IS_ERR(qmgr->reg_config)) devm_iounmap(dev, qmgr->reg_config); if (!IS_ERR(qmgr->reg_region)) devm_iounmap(dev, qmgr->reg_region); if (!IS_ERR(qmgr->reg_push)) devm_iounmap(dev, qmgr->reg_push); devm_kfree(dev, qmgr); continue; } /* Use same push register for pop as well */ if (kdev->version == QMSS_66AK2G) qmgr->reg_pop = qmgr->reg_push; list_add_tail(&qmgr->list, &kdev->qmgrs); dev_info(dev, "added qmgr start queue %d, num of queues %d, reg_peek %p, reg_status %p, reg_config %p, reg_region %p, reg_push %p, reg_pop %p\n", qmgr->start_queue, qmgr->num_queues, qmgr->reg_peek, qmgr->reg_status, qmgr->reg_config, qmgr->reg_region, qmgr->reg_push, qmgr->reg_pop); } return 0; } static int knav_queue_init_pdsps(struct knav_device *kdev, struct device_node *pdsps) { struct device *dev = kdev->dev; struct knav_pdsp_info *pdsp; struct device_node *child; for_each_child_of_node(pdsps, child) { pdsp = devm_kzalloc(dev, sizeof(*pdsp), GFP_KERNEL); if (!pdsp) { dev_err(dev, "out of memory allocating pdsp\n"); return -ENOMEM; } pdsp->name = knav_queue_find_name(child); pdsp->iram = knav_queue_map_reg(kdev, child, KNAV_QUEUE_PDSP_IRAM_REG_INDEX); pdsp->regs = knav_queue_map_reg(kdev, child, KNAV_QUEUE_PDSP_REGS_REG_INDEX); pdsp->intd = knav_queue_map_reg(kdev, child, KNAV_QUEUE_PDSP_INTD_REG_INDEX); pdsp->command = knav_queue_map_reg(kdev, child, KNAV_QUEUE_PDSP_CMD_REG_INDEX); if (IS_ERR(pdsp->command) || IS_ERR(pdsp->iram) || IS_ERR(pdsp->regs) || IS_ERR(pdsp->intd)) { dev_err(dev, "failed to map pdsp %s regs\n", pdsp->name); if (!IS_ERR(pdsp->command)) devm_iounmap(dev, pdsp->command); if (!IS_ERR(pdsp->iram)) devm_iounmap(dev, pdsp->iram); if (!IS_ERR(pdsp->regs)) devm_iounmap(dev, pdsp->regs); if (!IS_ERR(pdsp->intd)) devm_iounmap(dev, pdsp->intd); devm_kfree(dev, pdsp); continue; } of_property_read_u32(child, "id", &pdsp->id); list_add_tail(&pdsp->list, &kdev->pdsps); dev_dbg(dev, "added pdsp %s: command %p, iram %p, regs %p, intd %p\n", pdsp->name, pdsp->command, pdsp->iram, pdsp->regs, pdsp->intd); } return 0; } static int knav_queue_stop_pdsp(struct knav_device *kdev, struct knav_pdsp_info *pdsp) { u32 val, timeout = 1000; int ret; val = readl_relaxed(&pdsp->regs->control) & ~PDSP_CTRL_ENABLE; writel_relaxed(val, &pdsp->regs->control); ret = knav_queue_pdsp_wait(&pdsp->regs->control, timeout, PDSP_CTRL_RUNNING); if (ret < 0) { dev_err(kdev->dev, "timed out on pdsp %s stop\n", pdsp->name); return ret; } pdsp->loaded = false; pdsp->started = false; return 0; } static int knav_queue_load_pdsp(struct knav_device *kdev, struct knav_pdsp_info *pdsp) { int i, ret, fwlen; const struct firmware *fw; bool found = false; u32 *fwdata; for (i = 0; i < ARRAY_SIZE(knav_acc_firmwares); i++) { if (knav_acc_firmwares[i]) { ret = request_firmware_direct(&fw, knav_acc_firmwares[i], kdev->dev); if (!ret) { found = true; break; } } } if (!found) { dev_err(kdev->dev, "failed to get firmware for pdsp\n"); return -ENODEV; } dev_info(kdev->dev, "firmware file %s downloaded for PDSP\n", knav_acc_firmwares[i]); writel_relaxed(pdsp->id + 1, pdsp->command + 0x18); /* download the firmware */ fwdata = (u32 *)fw->data; fwlen = (fw->size + sizeof(u32) - 1) / sizeof(u32); for (i = 0; i < fwlen; i++) writel_relaxed(be32_to_cpu(fwdata[i]), pdsp->iram + i); release_firmware(fw); return 0; } static int knav_queue_start_pdsp(struct knav_device *kdev, struct knav_pdsp_info *pdsp) { u32 val, timeout = 1000; int ret; /* write a command for sync */ writel_relaxed(0xffffffff, pdsp->command); while (readl_relaxed(pdsp->command) != 0xffffffff) cpu_relax(); /* soft reset the PDSP */ val = readl_relaxed(&pdsp->regs->control); val &= ~(PDSP_CTRL_PC_MASK | PDSP_CTRL_SOFT_RESET); writel_relaxed(val, &pdsp->regs->control); /* enable pdsp */ val = readl_relaxed(&pdsp->regs->control) | PDSP_CTRL_ENABLE; writel_relaxed(val, &pdsp->regs->control); /* wait for command register to clear */ ret = knav_queue_pdsp_wait(pdsp->command, timeout, 0); if (ret < 0) { dev_err(kdev->dev, "timed out on pdsp %s command register wait\n", pdsp->name); return ret; } return 0; } static void knav_queue_stop_pdsps(struct knav_device *kdev) { struct knav_pdsp_info *pdsp; /* disable all pdsps */ for_each_pdsp(kdev, pdsp) knav_queue_stop_pdsp(kdev, pdsp); } static int knav_queue_start_pdsps(struct knav_device *kdev) { struct knav_pdsp_info *pdsp; int ret; knav_queue_stop_pdsps(kdev); /* now load them all. We return success even if pdsp * is not loaded as acc channels are optional on having * firmware availability in the system. We set the loaded * and stated flag and when initialize the acc range, check * it and init the range only if pdsp is started. */ for_each_pdsp(kdev, pdsp) { ret = knav_queue_load_pdsp(kdev, pdsp); if (!ret) pdsp->loaded = true; } for_each_pdsp(kdev, pdsp) { if (pdsp->loaded) { ret = knav_queue_start_pdsp(kdev, pdsp); if (!ret) pdsp->started = true; } } return 0; } static inline struct knav_qmgr_info *knav_find_qmgr(unsigned id) { struct knav_qmgr_info *qmgr; for_each_qmgr(kdev, qmgr) { if ((id >= qmgr->start_queue) && (id < qmgr->start_queue + qmgr->num_queues)) return qmgr; } return NULL; } static int knav_queue_init_queue(struct knav_device *kdev, struct knav_range_info *range, struct knav_queue_inst *inst, unsigned id) { char irq_name[KNAV_NAME_SIZE]; inst->qmgr = knav_find_qmgr(id); if (!inst->qmgr) return -1; INIT_LIST_HEAD(&inst->handles); inst->kdev = kdev; inst->range = range; inst->irq_num = -1; inst->id = id; scnprintf(irq_name, sizeof(irq_name), "hwqueue-%d", id); inst->irq_name = kstrndup(irq_name, sizeof(irq_name), GFP_KERNEL); if (range->ops && range->ops->init_queue) return range->ops->init_queue(range, inst); else return 0; } static int knav_queue_init_queues(struct knav_device *kdev) { struct knav_range_info *range; int size, id, base_idx; int idx = 0, ret = 0; /* how much do we need for instance data? */ size = sizeof(struct knav_queue_inst); /* round this up to a power of 2, keep the index to instance * arithmetic fast. * */ kdev->inst_shift = order_base_2(size); size = (1 << kdev->inst_shift) * kdev->num_queues_in_use; kdev->instances = devm_kzalloc(kdev->dev, size, GFP_KERNEL); if (!kdev->instances) return -ENOMEM; for_each_queue_range(kdev, range) { if (range->ops && range->ops->init_range) range->ops->init_range(range); base_idx = idx; for (id = range->queue_base; id < range->queue_base + range->num_queues; id++, idx++) { ret = knav_queue_init_queue(kdev, range, knav_queue_idx_to_inst(kdev, idx), id); if (ret < 0) return ret; } range->queue_base_inst = knav_queue_idx_to_inst(kdev, base_idx); } return 0; } /* Match table for of_platform binding */ static const struct of_device_id keystone_qmss_of_match[] = { { .compatible = "ti,keystone-navigator-qmss", }, { .compatible = "ti,66ak2g-navss-qm", .data = (void *)QMSS_66AK2G, }, {}, }; MODULE_DEVICE_TABLE(of, keystone_qmss_of_match); static int knav_queue_probe(struct platform_device *pdev) { struct device_node *node = pdev->dev.of_node; struct device_node *qmgrs, *queue_pools, *regions, *pdsps; const struct of_device_id *match; struct device *dev = &pdev->dev; u32 temp[2]; int ret; if (!node) { dev_err(dev, "device tree info unavailable\n"); return -ENODEV; } kdev = devm_kzalloc(dev, sizeof(struct knav_device), GFP_KERNEL); if (!kdev) { dev_err(dev, "memory allocation failed\n"); return -ENOMEM; } match = of_match_device(of_match_ptr(keystone_qmss_of_match), dev); if (match && match->data) kdev->version = QMSS_66AK2G; platform_set_drvdata(pdev, kdev); kdev->dev = dev; INIT_LIST_HEAD(&kdev->queue_ranges); INIT_LIST_HEAD(&kdev->qmgrs); INIT_LIST_HEAD(&kdev->pools); INIT_LIST_HEAD(&kdev->regions); INIT_LIST_HEAD(&kdev->pdsps); pm_runtime_enable(&pdev->dev); ret = pm_runtime_get_sync(&pdev->dev); if (ret < 0) { pm_runtime_put_noidle(&pdev->dev); dev_err(dev, "Failed to enable QMSS\n"); return ret; } if (of_property_read_u32_array(node, "queue-range", temp, 2)) { dev_err(dev, "queue-range not specified\n"); ret = -ENODEV; goto err; } kdev->base_id = temp[0]; kdev->num_queues = temp[1]; /* Initialize queue managers using device tree configuration */ qmgrs = of_get_child_by_name(node, "qmgrs"); if (!qmgrs) { dev_err(dev, "queue manager info not specified\n"); ret = -ENODEV; goto err; } ret = knav_queue_init_qmgrs(kdev, qmgrs); of_node_put(qmgrs); if (ret) goto err; /* get pdsp configuration values from device tree */ pdsps = of_get_child_by_name(node, "pdsps"); if (pdsps) { ret = knav_queue_init_pdsps(kdev, pdsps); if (ret) goto err; ret = knav_queue_start_pdsps(kdev); if (ret) goto err; } of_node_put(pdsps); /* get usable queue range values from device tree */ queue_pools = of_get_child_by_name(node, "queue-pools"); if (!queue_pools) { dev_err(dev, "queue-pools not specified\n"); ret = -ENODEV; goto err; } ret = knav_setup_queue_pools(kdev, queue_pools); of_node_put(queue_pools); if (ret) goto err; ret = knav_get_link_ram(kdev, "linkram0", &kdev->link_rams[0]); if (ret) { dev_err(kdev->dev, "could not setup linking ram\n"); goto err; } ret = knav_get_link_ram(kdev, "linkram1", &kdev->link_rams[1]); if (ret) { /* * nothing really, we have one linking ram already, so we just * live within our means */ } ret = knav_queue_setup_link_ram(kdev); if (ret) goto err; regions = of_get_child_by_name(node, "descriptor-regions"); if (!regions) { dev_err(dev, "descriptor-regions not specified\n"); ret = -ENODEV; goto err; } ret = knav_queue_setup_regions(kdev, regions); of_node_put(regions); if (ret) goto err; ret = knav_queue_init_queues(kdev); if (ret < 0) { dev_err(dev, "hwqueue initialization failed\n"); goto err; } debugfs_create_file("qmss", S_IFREG | S_IRUGO, NULL, NULL, &knav_queue_debug_ops); device_ready = true; return 0; err: knav_queue_stop_pdsps(kdev); knav_queue_free_regions(kdev); knav_free_queue_ranges(kdev); pm_runtime_put_sync(&pdev->dev); pm_runtime_disable(&pdev->dev); return ret; } static int knav_queue_remove(struct platform_device *pdev) { /* TODO: Free resources */ pm_runtime_put_sync(&pdev->dev); pm_runtime_disable(&pdev->dev); return 0; } static struct platform_driver keystone_qmss_driver = { .probe = knav_queue_probe, .remove = knav_queue_remove, .driver = { .name = "keystone-navigator-qmss", .of_match_table = keystone_qmss_of_match, }, }; module_platform_driver(keystone_qmss_driver); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("TI QMSS driver for Keystone SOCs"); MODULE_AUTHOR("Sandeep Nair "); MODULE_AUTHOR("Santosh Shilimkar ");