// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2015, Linaro Limited */ #include #include #include #include #include #include #include #include #include #include #include "optee_private.h" #include "optee_smc.h" struct optee_call_waiter { struct list_head list_node; struct completion c; }; static void optee_cq_wait_init(struct optee_call_queue *cq, struct optee_call_waiter *w) { /* * We're preparing to make a call to secure world. In case we can't * allocate a thread in secure world we'll end up waiting in * optee_cq_wait_for_completion(). * * Normally if there's no contention in secure world the call will * complete and we can cleanup directly with optee_cq_wait_final(). */ mutex_lock(&cq->mutex); /* * We add ourselves to the queue, but we don't wait. This * guarantees that we don't lose a completion if secure world * returns busy and another thread just exited and try to complete * someone. */ init_completion(&w->c); list_add_tail(&w->list_node, &cq->waiters); mutex_unlock(&cq->mutex); } static void optee_cq_wait_for_completion(struct optee_call_queue *cq, struct optee_call_waiter *w) { wait_for_completion(&w->c); mutex_lock(&cq->mutex); /* Move to end of list to get out of the way for other waiters */ list_del(&w->list_node); reinit_completion(&w->c); list_add_tail(&w->list_node, &cq->waiters); mutex_unlock(&cq->mutex); } static void optee_cq_complete_one(struct optee_call_queue *cq) { struct optee_call_waiter *w; list_for_each_entry(w, &cq->waiters, list_node) { if (!completion_done(&w->c)) { complete(&w->c); break; } } } static void optee_cq_wait_final(struct optee_call_queue *cq, struct optee_call_waiter *w) { /* * We're done with the call to secure world. The thread in secure * world that was used for this call is now available for some * other task to use. */ mutex_lock(&cq->mutex); /* Get out of the list */ list_del(&w->list_node); /* Wake up one eventual waiting task */ optee_cq_complete_one(cq); /* * If we're completed we've got a completion from another task that * was just done with its call to secure world. Since yet another * thread now is available in secure world wake up another eventual * waiting task. */ if (completion_done(&w->c)) optee_cq_complete_one(cq); mutex_unlock(&cq->mutex); } /* Requires the filpstate mutex to be held */ static struct optee_session *find_session(struct optee_context_data *ctxdata, u32 session_id) { struct optee_session *sess; list_for_each_entry(sess, &ctxdata->sess_list, list_node) if (sess->session_id == session_id) return sess; return NULL; } /** * optee_do_call_with_arg() - Do an SMC to OP-TEE in secure world * @ctx: calling context * @parg: physical address of message to pass to secure world * * Does and SMC to OP-TEE in secure world and handles eventual resulting * Remote Procedure Calls (RPC) from OP-TEE. * * Returns return code from secure world, 0 is OK */ u32 optee_do_call_with_arg(struct tee_context *ctx, phys_addr_t parg) { struct optee *optee = tee_get_drvdata(ctx->teedev); struct optee_call_waiter w; struct optee_rpc_param param = { }; struct optee_call_ctx call_ctx = { }; u32 ret; param.a0 = OPTEE_SMC_CALL_WITH_ARG; reg_pair_from_64(¶m.a1, ¶m.a2, parg); /* Initialize waiter */ optee_cq_wait_init(&optee->call_queue, &w); while (true) { struct arm_smccc_res res; optee->invoke_fn(param.a0, param.a1, param.a2, param.a3, param.a4, param.a5, param.a6, param.a7, &res); if (res.a0 == OPTEE_SMC_RETURN_ETHREAD_LIMIT) { /* * Out of threads in secure world, wait for a thread * become available. */ optee_cq_wait_for_completion(&optee->call_queue, &w); } else if (OPTEE_SMC_RETURN_IS_RPC(res.a0)) { if (need_resched()) cond_resched(); param.a0 = res.a0; param.a1 = res.a1; param.a2 = res.a2; param.a3 = res.a3; optee_handle_rpc(ctx, ¶m, &call_ctx); } else { ret = res.a0; break; } } optee_rpc_finalize_call(&call_ctx); /* * We're done with our thread in secure world, if there's any * thread waiters wake up one. */ optee_cq_wait_final(&optee->call_queue, &w); return ret; } static struct tee_shm *get_msg_arg(struct tee_context *ctx, size_t num_params, struct optee_msg_arg **msg_arg, phys_addr_t *msg_parg) { int rc; struct tee_shm *shm; struct optee_msg_arg *ma; shm = tee_shm_alloc(ctx, OPTEE_MSG_GET_ARG_SIZE(num_params), TEE_SHM_MAPPED | TEE_SHM_PRIV); if (IS_ERR(shm)) return shm; ma = tee_shm_get_va(shm, 0); if (IS_ERR(ma)) { rc = PTR_ERR(ma); goto out; } rc = tee_shm_get_pa(shm, 0, msg_parg); if (rc) goto out; memset(ma, 0, OPTEE_MSG_GET_ARG_SIZE(num_params)); ma->num_params = num_params; *msg_arg = ma; out: if (rc) { tee_shm_free(shm); return ERR_PTR(rc); } return shm; } int optee_open_session(struct tee_context *ctx, struct tee_ioctl_open_session_arg *arg, struct tee_param *param) { struct optee_context_data *ctxdata = ctx->data; int rc; struct tee_shm *shm; struct optee_msg_arg *msg_arg; phys_addr_t msg_parg; struct optee_session *sess = NULL; /* +2 for the meta parameters added below */ shm = get_msg_arg(ctx, arg->num_params + 2, &msg_arg, &msg_parg); if (IS_ERR(shm)) return PTR_ERR(shm); msg_arg->cmd = OPTEE_MSG_CMD_OPEN_SESSION; msg_arg->cancel_id = arg->cancel_id; /* * Initialize and add the meta parameters needed when opening a * session. */ msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT | OPTEE_MSG_ATTR_META; msg_arg->params[1].attr = OPTEE_MSG_ATTR_TYPE_VALUE_INPUT | OPTEE_MSG_ATTR_META; memcpy(&msg_arg->params[0].u.value, arg->uuid, sizeof(arg->uuid)); memcpy(&msg_arg->params[1].u.value, arg->uuid, sizeof(arg->clnt_uuid)); msg_arg->params[1].u.value.c = arg->clnt_login; rc = optee_to_msg_param(msg_arg->params + 2, arg->num_params, param); if (rc) goto out; sess = kzalloc(sizeof(*sess), GFP_KERNEL); if (!sess) { rc = -ENOMEM; goto out; } if (optee_do_call_with_arg(ctx, msg_parg)) { msg_arg->ret = TEEC_ERROR_COMMUNICATION; msg_arg->ret_origin = TEEC_ORIGIN_COMMS; } if (msg_arg->ret == TEEC_SUCCESS) { /* A new session has been created, add it to the list. */ sess->session_id = msg_arg->session; mutex_lock(&ctxdata->mutex); list_add(&sess->list_node, &ctxdata->sess_list); mutex_unlock(&ctxdata->mutex); } else { kfree(sess); } if (optee_from_msg_param(param, arg->num_params, msg_arg->params + 2)) { arg->ret = TEEC_ERROR_COMMUNICATION; arg->ret_origin = TEEC_ORIGIN_COMMS; /* Close session again to avoid leakage */ optee_close_session(ctx, msg_arg->session); } else { arg->session = msg_arg->session; arg->ret = msg_arg->ret; arg->ret_origin = msg_arg->ret_origin; } out: tee_shm_free(shm); return rc; } int optee_close_session(struct tee_context *ctx, u32 session) { struct optee_context_data *ctxdata = ctx->data; struct tee_shm *shm; struct optee_msg_arg *msg_arg; phys_addr_t msg_parg; struct optee_session *sess; /* Check that the session is valid and remove it from the list */ mutex_lock(&ctxdata->mutex); sess = find_session(ctxdata, session); if (sess) list_del(&sess->list_node); mutex_unlock(&ctxdata->mutex); if (!sess) return -EINVAL; kfree(sess); shm = get_msg_arg(ctx, 0, &msg_arg, &msg_parg); if (IS_ERR(shm)) return PTR_ERR(shm); msg_arg->cmd = OPTEE_MSG_CMD_CLOSE_SESSION; msg_arg->session = session; optee_do_call_with_arg(ctx, msg_parg); tee_shm_free(shm); return 0; } int optee_invoke_func(struct tee_context *ctx, struct tee_ioctl_invoke_arg *arg, struct tee_param *param) { struct optee_context_data *ctxdata = ctx->data; struct tee_shm *shm; struct optee_msg_arg *msg_arg; phys_addr_t msg_parg; struct optee_session *sess; int rc; /* Check that the session is valid */ mutex_lock(&ctxdata->mutex); sess = find_session(ctxdata, arg->session); mutex_unlock(&ctxdata->mutex); if (!sess) return -EINVAL; shm = get_msg_arg(ctx, arg->num_params, &msg_arg, &msg_parg); if (IS_ERR(shm)) return PTR_ERR(shm); msg_arg->cmd = OPTEE_MSG_CMD_INVOKE_COMMAND; msg_arg->func = arg->func; msg_arg->session = arg->session; msg_arg->cancel_id = arg->cancel_id; rc = optee_to_msg_param(msg_arg->params, arg->num_params, param); if (rc) goto out; if (optee_do_call_with_arg(ctx, msg_parg)) { msg_arg->ret = TEEC_ERROR_COMMUNICATION; msg_arg->ret_origin = TEEC_ORIGIN_COMMS; } if (optee_from_msg_param(param, arg->num_params, msg_arg->params)) { msg_arg->ret = TEEC_ERROR_COMMUNICATION; msg_arg->ret_origin = TEEC_ORIGIN_COMMS; } arg->ret = msg_arg->ret; arg->ret_origin = msg_arg->ret_origin; out: tee_shm_free(shm); return rc; } int optee_cancel_req(struct tee_context *ctx, u32 cancel_id, u32 session) { struct optee_context_data *ctxdata = ctx->data; struct tee_shm *shm; struct optee_msg_arg *msg_arg; phys_addr_t msg_parg; struct optee_session *sess; /* Check that the session is valid */ mutex_lock(&ctxdata->mutex); sess = find_session(ctxdata, session); mutex_unlock(&ctxdata->mutex); if (!sess) return -EINVAL; shm = get_msg_arg(ctx, 0, &msg_arg, &msg_parg); if (IS_ERR(shm)) return PTR_ERR(shm); msg_arg->cmd = OPTEE_MSG_CMD_CANCEL; msg_arg->session = session; msg_arg->cancel_id = cancel_id; optee_do_call_with_arg(ctx, msg_parg); tee_shm_free(shm); return 0; } /** * optee_enable_shm_cache() - Enables caching of some shared memory allocation * in OP-TEE * @optee: main service struct */ void optee_enable_shm_cache(struct optee *optee) { struct optee_call_waiter w; /* We need to retry until secure world isn't busy. */ optee_cq_wait_init(&optee->call_queue, &w); while (true) { struct arm_smccc_res res; optee->invoke_fn(OPTEE_SMC_ENABLE_SHM_CACHE, 0, 0, 0, 0, 0, 0, 0, &res); if (res.a0 == OPTEE_SMC_RETURN_OK) break; optee_cq_wait_for_completion(&optee->call_queue, &w); } optee_cq_wait_final(&optee->call_queue, &w); } /** * __optee_disable_shm_cache() - Disables caching of some shared memory * allocation in OP-TEE * @optee: main service struct * @is_mapped: true if the cached shared memory addresses were mapped by this * kernel, are safe to dereference, and should be freed */ static void __optee_disable_shm_cache(struct optee *optee, bool is_mapped) { struct optee_call_waiter w; /* We need to retry until secure world isn't busy. */ optee_cq_wait_init(&optee->call_queue, &w); while (true) { union { struct arm_smccc_res smccc; struct optee_smc_disable_shm_cache_result result; } res; optee->invoke_fn(OPTEE_SMC_DISABLE_SHM_CACHE, 0, 0, 0, 0, 0, 0, 0, &res.smccc); if (res.result.status == OPTEE_SMC_RETURN_ENOTAVAIL) break; /* All shm's freed */ if (res.result.status == OPTEE_SMC_RETURN_OK) { struct tee_shm *shm; /* * Shared memory references that were not mapped by * this kernel must be ignored to prevent a crash. */ if (!is_mapped) continue; shm = reg_pair_to_ptr(res.result.shm_upper32, res.result.shm_lower32); tee_shm_free(shm); } else { optee_cq_wait_for_completion(&optee->call_queue, &w); } } optee_cq_wait_final(&optee->call_queue, &w); } /** * optee_disable_shm_cache() - Disables caching of mapped shared memory * allocations in OP-TEE * @optee: main service struct */ void optee_disable_shm_cache(struct optee *optee) { return __optee_disable_shm_cache(optee, true); } /** * optee_disable_unmapped_shm_cache() - Disables caching of shared memory * allocations in OP-TEE which are not * currently mapped * @optee: main service struct */ void optee_disable_unmapped_shm_cache(struct optee *optee) { return __optee_disable_shm_cache(optee, false); } #define PAGELIST_ENTRIES_PER_PAGE \ ((OPTEE_MSG_NONCONTIG_PAGE_SIZE / sizeof(u64)) - 1) /** * optee_fill_pages_list() - write list of user pages to given shared * buffer. * * @dst: page-aligned buffer where list of pages will be stored * @pages: array of pages that represents shared buffer * @num_pages: number of entries in @pages * @page_offset: offset of user buffer from page start * * @dst should be big enough to hold list of user page addresses and * links to the next pages of buffer */ void optee_fill_pages_list(u64 *dst, struct page **pages, int num_pages, size_t page_offset) { int n = 0; phys_addr_t optee_page; /* * Refer to OPTEE_MSG_ATTR_NONCONTIG description in optee_msg.h * for details. */ struct { u64 pages_list[PAGELIST_ENTRIES_PER_PAGE]; u64 next_page_data; } *pages_data; /* * Currently OP-TEE uses 4k page size and it does not looks * like this will change in the future. On other hand, there are * no know ARM architectures with page size < 4k. * Thus the next built assert looks redundant. But the following * code heavily relies on this assumption, so it is better be * safe than sorry. */ BUILD_BUG_ON(PAGE_SIZE < OPTEE_MSG_NONCONTIG_PAGE_SIZE); pages_data = (void *)dst; /* * If linux page is bigger than 4k, and user buffer offset is * larger than 4k/8k/12k/etc this will skip first 4k pages, * because they bear no value data for OP-TEE. */ optee_page = page_to_phys(*pages) + round_down(page_offset, OPTEE_MSG_NONCONTIG_PAGE_SIZE); while (true) { pages_data->pages_list[n++] = optee_page; if (n == PAGELIST_ENTRIES_PER_PAGE) { pages_data->next_page_data = virt_to_phys(pages_data + 1); pages_data++; n = 0; } optee_page += OPTEE_MSG_NONCONTIG_PAGE_SIZE; if (!(optee_page & ~PAGE_MASK)) { if (!--num_pages) break; pages++; optee_page = page_to_phys(*pages); } } } /* * The final entry in each pagelist page is a pointer to the next * pagelist page. */ static size_t get_pages_list_size(size_t num_entries) { int pages = DIV_ROUND_UP(num_entries, PAGELIST_ENTRIES_PER_PAGE); return pages * OPTEE_MSG_NONCONTIG_PAGE_SIZE; } u64 *optee_allocate_pages_list(size_t num_entries) { return alloc_pages_exact(get_pages_list_size(num_entries), GFP_KERNEL); } void optee_free_pages_list(void *list, size_t num_entries) { free_pages_exact(list, get_pages_list_size(num_entries)); } static bool is_normal_memory(pgprot_t p) { #if defined(CONFIG_ARM) return (((pgprot_val(p) & L_PTE_MT_MASK) == L_PTE_MT_WRITEALLOC) || ((pgprot_val(p) & L_PTE_MT_MASK) == L_PTE_MT_WRITEBACK)); #elif defined(CONFIG_ARM64) return (pgprot_val(p) & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL); #else #error "Unuspported architecture" #endif } static int __check_mem_type(struct vm_area_struct *vma, unsigned long end) { while (vma && is_normal_memory(vma->vm_page_prot)) { if (vma->vm_end >= end) return 0; vma = vma->vm_next; } return -EINVAL; } static int check_mem_type(unsigned long start, size_t num_pages) { struct mm_struct *mm = current->mm; int rc; /* * Allow kernel address to register with OP-TEE as kernel * pages are configured as normal memory only. */ if (virt_addr_valid(start)) return 0; down_read(&mm->mmap_sem); rc = __check_mem_type(find_vma(mm, start), start + num_pages * PAGE_SIZE); up_read(&mm->mmap_sem); return rc; } int optee_shm_register(struct tee_context *ctx, struct tee_shm *shm, struct page **pages, size_t num_pages, unsigned long start) { struct tee_shm *shm_arg = NULL; struct optee_msg_arg *msg_arg; u64 *pages_list; phys_addr_t msg_parg; int rc; if (!num_pages) return -EINVAL; rc = check_mem_type(start, num_pages); if (rc) return rc; pages_list = optee_allocate_pages_list(num_pages); if (!pages_list) return -ENOMEM; shm_arg = get_msg_arg(ctx, 1, &msg_arg, &msg_parg); if (IS_ERR(shm_arg)) { rc = PTR_ERR(shm_arg); goto out; } optee_fill_pages_list(pages_list, pages, num_pages, tee_shm_get_page_offset(shm)); msg_arg->cmd = OPTEE_MSG_CMD_REGISTER_SHM; msg_arg->params->attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT | OPTEE_MSG_ATTR_NONCONTIG; msg_arg->params->u.tmem.shm_ref = (unsigned long)shm; msg_arg->params->u.tmem.size = tee_shm_get_size(shm); /* * In the least bits of msg_arg->params->u.tmem.buf_ptr we * store buffer offset from 4k page, as described in OP-TEE ABI. */ msg_arg->params->u.tmem.buf_ptr = virt_to_phys(pages_list) | (tee_shm_get_page_offset(shm) & (OPTEE_MSG_NONCONTIG_PAGE_SIZE - 1)); if (optee_do_call_with_arg(ctx, msg_parg) || msg_arg->ret != TEEC_SUCCESS) rc = -EINVAL; tee_shm_free(shm_arg); out: optee_free_pages_list(pages_list, num_pages); return rc; } int optee_shm_unregister(struct tee_context *ctx, struct tee_shm *shm) { struct tee_shm *shm_arg; struct optee_msg_arg *msg_arg; phys_addr_t msg_parg; int rc = 0; shm_arg = get_msg_arg(ctx, 1, &msg_arg, &msg_parg); if (IS_ERR(shm_arg)) return PTR_ERR(shm_arg); msg_arg->cmd = OPTEE_MSG_CMD_UNREGISTER_SHM; msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_RMEM_INPUT; msg_arg->params[0].u.rmem.shm_ref = (unsigned long)shm; if (optee_do_call_with_arg(ctx, msg_parg) || msg_arg->ret != TEEC_SUCCESS) rc = -EINVAL; tee_shm_free(shm_arg); return rc; } int optee_shm_register_supp(struct tee_context *ctx, struct tee_shm *shm, struct page **pages, size_t num_pages, unsigned long start) { /* * We don't want to register supplicant memory in OP-TEE. * Instead information about it will be passed in RPC code. */ return check_mem_type(start, num_pages); } int optee_shm_unregister_supp(struct tee_context *ctx, struct tee_shm *shm) { return 0; }