// SPDX-License-Identifier: GPL-2.0 /* * rcar_lvds.c -- R-Car LVDS Encoder * * Copyright (C) 2013-2018 Renesas Electronics Corporation * * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com) */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "rcar_lvds.h" #include "rcar_lvds_regs.h" struct rcar_lvds; /* Keep in sync with the LVDCR0.LVMD hardware register values. */ enum rcar_lvds_mode { RCAR_LVDS_MODE_JEIDA = 0, RCAR_LVDS_MODE_MIRROR = 1, RCAR_LVDS_MODE_VESA = 4, }; #define RCAR_LVDS_QUIRK_LANES BIT(0) /* LVDS lanes 1 and 3 inverted */ #define RCAR_LVDS_QUIRK_GEN3_LVEN BIT(1) /* LVEN bit needs to be set on R8A77970/R8A7799x */ #define RCAR_LVDS_QUIRK_PWD BIT(2) /* PWD bit available (all of Gen3 but E3) */ #define RCAR_LVDS_QUIRK_EXT_PLL BIT(3) /* Has extended PLL */ #define RCAR_LVDS_QUIRK_DUAL_LINK BIT(4) /* Supports dual-link operation */ struct rcar_lvds_device_info { unsigned int gen; unsigned int quirks; void (*pll_setup)(struct rcar_lvds *lvds, unsigned int freq); }; struct rcar_lvds { struct device *dev; const struct rcar_lvds_device_info *info; struct drm_bridge bridge; struct drm_bridge *next_bridge; struct drm_connector connector; struct drm_panel *panel; void __iomem *mmio; struct { struct clk *mod; /* CPG module clock */ struct clk *extal; /* External clock */ struct clk *dotclkin[2]; /* External DU clocks */ } clocks; struct drm_display_mode display_mode; enum rcar_lvds_mode mode; struct drm_bridge *companion; bool dual_link; }; #define bridge_to_rcar_lvds(b) \ container_of(b, struct rcar_lvds, bridge) #define connector_to_rcar_lvds(c) \ container_of(c, struct rcar_lvds, connector) static void rcar_lvds_write(struct rcar_lvds *lvds, u32 reg, u32 data) { iowrite32(data, lvds->mmio + reg); } /* ----------------------------------------------------------------------------- * Connector & Panel */ static int rcar_lvds_connector_get_modes(struct drm_connector *connector) { struct rcar_lvds *lvds = connector_to_rcar_lvds(connector); return drm_panel_get_modes(lvds->panel); } static int rcar_lvds_connector_atomic_check(struct drm_connector *connector, struct drm_atomic_state *state) { struct rcar_lvds *lvds = connector_to_rcar_lvds(connector); const struct drm_display_mode *panel_mode; struct drm_connector_state *conn_state; struct drm_crtc_state *crtc_state; conn_state = drm_atomic_get_new_connector_state(state, connector); if (!conn_state->crtc) return 0; if (list_empty(&connector->modes)) { dev_dbg(lvds->dev, "connector: empty modes list\n"); return -EINVAL; } panel_mode = list_first_entry(&connector->modes, struct drm_display_mode, head); /* We're not allowed to modify the resolution. */ crtc_state = drm_atomic_get_crtc_state(state, conn_state->crtc); if (IS_ERR(crtc_state)) return PTR_ERR(crtc_state); if (crtc_state->mode.hdisplay != panel_mode->hdisplay || crtc_state->mode.vdisplay != panel_mode->vdisplay) return -EINVAL; /* The flat panel mode is fixed, just copy it to the adjusted mode. */ drm_mode_copy(&crtc_state->adjusted_mode, panel_mode); return 0; } static const struct drm_connector_helper_funcs rcar_lvds_conn_helper_funcs = { .get_modes = rcar_lvds_connector_get_modes, .atomic_check = rcar_lvds_connector_atomic_check, }; static const struct drm_connector_funcs rcar_lvds_conn_funcs = { .reset = drm_atomic_helper_connector_reset, .fill_modes = drm_helper_probe_single_connector_modes, .destroy = drm_connector_cleanup, .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state, .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, }; /* ----------------------------------------------------------------------------- * PLL Setup */ static void rcar_lvds_pll_setup_gen2(struct rcar_lvds *lvds, unsigned int freq) { u32 val; if (freq < 39000000) val = LVDPLLCR_CEEN | LVDPLLCR_COSEL | LVDPLLCR_PLLDLYCNT_38M; else if (freq < 61000000) val = LVDPLLCR_CEEN | LVDPLLCR_COSEL | LVDPLLCR_PLLDLYCNT_60M; else if (freq < 121000000) val = LVDPLLCR_CEEN | LVDPLLCR_COSEL | LVDPLLCR_PLLDLYCNT_121M; else val = LVDPLLCR_PLLDLYCNT_150M; rcar_lvds_write(lvds, LVDPLLCR, val); } static void rcar_lvds_pll_setup_gen3(struct rcar_lvds *lvds, unsigned int freq) { u32 val; if (freq < 42000000) val = LVDPLLCR_PLLDIVCNT_42M; else if (freq < 85000000) val = LVDPLLCR_PLLDIVCNT_85M; else if (freq < 128000000) val = LVDPLLCR_PLLDIVCNT_128M; else val = LVDPLLCR_PLLDIVCNT_148M; rcar_lvds_write(lvds, LVDPLLCR, val); } struct pll_info { unsigned long diff; unsigned int pll_m; unsigned int pll_n; unsigned int pll_e; unsigned int div; u32 clksel; }; static void rcar_lvds_d3_e3_pll_calc(struct rcar_lvds *lvds, struct clk *clk, unsigned long target, struct pll_info *pll, u32 clksel, bool dot_clock_only) { unsigned int div7 = dot_clock_only ? 1 : 7; unsigned long output; unsigned long fin; unsigned int m_min; unsigned int m_max; unsigned int m; int error; if (!clk) return; /* * The LVDS PLL is made of a pre-divider and a multiplier (strangely * enough called M and N respectively), followed by a post-divider E. * * ,-----. ,-----. ,-----. ,-----. * Fin --> | 1/M | -Fpdf-> | PFD | --> | VCO | -Fvco-> | 1/E | --> Fout * `-----' ,-> | | `-----' | `-----' * | `-----' | * | ,-----. | * `-------- | 1/N | <-------' * `-----' * * The clock output by the PLL is then further divided by a programmable * divider DIV to achieve the desired target frequency. Finally, an * optional fixed /7 divider is used to convert the bit clock to a pixel * clock (as LVDS transmits 7 bits per lane per clock sample). * * ,-------. ,-----. |\ * Fout --> | 1/DIV | --> | 1/7 | --> | | * `-------' | `-----' | | --> dot clock * `------------> | | * |/ * * The /7 divider is optional, it is enabled when the LVDS PLL is used * to drive the LVDS encoder, and disabled when used to generate a dot * clock for the DU RGB output, without using the LVDS encoder. * * The PLL allowed input frequency range is 12 MHz to 192 MHz. */ fin = clk_get_rate(clk); if (fin < 12000000 || fin > 192000000) return; /* * The comparison frequency range is 12 MHz to 24 MHz, which limits the * allowed values for the pre-divider M (normal range 1-8). * * Fpfd = Fin / M */ m_min = max_t(unsigned int, 1, DIV_ROUND_UP(fin, 24000000)); m_max = min_t(unsigned int, 8, fin / 12000000); for (m = m_min; m <= m_max; ++m) { unsigned long fpfd; unsigned int n_min; unsigned int n_max; unsigned int n; /* * The VCO operating range is 900 Mhz to 1800 MHz, which limits * the allowed values for the multiplier N (normal range * 60-120). * * Fvco = Fin * N / M */ fpfd = fin / m; n_min = max_t(unsigned int, 60, DIV_ROUND_UP(900000000, fpfd)); n_max = min_t(unsigned int, 120, 1800000000 / fpfd); for (n = n_min; n < n_max; ++n) { unsigned long fvco; unsigned int e_min; unsigned int e; /* * The output frequency is limited to 1039.5 MHz, * limiting again the allowed values for the * post-divider E (normal value 1, 2 or 4). * * Fout = Fvco / E */ fvco = fpfd * n; e_min = fvco > 1039500000 ? 1 : 0; for (e = e_min; e < 3; ++e) { unsigned long fout; unsigned long diff; unsigned int div; /* * Finally we have a programable divider after * the PLL, followed by a an optional fixed /7 * divider. */ fout = fvco / (1 << e) / div7; div = max(1UL, DIV_ROUND_CLOSEST(fout, target)); diff = abs(fout / div - target); if (diff < pll->diff) { pll->diff = diff; pll->pll_m = m; pll->pll_n = n; pll->pll_e = e; pll->div = div; pll->clksel = clksel; if (diff == 0) goto done; } } } } done: output = fin * pll->pll_n / pll->pll_m / (1 << pll->pll_e) / div7 / pll->div; error = (long)(output - target) * 10000 / (long)target; dev_dbg(lvds->dev, "%pC %lu Hz -> Fout %lu Hz (target %lu Hz, error %d.%02u%%), PLL M/N/E/DIV %u/%u/%u/%u\n", clk, fin, output, target, error / 100, error < 0 ? -error % 100 : error % 100, pll->pll_m, pll->pll_n, pll->pll_e, pll->div); } static void __rcar_lvds_pll_setup_d3_e3(struct rcar_lvds *lvds, unsigned int freq, bool dot_clock_only) { struct pll_info pll = { .diff = (unsigned long)-1 }; u32 lvdpllcr; rcar_lvds_d3_e3_pll_calc(lvds, lvds->clocks.dotclkin[0], freq, &pll, LVDPLLCR_CKSEL_DU_DOTCLKIN(0), dot_clock_only); rcar_lvds_d3_e3_pll_calc(lvds, lvds->clocks.dotclkin[1], freq, &pll, LVDPLLCR_CKSEL_DU_DOTCLKIN(1), dot_clock_only); rcar_lvds_d3_e3_pll_calc(lvds, lvds->clocks.extal, freq, &pll, LVDPLLCR_CKSEL_EXTAL, dot_clock_only); lvdpllcr = LVDPLLCR_PLLON | pll.clksel | LVDPLLCR_CLKOUT | LVDPLLCR_PLLN(pll.pll_n - 1) | LVDPLLCR_PLLM(pll.pll_m - 1); if (pll.pll_e > 0) lvdpllcr |= LVDPLLCR_STP_CLKOUTE | LVDPLLCR_OUTCLKSEL | LVDPLLCR_PLLE(pll.pll_e - 1); if (dot_clock_only) lvdpllcr |= LVDPLLCR_OCKSEL; rcar_lvds_write(lvds, LVDPLLCR, lvdpllcr); if (pll.div > 1) /* * The DIVRESET bit is a misnomer, setting it to 1 deasserts the * divisor reset. */ rcar_lvds_write(lvds, LVDDIV, LVDDIV_DIVSEL | LVDDIV_DIVRESET | LVDDIV_DIV(pll.div - 1)); else rcar_lvds_write(lvds, LVDDIV, 0); } static void rcar_lvds_pll_setup_d3_e3(struct rcar_lvds *lvds, unsigned int freq) { __rcar_lvds_pll_setup_d3_e3(lvds, freq, false); } /* ----------------------------------------------------------------------------- * Clock - D3/E3 only */ int rcar_lvds_clk_enable(struct drm_bridge *bridge, unsigned long freq) { struct rcar_lvds *lvds = bridge_to_rcar_lvds(bridge); int ret; if (WARN_ON(!(lvds->info->quirks & RCAR_LVDS_QUIRK_EXT_PLL))) return -ENODEV; dev_dbg(lvds->dev, "enabling LVDS PLL, freq=%luHz\n", freq); ret = clk_prepare_enable(lvds->clocks.mod); if (ret < 0) return ret; __rcar_lvds_pll_setup_d3_e3(lvds, freq, true); return 0; } EXPORT_SYMBOL_GPL(rcar_lvds_clk_enable); void rcar_lvds_clk_disable(struct drm_bridge *bridge) { struct rcar_lvds *lvds = bridge_to_rcar_lvds(bridge); if (WARN_ON(!(lvds->info->quirks & RCAR_LVDS_QUIRK_EXT_PLL))) return; dev_dbg(lvds->dev, "disabling LVDS PLL\n"); rcar_lvds_write(lvds, LVDPLLCR, 0); clk_disable_unprepare(lvds->clocks.mod); } EXPORT_SYMBOL_GPL(rcar_lvds_clk_disable); /* ----------------------------------------------------------------------------- * Bridge */ static void rcar_lvds_enable(struct drm_bridge *bridge) { struct rcar_lvds *lvds = bridge_to_rcar_lvds(bridge); const struct drm_display_mode *mode = &lvds->display_mode; u32 lvdhcr; u32 lvdcr0; int ret; ret = clk_prepare_enable(lvds->clocks.mod); if (ret < 0) return; /* Enable the companion LVDS encoder in dual-link mode. */ if (lvds->dual_link && lvds->companion) lvds->companion->funcs->enable(lvds->companion); /* * Hardcode the channels and control signals routing for now. * * HSYNC -> CTRL0 * VSYNC -> CTRL1 * DISP -> CTRL2 * 0 -> CTRL3 */ rcar_lvds_write(lvds, LVDCTRCR, LVDCTRCR_CTR3SEL_ZERO | LVDCTRCR_CTR2SEL_DISP | LVDCTRCR_CTR1SEL_VSYNC | LVDCTRCR_CTR0SEL_HSYNC); if (lvds->info->quirks & RCAR_LVDS_QUIRK_LANES) lvdhcr = LVDCHCR_CHSEL_CH(0, 0) | LVDCHCR_CHSEL_CH(1, 3) | LVDCHCR_CHSEL_CH(2, 2) | LVDCHCR_CHSEL_CH(3, 1); else lvdhcr = LVDCHCR_CHSEL_CH(0, 0) | LVDCHCR_CHSEL_CH(1, 1) | LVDCHCR_CHSEL_CH(2, 2) | LVDCHCR_CHSEL_CH(3, 3); rcar_lvds_write(lvds, LVDCHCR, lvdhcr); if (lvds->info->quirks & RCAR_LVDS_QUIRK_DUAL_LINK) { /* * Configure vertical stripe based on the mode of operation of * the connected device. */ rcar_lvds_write(lvds, LVDSTRIPE, lvds->dual_link ? LVDSTRIPE_ST_ON : 0); } /* * PLL clock configuration on all instances but the companion in * dual-link mode. */ if (!lvds->dual_link || lvds->companion) lvds->info->pll_setup(lvds, mode->clock * 1000); /* Set the LVDS mode and select the input. */ lvdcr0 = lvds->mode << LVDCR0_LVMD_SHIFT; if (lvds->bridge.encoder) { /* * FIXME: We should really retrieve the CRTC through the state, * but how do we get a state pointer? */ if (drm_crtc_index(lvds->bridge.encoder->crtc) == 2) lvdcr0 |= LVDCR0_DUSEL; } rcar_lvds_write(lvds, LVDCR0, lvdcr0); /* Turn all the channels on. */ rcar_lvds_write(lvds, LVDCR1, LVDCR1_CHSTBY(3) | LVDCR1_CHSTBY(2) | LVDCR1_CHSTBY(1) | LVDCR1_CHSTBY(0) | LVDCR1_CLKSTBY); if (lvds->info->gen < 3) { /* Enable LVDS operation and turn the bias circuitry on. */ lvdcr0 |= LVDCR0_BEN | LVDCR0_LVEN; rcar_lvds_write(lvds, LVDCR0, lvdcr0); } if (!(lvds->info->quirks & RCAR_LVDS_QUIRK_EXT_PLL)) { /* * Turn the PLL on (simple PLL only, extended PLL is fully * controlled through LVDPLLCR). */ lvdcr0 |= LVDCR0_PLLON; rcar_lvds_write(lvds, LVDCR0, lvdcr0); } if (lvds->info->quirks & RCAR_LVDS_QUIRK_PWD) { /* Set LVDS normal mode. */ lvdcr0 |= LVDCR0_PWD; rcar_lvds_write(lvds, LVDCR0, lvdcr0); } if (lvds->info->quirks & RCAR_LVDS_QUIRK_GEN3_LVEN) { /* * Turn on the LVDS PHY. On D3, the LVEN and LVRES bit must be * set at the same time, so don't write the register yet. */ lvdcr0 |= LVDCR0_LVEN; if (!(lvds->info->quirks & RCAR_LVDS_QUIRK_PWD)) rcar_lvds_write(lvds, LVDCR0, lvdcr0); } if (!(lvds->info->quirks & RCAR_LVDS_QUIRK_EXT_PLL)) { /* Wait for the PLL startup delay (simple PLL only). */ usleep_range(100, 150); } /* Turn the output on. */ lvdcr0 |= LVDCR0_LVRES; rcar_lvds_write(lvds, LVDCR0, lvdcr0); if (lvds->panel) { drm_panel_prepare(lvds->panel); drm_panel_enable(lvds->panel); } } static void rcar_lvds_disable(struct drm_bridge *bridge) { struct rcar_lvds *lvds = bridge_to_rcar_lvds(bridge); if (lvds->panel) { drm_panel_disable(lvds->panel); drm_panel_unprepare(lvds->panel); } rcar_lvds_write(lvds, LVDCR0, 0); rcar_lvds_write(lvds, LVDCR1, 0); rcar_lvds_write(lvds, LVDPLLCR, 0); /* Disable the companion LVDS encoder in dual-link mode. */ if (lvds->dual_link && lvds->companion) lvds->companion->funcs->disable(lvds->companion); clk_disable_unprepare(lvds->clocks.mod); } static bool rcar_lvds_mode_fixup(struct drm_bridge *bridge, const struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { struct rcar_lvds *lvds = bridge_to_rcar_lvds(bridge); int min_freq; /* * The internal LVDS encoder has a restricted clock frequency operating * range, from 5MHz to 148.5MHz on D3 and E3, and from 31MHz to * 148.5MHz on all other platforms. Clamp the clock accordingly. */ min_freq = lvds->info->quirks & RCAR_LVDS_QUIRK_EXT_PLL ? 5000 : 31000; adjusted_mode->clock = clamp(adjusted_mode->clock, min_freq, 148500); return true; } static void rcar_lvds_get_lvds_mode(struct rcar_lvds *lvds) { struct drm_display_info *info = &lvds->connector.display_info; enum rcar_lvds_mode mode; /* * There is no API yet to retrieve LVDS mode from a bridge, only panels * are supported. */ if (!lvds->panel) return; if (!info->num_bus_formats || !info->bus_formats) { dev_err(lvds->dev, "no LVDS bus format reported\n"); return; } switch (info->bus_formats[0]) { case MEDIA_BUS_FMT_RGB666_1X7X3_SPWG: case MEDIA_BUS_FMT_RGB888_1X7X4_JEIDA: mode = RCAR_LVDS_MODE_JEIDA; break; case MEDIA_BUS_FMT_RGB888_1X7X4_SPWG: mode = RCAR_LVDS_MODE_VESA; break; default: dev_err(lvds->dev, "unsupported LVDS bus format 0x%04x\n", info->bus_formats[0]); return; } if (info->bus_flags & DRM_BUS_FLAG_DATA_LSB_TO_MSB) mode |= RCAR_LVDS_MODE_MIRROR; lvds->mode = mode; } static void rcar_lvds_mode_set(struct drm_bridge *bridge, const struct drm_display_mode *mode, const struct drm_display_mode *adjusted_mode) { struct rcar_lvds *lvds = bridge_to_rcar_lvds(bridge); lvds->display_mode = *adjusted_mode; rcar_lvds_get_lvds_mode(lvds); } static int rcar_lvds_attach(struct drm_bridge *bridge) { struct rcar_lvds *lvds = bridge_to_rcar_lvds(bridge); struct drm_connector *connector = &lvds->connector; struct drm_encoder *encoder = bridge->encoder; int ret; /* If we have a next bridge just attach it. */ if (lvds->next_bridge) return drm_bridge_attach(bridge->encoder, lvds->next_bridge, bridge); /* Otherwise if we have a panel, create a connector. */ if (!lvds->panel) return 0; ret = drm_connector_init(bridge->dev, connector, &rcar_lvds_conn_funcs, DRM_MODE_CONNECTOR_LVDS); if (ret < 0) return ret; drm_connector_helper_add(connector, &rcar_lvds_conn_helper_funcs); ret = drm_connector_attach_encoder(connector, encoder); if (ret < 0) return ret; return drm_panel_attach(lvds->panel, connector); } static void rcar_lvds_detach(struct drm_bridge *bridge) { struct rcar_lvds *lvds = bridge_to_rcar_lvds(bridge); if (lvds->panel) drm_panel_detach(lvds->panel); } static const struct drm_bridge_funcs rcar_lvds_bridge_ops = { .attach = rcar_lvds_attach, .detach = rcar_lvds_detach, .enable = rcar_lvds_enable, .disable = rcar_lvds_disable, .mode_fixup = rcar_lvds_mode_fixup, .mode_set = rcar_lvds_mode_set, }; bool rcar_lvds_dual_link(struct drm_bridge *bridge) { struct rcar_lvds *lvds = bridge_to_rcar_lvds(bridge); return lvds->dual_link; } EXPORT_SYMBOL_GPL(rcar_lvds_dual_link); /* ----------------------------------------------------------------------------- * Probe & Remove */ static int rcar_lvds_parse_dt_companion(struct rcar_lvds *lvds) { const struct of_device_id *match; struct device_node *companion; struct device *dev = lvds->dev; int ret = 0; /* Locate the companion LVDS encoder for dual-link operation, if any. */ companion = of_parse_phandle(dev->of_node, "renesas,companion", 0); if (!companion) return 0; /* * Sanity check: the companion encoder must have the same compatible * string. */ match = of_match_device(dev->driver->of_match_table, dev); if (!of_device_is_compatible(companion, match->compatible)) { dev_err(dev, "Companion LVDS encoder is invalid\n"); ret = -ENXIO; goto done; } lvds->companion = of_drm_find_bridge(companion); if (!lvds->companion) { ret = -EPROBE_DEFER; goto done; } dev_dbg(dev, "Found companion encoder %pOF\n", companion); done: of_node_put(companion); return ret; } static int rcar_lvds_parse_dt(struct rcar_lvds *lvds) { struct device_node *local_output = NULL; struct device_node *remote_input = NULL; struct device_node *remote = NULL; struct device_node *node; bool is_bridge = false; int ret = 0; local_output = of_graph_get_endpoint_by_regs(lvds->dev->of_node, 1, 0); if (!local_output) { dev_dbg(lvds->dev, "unconnected port@1\n"); ret = -ENODEV; goto done; } /* * Locate the connected entity and infer its type from the number of * endpoints. */ remote = of_graph_get_remote_port_parent(local_output); if (!remote) { dev_dbg(lvds->dev, "unconnected endpoint %pOF\n", local_output); ret = -ENODEV; goto done; } if (!of_device_is_available(remote)) { dev_dbg(lvds->dev, "connected entity %pOF is disabled\n", remote); ret = -ENODEV; goto done; } remote_input = of_graph_get_remote_endpoint(local_output); for_each_endpoint_of_node(remote, node) { if (node != remote_input) { /* * We've found one endpoint other than the input, this * must be a bridge. */ is_bridge = true; of_node_put(node); break; } } if (is_bridge) { lvds->next_bridge = of_drm_find_bridge(remote); if (!lvds->next_bridge) { ret = -EPROBE_DEFER; goto done; } if (lvds->info->quirks & RCAR_LVDS_QUIRK_DUAL_LINK) lvds->dual_link = lvds->next_bridge->timings ? lvds->next_bridge->timings->dual_link : false; } else { lvds->panel = of_drm_find_panel(remote); if (IS_ERR(lvds->panel)) { ret = PTR_ERR(lvds->panel); goto done; } } if (lvds->dual_link) ret = rcar_lvds_parse_dt_companion(lvds); done: of_node_put(local_output); of_node_put(remote_input); of_node_put(remote); /* * On D3/E3 the LVDS encoder provides a clock to the DU, which can be * used for the DPAD output even when the LVDS output is not connected. * Don't fail probe in that case as the DU will need the bridge to * control the clock. */ if (lvds->info->quirks & RCAR_LVDS_QUIRK_EXT_PLL) return ret == -ENODEV ? 0 : ret; return ret; } static struct clk *rcar_lvds_get_clock(struct rcar_lvds *lvds, const char *name, bool optional) { struct clk *clk; clk = devm_clk_get(lvds->dev, name); if (!IS_ERR(clk)) return clk; if (PTR_ERR(clk) == -ENOENT && optional) return NULL; if (PTR_ERR(clk) != -EPROBE_DEFER) dev_err(lvds->dev, "failed to get %s clock\n", name ? name : "module"); return clk; } static int rcar_lvds_get_clocks(struct rcar_lvds *lvds) { lvds->clocks.mod = rcar_lvds_get_clock(lvds, NULL, false); if (IS_ERR(lvds->clocks.mod)) return PTR_ERR(lvds->clocks.mod); /* * LVDS encoders without an extended PLL have no external clock inputs. */ if (!(lvds->info->quirks & RCAR_LVDS_QUIRK_EXT_PLL)) return 0; lvds->clocks.extal = rcar_lvds_get_clock(lvds, "extal", true); if (IS_ERR(lvds->clocks.extal)) return PTR_ERR(lvds->clocks.extal); lvds->clocks.dotclkin[0] = rcar_lvds_get_clock(lvds, "dclkin.0", true); if (IS_ERR(lvds->clocks.dotclkin[0])) return PTR_ERR(lvds->clocks.dotclkin[0]); lvds->clocks.dotclkin[1] = rcar_lvds_get_clock(lvds, "dclkin.1", true); if (IS_ERR(lvds->clocks.dotclkin[1])) return PTR_ERR(lvds->clocks.dotclkin[1]); /* At least one input to the PLL must be available. */ if (!lvds->clocks.extal && !lvds->clocks.dotclkin[0] && !lvds->clocks.dotclkin[1]) { dev_err(lvds->dev, "no input clock (extal, dclkin.0 or dclkin.1)\n"); return -EINVAL; } return 0; } static const struct rcar_lvds_device_info rcar_lvds_r8a7790es1_info = { .gen = 2, .quirks = RCAR_LVDS_QUIRK_LANES, .pll_setup = rcar_lvds_pll_setup_gen2, }; static const struct soc_device_attribute lvds_quirk_matches[] = { { .soc_id = "r8a7790", .revision = "ES1.*", .data = &rcar_lvds_r8a7790es1_info, }, { /* sentinel */ } }; static int rcar_lvds_probe(struct platform_device *pdev) { const struct soc_device_attribute *attr; struct rcar_lvds *lvds; struct resource *mem; int ret; lvds = devm_kzalloc(&pdev->dev, sizeof(*lvds), GFP_KERNEL); if (lvds == NULL) return -ENOMEM; platform_set_drvdata(pdev, lvds); lvds->dev = &pdev->dev; lvds->info = of_device_get_match_data(&pdev->dev); attr = soc_device_match(lvds_quirk_matches); if (attr) lvds->info = attr->data; ret = rcar_lvds_parse_dt(lvds); if (ret < 0) return ret; lvds->bridge.driver_private = lvds; lvds->bridge.funcs = &rcar_lvds_bridge_ops; lvds->bridge.of_node = pdev->dev.of_node; mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); lvds->mmio = devm_ioremap_resource(&pdev->dev, mem); if (IS_ERR(lvds->mmio)) return PTR_ERR(lvds->mmio); ret = rcar_lvds_get_clocks(lvds); if (ret < 0) return ret; drm_bridge_add(&lvds->bridge); return 0; } static int rcar_lvds_remove(struct platform_device *pdev) { struct rcar_lvds *lvds = platform_get_drvdata(pdev); drm_bridge_remove(&lvds->bridge); return 0; } static const struct rcar_lvds_device_info rcar_lvds_gen2_info = { .gen = 2, .pll_setup = rcar_lvds_pll_setup_gen2, }; static const struct rcar_lvds_device_info rcar_lvds_gen3_info = { .gen = 3, .quirks = RCAR_LVDS_QUIRK_PWD, .pll_setup = rcar_lvds_pll_setup_gen3, }; static const struct rcar_lvds_device_info rcar_lvds_r8a77970_info = { .gen = 3, .quirks = RCAR_LVDS_QUIRK_PWD | RCAR_LVDS_QUIRK_GEN3_LVEN, .pll_setup = rcar_lvds_pll_setup_gen2, }; static const struct rcar_lvds_device_info rcar_lvds_r8a77990_info = { .gen = 3, .quirks = RCAR_LVDS_QUIRK_GEN3_LVEN | RCAR_LVDS_QUIRK_EXT_PLL | RCAR_LVDS_QUIRK_DUAL_LINK, .pll_setup = rcar_lvds_pll_setup_d3_e3, }; static const struct rcar_lvds_device_info rcar_lvds_r8a77995_info = { .gen = 3, .quirks = RCAR_LVDS_QUIRK_GEN3_LVEN | RCAR_LVDS_QUIRK_PWD | RCAR_LVDS_QUIRK_EXT_PLL | RCAR_LVDS_QUIRK_DUAL_LINK, .pll_setup = rcar_lvds_pll_setup_d3_e3, }; static const struct of_device_id rcar_lvds_of_table[] = { { .compatible = "renesas,r8a7743-lvds", .data = &rcar_lvds_gen2_info }, { .compatible = "renesas,r8a7744-lvds", .data = &rcar_lvds_gen2_info }, { .compatible = "renesas,r8a774a1-lvds", .data = &rcar_lvds_gen3_info }, { .compatible = "renesas,r8a774c0-lvds", .data = &rcar_lvds_r8a77990_info }, { .compatible = "renesas,r8a7790-lvds", .data = &rcar_lvds_gen2_info }, { .compatible = "renesas,r8a7791-lvds", .data = &rcar_lvds_gen2_info }, { .compatible = "renesas,r8a7793-lvds", .data = &rcar_lvds_gen2_info }, { .compatible = "renesas,r8a7795-lvds", .data = &rcar_lvds_gen3_info }, { .compatible = "renesas,r8a7796-lvds", .data = &rcar_lvds_gen3_info }, { .compatible = "renesas,r8a77965-lvds", .data = &rcar_lvds_gen3_info }, { .compatible = "renesas,r8a77970-lvds", .data = &rcar_lvds_r8a77970_info }, { .compatible = "renesas,r8a77980-lvds", .data = &rcar_lvds_gen3_info }, { .compatible = "renesas,r8a77990-lvds", .data = &rcar_lvds_r8a77990_info }, { .compatible = "renesas,r8a77995-lvds", .data = &rcar_lvds_r8a77995_info }, { } }; MODULE_DEVICE_TABLE(of, rcar_lvds_of_table); static struct platform_driver rcar_lvds_platform_driver = { .probe = rcar_lvds_probe, .remove = rcar_lvds_remove, .driver = { .name = "rcar-lvds", .of_match_table = rcar_lvds_of_table, }, }; module_platform_driver(rcar_lvds_platform_driver); MODULE_AUTHOR("Laurent Pinchart "); MODULE_DESCRIPTION("Renesas R-Car LVDS Encoder Driver"); MODULE_LICENSE("GPL");