// SPDX-License-Identifier: GPL-2.0-only /* * v4l2-dv-timings - dv-timings helper functions * * Copyright 2013 Cisco Systems, Inc. and/or its affiliates. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include MODULE_AUTHOR("Hans Verkuil"); MODULE_DESCRIPTION("V4L2 DV Timings Helper Functions"); MODULE_LICENSE("GPL"); const struct v4l2_dv_timings v4l2_dv_timings_presets[] = { V4L2_DV_BT_CEA_640X480P59_94, V4L2_DV_BT_CEA_720X480I59_94, V4L2_DV_BT_CEA_720X480P59_94, V4L2_DV_BT_CEA_720X576I50, V4L2_DV_BT_CEA_720X576P50, V4L2_DV_BT_CEA_1280X720P24, V4L2_DV_BT_CEA_1280X720P25, V4L2_DV_BT_CEA_1280X720P30, V4L2_DV_BT_CEA_1280X720P50, V4L2_DV_BT_CEA_1280X720P60, V4L2_DV_BT_CEA_1920X1080P24, V4L2_DV_BT_CEA_1920X1080P25, V4L2_DV_BT_CEA_1920X1080P30, V4L2_DV_BT_CEA_1920X1080I50, V4L2_DV_BT_CEA_1920X1080P50, V4L2_DV_BT_CEA_1920X1080I60, V4L2_DV_BT_CEA_1920X1080P60, V4L2_DV_BT_DMT_640X350P85, V4L2_DV_BT_DMT_640X400P85, V4L2_DV_BT_DMT_720X400P85, V4L2_DV_BT_DMT_640X480P72, V4L2_DV_BT_DMT_640X480P75, V4L2_DV_BT_DMT_640X480P85, V4L2_DV_BT_DMT_800X600P56, V4L2_DV_BT_DMT_800X600P60, V4L2_DV_BT_DMT_800X600P72, V4L2_DV_BT_DMT_800X600P75, V4L2_DV_BT_DMT_800X600P85, V4L2_DV_BT_DMT_800X600P120_RB, V4L2_DV_BT_DMT_848X480P60, V4L2_DV_BT_DMT_1024X768I43, V4L2_DV_BT_DMT_1024X768P60, V4L2_DV_BT_DMT_1024X768P70, V4L2_DV_BT_DMT_1024X768P75, V4L2_DV_BT_DMT_1024X768P85, V4L2_DV_BT_DMT_1024X768P120_RB, V4L2_DV_BT_DMT_1152X864P75, V4L2_DV_BT_DMT_1280X768P60_RB, V4L2_DV_BT_DMT_1280X768P60, V4L2_DV_BT_DMT_1280X768P75, V4L2_DV_BT_DMT_1280X768P85, V4L2_DV_BT_DMT_1280X768P120_RB, V4L2_DV_BT_DMT_1280X800P60_RB, V4L2_DV_BT_DMT_1280X800P60, V4L2_DV_BT_DMT_1280X800P75, V4L2_DV_BT_DMT_1280X800P85, V4L2_DV_BT_DMT_1280X800P120_RB, V4L2_DV_BT_DMT_1280X960P60, V4L2_DV_BT_DMT_1280X960P85, V4L2_DV_BT_DMT_1280X960P120_RB, V4L2_DV_BT_DMT_1280X1024P60, V4L2_DV_BT_DMT_1280X1024P75, V4L2_DV_BT_DMT_1280X1024P85, V4L2_DV_BT_DMT_1280X1024P120_RB, V4L2_DV_BT_DMT_1360X768P60, V4L2_DV_BT_DMT_1360X768P120_RB, V4L2_DV_BT_DMT_1366X768P60, V4L2_DV_BT_DMT_1366X768P60_RB, V4L2_DV_BT_DMT_1400X1050P60_RB, V4L2_DV_BT_DMT_1400X1050P60, V4L2_DV_BT_DMT_1400X1050P75, V4L2_DV_BT_DMT_1400X1050P85, V4L2_DV_BT_DMT_1400X1050P120_RB, V4L2_DV_BT_DMT_1440X900P60_RB, V4L2_DV_BT_DMT_1440X900P60, V4L2_DV_BT_DMT_1440X900P75, V4L2_DV_BT_DMT_1440X900P85, V4L2_DV_BT_DMT_1440X900P120_RB, V4L2_DV_BT_DMT_1600X900P60_RB, V4L2_DV_BT_DMT_1600X1200P60, V4L2_DV_BT_DMT_1600X1200P65, V4L2_DV_BT_DMT_1600X1200P70, V4L2_DV_BT_DMT_1600X1200P75, V4L2_DV_BT_DMT_1600X1200P85, V4L2_DV_BT_DMT_1600X1200P120_RB, V4L2_DV_BT_DMT_1680X1050P60_RB, V4L2_DV_BT_DMT_1680X1050P60, V4L2_DV_BT_DMT_1680X1050P75, V4L2_DV_BT_DMT_1680X1050P85, V4L2_DV_BT_DMT_1680X1050P120_RB, V4L2_DV_BT_DMT_1792X1344P60, V4L2_DV_BT_DMT_1792X1344P75, V4L2_DV_BT_DMT_1792X1344P120_RB, V4L2_DV_BT_DMT_1856X1392P60, V4L2_DV_BT_DMT_1856X1392P75, V4L2_DV_BT_DMT_1856X1392P120_RB, V4L2_DV_BT_DMT_1920X1200P60_RB, V4L2_DV_BT_DMT_1920X1200P60, V4L2_DV_BT_DMT_1920X1200P75, V4L2_DV_BT_DMT_1920X1200P85, V4L2_DV_BT_DMT_1920X1200P120_RB, V4L2_DV_BT_DMT_1920X1440P60, V4L2_DV_BT_DMT_1920X1440P75, V4L2_DV_BT_DMT_1920X1440P120_RB, V4L2_DV_BT_DMT_2048X1152P60_RB, V4L2_DV_BT_DMT_2560X1600P60_RB, V4L2_DV_BT_DMT_2560X1600P60, V4L2_DV_BT_DMT_2560X1600P75, V4L2_DV_BT_DMT_2560X1600P85, V4L2_DV_BT_DMT_2560X1600P120_RB, V4L2_DV_BT_CEA_3840X2160P24, V4L2_DV_BT_CEA_3840X2160P25, V4L2_DV_BT_CEA_3840X2160P30, V4L2_DV_BT_CEA_3840X2160P50, V4L2_DV_BT_CEA_3840X2160P60, V4L2_DV_BT_CEA_4096X2160P24, V4L2_DV_BT_CEA_4096X2160P25, V4L2_DV_BT_CEA_4096X2160P30, V4L2_DV_BT_CEA_4096X2160P50, V4L2_DV_BT_DMT_4096X2160P59_94_RB, V4L2_DV_BT_CEA_4096X2160P60, { } }; EXPORT_SYMBOL_GPL(v4l2_dv_timings_presets); bool v4l2_valid_dv_timings(const struct v4l2_dv_timings *t, const struct v4l2_dv_timings_cap *dvcap, v4l2_check_dv_timings_fnc fnc, void *fnc_handle) { const struct v4l2_bt_timings *bt = &t->bt; const struct v4l2_bt_timings_cap *cap = &dvcap->bt; u32 caps = cap->capabilities; if (t->type != V4L2_DV_BT_656_1120) return false; if (t->type != dvcap->type || bt->height < cap->min_height || bt->height > cap->max_height || bt->width < cap->min_width || bt->width > cap->max_width || bt->pixelclock < cap->min_pixelclock || bt->pixelclock > cap->max_pixelclock || (!(caps & V4L2_DV_BT_CAP_CUSTOM) && cap->standards && bt->standards && !(bt->standards & cap->standards)) || (bt->interlaced && !(caps & V4L2_DV_BT_CAP_INTERLACED)) || (!bt->interlaced && !(caps & V4L2_DV_BT_CAP_PROGRESSIVE))) return false; return fnc == NULL || fnc(t, fnc_handle); } EXPORT_SYMBOL_GPL(v4l2_valid_dv_timings); int v4l2_enum_dv_timings_cap(struct v4l2_enum_dv_timings *t, const struct v4l2_dv_timings_cap *cap, v4l2_check_dv_timings_fnc fnc, void *fnc_handle) { u32 i, idx; memset(t->reserved, 0, sizeof(t->reserved)); for (i = idx = 0; v4l2_dv_timings_presets[i].bt.width; i++) { if (v4l2_valid_dv_timings(v4l2_dv_timings_presets + i, cap, fnc, fnc_handle) && idx++ == t->index) { t->timings = v4l2_dv_timings_presets[i]; return 0; } } return -EINVAL; } EXPORT_SYMBOL_GPL(v4l2_enum_dv_timings_cap); bool v4l2_find_dv_timings_cap(struct v4l2_dv_timings *t, const struct v4l2_dv_timings_cap *cap, unsigned pclock_delta, v4l2_check_dv_timings_fnc fnc, void *fnc_handle) { int i; if (!v4l2_valid_dv_timings(t, cap, fnc, fnc_handle)) return false; for (i = 0; v4l2_dv_timings_presets[i].bt.width; i++) { if (v4l2_valid_dv_timings(v4l2_dv_timings_presets + i, cap, fnc, fnc_handle) && v4l2_match_dv_timings(t, v4l2_dv_timings_presets + i, pclock_delta, false)) { u32 flags = t->bt.flags & V4L2_DV_FL_REDUCED_FPS; *t = v4l2_dv_timings_presets[i]; if (can_reduce_fps(&t->bt)) t->bt.flags |= flags; return true; } } return false; } EXPORT_SYMBOL_GPL(v4l2_find_dv_timings_cap); bool v4l2_find_dv_timings_cea861_vic(struct v4l2_dv_timings *t, u8 vic) { unsigned int i; for (i = 0; v4l2_dv_timings_presets[i].bt.width; i++) { const struct v4l2_bt_timings *bt = &v4l2_dv_timings_presets[i].bt; if ((bt->flags & V4L2_DV_FL_HAS_CEA861_VIC) && bt->cea861_vic == vic) { *t = v4l2_dv_timings_presets[i]; return true; } } return false; } EXPORT_SYMBOL_GPL(v4l2_find_dv_timings_cea861_vic); /** * v4l2_match_dv_timings - check if two timings match * @t1: compare this v4l2_dv_timings struct... * @t2: with this struct. * @pclock_delta: the allowed pixelclock deviation. * @match_reduced_fps: if true, then fail if V4L2_DV_FL_REDUCED_FPS does not * match. * * Compare t1 with t2 with a given margin of error for the pixelclock. */ bool v4l2_match_dv_timings(const struct v4l2_dv_timings *t1, const struct v4l2_dv_timings *t2, unsigned pclock_delta, bool match_reduced_fps) { if (t1->type != t2->type || t1->type != V4L2_DV_BT_656_1120) return false; if (t1->bt.width == t2->bt.width && t1->bt.height == t2->bt.height && t1->bt.interlaced == t2->bt.interlaced && t1->bt.polarities == t2->bt.polarities && t1->bt.pixelclock >= t2->bt.pixelclock - pclock_delta && t1->bt.pixelclock <= t2->bt.pixelclock + pclock_delta && t1->bt.hfrontporch == t2->bt.hfrontporch && t1->bt.hsync == t2->bt.hsync && t1->bt.hbackporch == t2->bt.hbackporch && t1->bt.vfrontporch == t2->bt.vfrontporch && t1->bt.vsync == t2->bt.vsync && t1->bt.vbackporch == t2->bt.vbackporch && (!match_reduced_fps || (t1->bt.flags & V4L2_DV_FL_REDUCED_FPS) == (t2->bt.flags & V4L2_DV_FL_REDUCED_FPS)) && (!t1->bt.interlaced || (t1->bt.il_vfrontporch == t2->bt.il_vfrontporch && t1->bt.il_vsync == t2->bt.il_vsync && t1->bt.il_vbackporch == t2->bt.il_vbackporch))) return true; return false; } EXPORT_SYMBOL_GPL(v4l2_match_dv_timings); void v4l2_print_dv_timings(const char *dev_prefix, const char *prefix, const struct v4l2_dv_timings *t, bool detailed) { const struct v4l2_bt_timings *bt = &t->bt; u32 htot, vtot; u32 fps; if (t->type != V4L2_DV_BT_656_1120) return; htot = V4L2_DV_BT_FRAME_WIDTH(bt); vtot = V4L2_DV_BT_FRAME_HEIGHT(bt); if (bt->interlaced) vtot /= 2; fps = (htot * vtot) > 0 ? div_u64((100 * (u64)bt->pixelclock), (htot * vtot)) : 0; if (prefix == NULL) prefix = ""; pr_info("%s: %s%ux%u%s%u.%u (%ux%u)\n", dev_prefix, prefix, bt->width, bt->height, bt->interlaced ? "i" : "p", fps / 100, fps % 100, htot, vtot); if (!detailed) return; pr_info("%s: horizontal: fp = %u, %ssync = %u, bp = %u\n", dev_prefix, bt->hfrontporch, (bt->polarities & V4L2_DV_HSYNC_POS_POL) ? "+" : "-", bt->hsync, bt->hbackporch); pr_info("%s: vertical: fp = %u, %ssync = %u, bp = %u\n", dev_prefix, bt->vfrontporch, (bt->polarities & V4L2_DV_VSYNC_POS_POL) ? "+" : "-", bt->vsync, bt->vbackporch); if (bt->interlaced) pr_info("%s: vertical bottom field: fp = %u, %ssync = %u, bp = %u\n", dev_prefix, bt->il_vfrontporch, (bt->polarities & V4L2_DV_VSYNC_POS_POL) ? "+" : "-", bt->il_vsync, bt->il_vbackporch); pr_info("%s: pixelclock: %llu\n", dev_prefix, bt->pixelclock); pr_info("%s: flags (0x%x):%s%s%s%s%s%s%s%s%s%s\n", dev_prefix, bt->flags, (bt->flags & V4L2_DV_FL_REDUCED_BLANKING) ? " REDUCED_BLANKING" : "", ((bt->flags & V4L2_DV_FL_REDUCED_BLANKING) && bt->vsync == 8) ? " (V2)" : "", (bt->flags & V4L2_DV_FL_CAN_REDUCE_FPS) ? " CAN_REDUCE_FPS" : "", (bt->flags & V4L2_DV_FL_REDUCED_FPS) ? " REDUCED_FPS" : "", (bt->flags & V4L2_DV_FL_HALF_LINE) ? " HALF_LINE" : "", (bt->flags & V4L2_DV_FL_IS_CE_VIDEO) ? " CE_VIDEO" : "", (bt->flags & V4L2_DV_FL_FIRST_FIELD_EXTRA_LINE) ? " FIRST_FIELD_EXTRA_LINE" : "", (bt->flags & V4L2_DV_FL_HAS_PICTURE_ASPECT) ? " HAS_PICTURE_ASPECT" : "", (bt->flags & V4L2_DV_FL_HAS_CEA861_VIC) ? " HAS_CEA861_VIC" : "", (bt->flags & V4L2_DV_FL_HAS_HDMI_VIC) ? " HAS_HDMI_VIC" : ""); pr_info("%s: standards (0x%x):%s%s%s%s%s\n", dev_prefix, bt->standards, (bt->standards & V4L2_DV_BT_STD_CEA861) ? " CEA" : "", (bt->standards & V4L2_DV_BT_STD_DMT) ? " DMT" : "", (bt->standards & V4L2_DV_BT_STD_CVT) ? " CVT" : "", (bt->standards & V4L2_DV_BT_STD_GTF) ? " GTF" : "", (bt->standards & V4L2_DV_BT_STD_SDI) ? " SDI" : ""); if (bt->flags & V4L2_DV_FL_HAS_PICTURE_ASPECT) pr_info("%s: picture aspect (hor:vert): %u:%u\n", dev_prefix, bt->picture_aspect.numerator, bt->picture_aspect.denominator); if (bt->flags & V4L2_DV_FL_HAS_CEA861_VIC) pr_info("%s: CEA-861 VIC: %u\n", dev_prefix, bt->cea861_vic); if (bt->flags & V4L2_DV_FL_HAS_HDMI_VIC) pr_info("%s: HDMI VIC: %u\n", dev_prefix, bt->hdmi_vic); } EXPORT_SYMBOL_GPL(v4l2_print_dv_timings); struct v4l2_fract v4l2_dv_timings_aspect_ratio(const struct v4l2_dv_timings *t) { struct v4l2_fract ratio = { 1, 1 }; unsigned long n, d; if (t->type != V4L2_DV_BT_656_1120) return ratio; if (!(t->bt.flags & V4L2_DV_FL_HAS_PICTURE_ASPECT)) return ratio; ratio.numerator = t->bt.width * t->bt.picture_aspect.denominator; ratio.denominator = t->bt.height * t->bt.picture_aspect.numerator; rational_best_approximation(ratio.numerator, ratio.denominator, ratio.numerator, ratio.denominator, &n, &d); ratio.numerator = n; ratio.denominator = d; return ratio; } EXPORT_SYMBOL_GPL(v4l2_dv_timings_aspect_ratio); /** v4l2_calc_timeperframe - helper function to calculate timeperframe based * v4l2_dv_timings fields. * @t - Timings for the video mode. * * Calculates the expected timeperframe using the pixel clock value and * horizontal/vertical measures. This means that v4l2_dv_timings structure * must be correctly and fully filled. */ struct v4l2_fract v4l2_calc_timeperframe(const struct v4l2_dv_timings *t) { const struct v4l2_bt_timings *bt = &t->bt; struct v4l2_fract fps_fract = { 1, 1 }; unsigned long n, d; u32 htot, vtot, fps; u64 pclk; if (t->type != V4L2_DV_BT_656_1120) return fps_fract; htot = V4L2_DV_BT_FRAME_WIDTH(bt); vtot = V4L2_DV_BT_FRAME_HEIGHT(bt); pclk = bt->pixelclock; if ((bt->flags & V4L2_DV_FL_CAN_DETECT_REDUCED_FPS) && (bt->flags & V4L2_DV_FL_REDUCED_FPS)) pclk = div_u64(pclk * 1000ULL, 1001); fps = (htot * vtot) > 0 ? div_u64((100 * pclk), (htot * vtot)) : 0; if (!fps) return fps_fract; rational_best_approximation(fps, 100, fps, 100, &n, &d); fps_fract.numerator = d; fps_fract.denominator = n; return fps_fract; } EXPORT_SYMBOL_GPL(v4l2_calc_timeperframe); /* * CVT defines * Based on Coordinated Video Timings Standard * version 1.1 September 10, 2003 */ #define CVT_PXL_CLK_GRAN 250000 /* pixel clock granularity */ #define CVT_PXL_CLK_GRAN_RB_V2 1000 /* granularity for reduced blanking v2*/ /* Normal blanking */ #define CVT_MIN_V_BPORCH 7 /* lines */ #define CVT_MIN_V_PORCH_RND 3 /* lines */ #define CVT_MIN_VSYNC_BP 550 /* min time of vsync + back porch (us) */ #define CVT_HSYNC_PERCENT 8 /* nominal hsync as percentage of line */ /* Normal blanking for CVT uses GTF to calculate horizontal blanking */ #define CVT_CELL_GRAN 8 /* character cell granularity */ #define CVT_M 600 /* blanking formula gradient */ #define CVT_C 40 /* blanking formula offset */ #define CVT_K 128 /* blanking formula scaling factor */ #define CVT_J 20 /* blanking formula scaling factor */ #define CVT_C_PRIME (((CVT_C - CVT_J) * CVT_K / 256) + CVT_J) #define CVT_M_PRIME (CVT_K * CVT_M / 256) /* Reduced Blanking */ #define CVT_RB_MIN_V_BPORCH 7 /* lines */ #define CVT_RB_V_FPORCH 3 /* lines */ #define CVT_RB_MIN_V_BLANK 460 /* us */ #define CVT_RB_H_SYNC 32 /* pixels */ #define CVT_RB_H_BLANK 160 /* pixels */ /* Reduce blanking Version 2 */ #define CVT_RB_V2_H_BLANK 80 /* pixels */ #define CVT_RB_MIN_V_FPORCH 3 /* lines */ #define CVT_RB_V2_MIN_V_FPORCH 1 /* lines */ #define CVT_RB_V_BPORCH 6 /* lines */ /** v4l2_detect_cvt - detect if the given timings follow the CVT standard * @frame_height - the total height of the frame (including blanking) in lines. * @hfreq - the horizontal frequency in Hz. * @vsync - the height of the vertical sync in lines. * @active_width - active width of image (does not include blanking). This * information is needed only in case of version 2 of reduced blanking. * In other cases, this parameter does not have any effect on timings. * @polarities - the horizontal and vertical polarities (same as struct * v4l2_bt_timings polarities). * @interlaced - if this flag is true, it indicates interlaced format * @fmt - the resulting timings. * * This function will attempt to detect if the given values correspond to a * valid CVT format. If so, then it will return true, and fmt will be filled * in with the found CVT timings. */ bool v4l2_detect_cvt(unsigned frame_height, unsigned hfreq, unsigned vsync, unsigned active_width, u32 polarities, bool interlaced, struct v4l2_dv_timings *fmt) { int v_fp, v_bp, h_fp, h_bp, hsync; int frame_width, image_height, image_width; bool reduced_blanking; bool rb_v2 = false; unsigned pix_clk; if (vsync < 4 || vsync > 8) return false; if (polarities == V4L2_DV_VSYNC_POS_POL) reduced_blanking = false; else if (polarities == V4L2_DV_HSYNC_POS_POL) reduced_blanking = true; else return false; if (reduced_blanking && vsync == 8) rb_v2 = true; if (rb_v2 && active_width == 0) return false; if (!rb_v2 && vsync > 7) return false; if (hfreq == 0) return false; /* Vertical */ if (reduced_blanking) { if (rb_v2) { v_bp = CVT_RB_V_BPORCH; v_fp = (CVT_RB_MIN_V_BLANK * hfreq) / 1000000 + 1; v_fp -= vsync + v_bp; if (v_fp < CVT_RB_V2_MIN_V_FPORCH) v_fp = CVT_RB_V2_MIN_V_FPORCH; } else { v_fp = CVT_RB_V_FPORCH; v_bp = (CVT_RB_MIN_V_BLANK * hfreq) / 1000000 + 1; v_bp -= vsync + v_fp; if (v_bp < CVT_RB_MIN_V_BPORCH) v_bp = CVT_RB_MIN_V_BPORCH; } } else { v_fp = CVT_MIN_V_PORCH_RND; v_bp = (CVT_MIN_VSYNC_BP * hfreq) / 1000000 + 1 - vsync; if (v_bp < CVT_MIN_V_BPORCH) v_bp = CVT_MIN_V_BPORCH; } if (interlaced) image_height = (frame_height - 2 * v_fp - 2 * vsync - 2 * v_bp) & ~0x1; else image_height = (frame_height - v_fp - vsync - v_bp + 1) & ~0x1; if (image_height < 0) return false; /* Aspect ratio based on vsync */ switch (vsync) { case 4: image_width = (image_height * 4) / 3; break; case 5: image_width = (image_height * 16) / 9; break; case 6: image_width = (image_height * 16) / 10; break; case 7: /* special case */ if (image_height == 1024) image_width = (image_height * 5) / 4; else if (image_height == 768) image_width = (image_height * 15) / 9; else return false; break; case 8: image_width = active_width; break; default: return false; } if (!rb_v2) image_width = image_width & ~7; /* Horizontal */ if (reduced_blanking) { int h_blank; int clk_gran; h_blank = rb_v2 ? CVT_RB_V2_H_BLANK : CVT_RB_H_BLANK; clk_gran = rb_v2 ? CVT_PXL_CLK_GRAN_RB_V2 : CVT_PXL_CLK_GRAN; pix_clk = (image_width + h_blank) * hfreq; pix_clk = (pix_clk / clk_gran) * clk_gran; h_bp = h_blank / 2; hsync = CVT_RB_H_SYNC; h_fp = h_blank - h_bp - hsync; frame_width = image_width + h_blank; } else { unsigned ideal_duty_cycle_per_myriad = 100 * CVT_C_PRIME - (CVT_M_PRIME * 100000) / hfreq; int h_blank; if (ideal_duty_cycle_per_myriad < 2000) ideal_duty_cycle_per_myriad = 2000; h_blank = image_width * ideal_duty_cycle_per_myriad / (10000 - ideal_duty_cycle_per_myriad); h_blank = (h_blank / (2 * CVT_CELL_GRAN)) * 2 * CVT_CELL_GRAN; pix_clk = (image_width + h_blank) * hfreq; pix_clk = (pix_clk / CVT_PXL_CLK_GRAN) * CVT_PXL_CLK_GRAN; h_bp = h_blank / 2; frame_width = image_width + h_blank; hsync = frame_width * CVT_HSYNC_PERCENT / 100; hsync = (hsync / CVT_CELL_GRAN) * CVT_CELL_GRAN; h_fp = h_blank - hsync - h_bp; } fmt->type = V4L2_DV_BT_656_1120; fmt->bt.polarities = polarities; fmt->bt.width = image_width; fmt->bt.height = image_height; fmt->bt.hfrontporch = h_fp; fmt->bt.vfrontporch = v_fp; fmt->bt.hsync = hsync; fmt->bt.vsync = vsync; fmt->bt.hbackporch = frame_width - image_width - h_fp - hsync; if (!interlaced) { fmt->bt.vbackporch = frame_height - image_height - v_fp - vsync; fmt->bt.interlaced = V4L2_DV_PROGRESSIVE; } else { fmt->bt.vbackporch = (frame_height - image_height - 2 * v_fp - 2 * vsync) / 2; fmt->bt.il_vbackporch = frame_height - image_height - 2 * v_fp - 2 * vsync - fmt->bt.vbackporch; fmt->bt.il_vfrontporch = v_fp; fmt->bt.il_vsync = vsync; fmt->bt.flags |= V4L2_DV_FL_HALF_LINE; fmt->bt.interlaced = V4L2_DV_INTERLACED; } fmt->bt.pixelclock = pix_clk; fmt->bt.standards = V4L2_DV_BT_STD_CVT; if (reduced_blanking) fmt->bt.flags |= V4L2_DV_FL_REDUCED_BLANKING; return true; } EXPORT_SYMBOL_GPL(v4l2_detect_cvt); /* * GTF defines * Based on Generalized Timing Formula Standard * Version 1.1 September 2, 1999 */ #define GTF_PXL_CLK_GRAN 250000 /* pixel clock granularity */ #define GTF_MIN_VSYNC_BP 550 /* min time of vsync + back porch (us) */ #define GTF_V_FP 1 /* vertical front porch (lines) */ #define GTF_CELL_GRAN 8 /* character cell granularity */ /* Default */ #define GTF_D_M 600 /* blanking formula gradient */ #define GTF_D_C 40 /* blanking formula offset */ #define GTF_D_K 128 /* blanking formula scaling factor */ #define GTF_D_J 20 /* blanking formula scaling factor */ #define GTF_D_C_PRIME ((((GTF_D_C - GTF_D_J) * GTF_D_K) / 256) + GTF_D_J) #define GTF_D_M_PRIME ((GTF_D_K * GTF_D_M) / 256) /* Secondary */ #define GTF_S_M 3600 /* blanking formula gradient */ #define GTF_S_C 40 /* blanking formula offset */ #define GTF_S_K 128 /* blanking formula scaling factor */ #define GTF_S_J 35 /* blanking formula scaling factor */ #define GTF_S_C_PRIME ((((GTF_S_C - GTF_S_J) * GTF_S_K) / 256) + GTF_S_J) #define GTF_S_M_PRIME ((GTF_S_K * GTF_S_M) / 256) /** v4l2_detect_gtf - detect if the given timings follow the GTF standard * @frame_height - the total height of the frame (including blanking) in lines. * @hfreq - the horizontal frequency in Hz. * @vsync - the height of the vertical sync in lines. * @polarities - the horizontal and vertical polarities (same as struct * v4l2_bt_timings polarities). * @interlaced - if this flag is true, it indicates interlaced format * @aspect - preferred aspect ratio. GTF has no method of determining the * aspect ratio in order to derive the image width from the * image height, so it has to be passed explicitly. Usually * the native screen aspect ratio is used for this. If it * is not filled in correctly, then 16:9 will be assumed. * @fmt - the resulting timings. * * This function will attempt to detect if the given values correspond to a * valid GTF format. If so, then it will return true, and fmt will be filled * in with the found GTF timings. */ bool v4l2_detect_gtf(unsigned frame_height, unsigned hfreq, unsigned vsync, u32 polarities, bool interlaced, struct v4l2_fract aspect, struct v4l2_dv_timings *fmt) { int pix_clk; int v_fp, v_bp, h_fp, hsync; int frame_width, image_height, image_width; bool default_gtf; int h_blank; if (vsync != 3) return false; if (polarities == V4L2_DV_VSYNC_POS_POL) default_gtf = true; else if (polarities == V4L2_DV_HSYNC_POS_POL) default_gtf = false; else return false; if (hfreq == 0) return false; /* Vertical */ v_fp = GTF_V_FP; v_bp = (GTF_MIN_VSYNC_BP * hfreq + 500000) / 1000000 - vsync; if (interlaced) image_height = (frame_height - 2 * v_fp - 2 * vsync - 2 * v_bp) & ~0x1; else image_height = (frame_height - v_fp - vsync - v_bp + 1) & ~0x1; if (image_height < 0) return false; if (aspect.numerator == 0 || aspect.denominator == 0) { aspect.numerator = 16; aspect.denominator = 9; } image_width = ((image_height * aspect.numerator) / aspect.denominator); image_width = (image_width + GTF_CELL_GRAN/2) & ~(GTF_CELL_GRAN - 1); /* Horizontal */ if (default_gtf) { u64 num; u32 den; num = ((image_width * GTF_D_C_PRIME * (u64)hfreq) - ((u64)image_width * GTF_D_M_PRIME * 1000)); den = (hfreq * (100 - GTF_D_C_PRIME) + GTF_D_M_PRIME * 1000) * (2 * GTF_CELL_GRAN); h_blank = div_u64((num + (den >> 1)), den); h_blank *= (2 * GTF_CELL_GRAN); } else { u64 num; u32 den; num = ((image_width * GTF_S_C_PRIME * (u64)hfreq) - ((u64)image_width * GTF_S_M_PRIME * 1000)); den = (hfreq * (100 - GTF_S_C_PRIME) + GTF_S_M_PRIME * 1000) * (2 * GTF_CELL_GRAN); h_blank = div_u64((num + (den >> 1)), den); h_blank *= (2 * GTF_CELL_GRAN); } frame_width = image_width + h_blank; pix_clk = (image_width + h_blank) * hfreq; pix_clk = pix_clk / GTF_PXL_CLK_GRAN * GTF_PXL_CLK_GRAN; hsync = (frame_width * 8 + 50) / 100; hsync = ((hsync + GTF_CELL_GRAN / 2) / GTF_CELL_GRAN) * GTF_CELL_GRAN; h_fp = h_blank / 2 - hsync; fmt->type = V4L2_DV_BT_656_1120; fmt->bt.polarities = polarities; fmt->bt.width = image_width; fmt->bt.height = image_height; fmt->bt.hfrontporch = h_fp; fmt->bt.vfrontporch = v_fp; fmt->bt.hsync = hsync; fmt->bt.vsync = vsync; fmt->bt.hbackporch = frame_width - image_width - h_fp - hsync; if (!interlaced) { fmt->bt.vbackporch = frame_height - image_height - v_fp - vsync; fmt->bt.interlaced = V4L2_DV_PROGRESSIVE; } else { fmt->bt.vbackporch = (frame_height - image_height - 2 * v_fp - 2 * vsync) / 2; fmt->bt.il_vbackporch = frame_height - image_height - 2 * v_fp - 2 * vsync - fmt->bt.vbackporch; fmt->bt.il_vfrontporch = v_fp; fmt->bt.il_vsync = vsync; fmt->bt.flags |= V4L2_DV_FL_HALF_LINE; fmt->bt.interlaced = V4L2_DV_INTERLACED; } fmt->bt.pixelclock = pix_clk; fmt->bt.standards = V4L2_DV_BT_STD_GTF; if (!default_gtf) fmt->bt.flags |= V4L2_DV_FL_REDUCED_BLANKING; return true; } EXPORT_SYMBOL_GPL(v4l2_detect_gtf); /** v4l2_calc_aspect_ratio - calculate the aspect ratio based on bytes * 0x15 and 0x16 from the EDID. * @hor_landscape - byte 0x15 from the EDID. * @vert_portrait - byte 0x16 from the EDID. * * Determines the aspect ratio from the EDID. * See VESA Enhanced EDID standard, release A, rev 2, section 3.6.2: * "Horizontal and Vertical Screen Size or Aspect Ratio" */ struct v4l2_fract v4l2_calc_aspect_ratio(u8 hor_landscape, u8 vert_portrait) { struct v4l2_fract aspect = { 16, 9 }; u8 ratio; /* Nothing filled in, fallback to 16:9 */ if (!hor_landscape && !vert_portrait) return aspect; /* Both filled in, so they are interpreted as the screen size in cm */ if (hor_landscape && vert_portrait) { aspect.numerator = hor_landscape; aspect.denominator = vert_portrait; return aspect; } /* Only one is filled in, so interpret them as a ratio: (val + 99) / 100 */ ratio = hor_landscape | vert_portrait; /* Change some rounded values into the exact aspect ratio */ if (ratio == 79) { aspect.numerator = 16; aspect.denominator = 9; } else if (ratio == 34) { aspect.numerator = 4; aspect.denominator = 3; } else if (ratio == 68) { aspect.numerator = 15; aspect.denominator = 9; } else { aspect.numerator = hor_landscape + 99; aspect.denominator = 100; } if (hor_landscape) return aspect; /* The aspect ratio is for portrait, so swap numerator and denominator */ swap(aspect.denominator, aspect.numerator); return aspect; } EXPORT_SYMBOL_GPL(v4l2_calc_aspect_ratio); /** v4l2_hdmi_rx_colorimetry - determine HDMI colorimetry information * based on various InfoFrames. * @avi: the AVI InfoFrame * @hdmi: the HDMI Vendor InfoFrame, may be NULL * @height: the frame height * * Determines the HDMI colorimetry information, i.e. how the HDMI * pixel color data should be interpreted. * * Note that some of the newer features (DCI-P3, HDR) are not yet * implemented: the hdmi.h header needs to be updated to the HDMI 2.0 * and CTA-861-G standards. */ struct v4l2_hdmi_colorimetry v4l2_hdmi_rx_colorimetry(const struct hdmi_avi_infoframe *avi, const struct hdmi_vendor_infoframe *hdmi, unsigned int height) { struct v4l2_hdmi_colorimetry c = { V4L2_COLORSPACE_SRGB, V4L2_YCBCR_ENC_DEFAULT, V4L2_QUANTIZATION_FULL_RANGE, V4L2_XFER_FUNC_SRGB }; bool is_ce = avi->video_code || (hdmi && hdmi->vic); bool is_sdtv = height <= 576; bool default_is_lim_range_rgb = avi->video_code > 1; switch (avi->colorspace) { case HDMI_COLORSPACE_RGB: /* RGB pixel encoding */ switch (avi->colorimetry) { case HDMI_COLORIMETRY_EXTENDED: switch (avi->extended_colorimetry) { case HDMI_EXTENDED_COLORIMETRY_OPRGB: c.colorspace = V4L2_COLORSPACE_OPRGB; c.xfer_func = V4L2_XFER_FUNC_OPRGB; break; case HDMI_EXTENDED_COLORIMETRY_BT2020: c.colorspace = V4L2_COLORSPACE_BT2020; c.xfer_func = V4L2_XFER_FUNC_709; break; default: break; } break; default: break; } switch (avi->quantization_range) { case HDMI_QUANTIZATION_RANGE_LIMITED: c.quantization = V4L2_QUANTIZATION_LIM_RANGE; break; case HDMI_QUANTIZATION_RANGE_FULL: break; default: if (default_is_lim_range_rgb) c.quantization = V4L2_QUANTIZATION_LIM_RANGE; break; } break; default: /* YCbCr pixel encoding */ c.quantization = V4L2_QUANTIZATION_LIM_RANGE; switch (avi->colorimetry) { case HDMI_COLORIMETRY_NONE: if (!is_ce) break; if (is_sdtv) { c.colorspace = V4L2_COLORSPACE_SMPTE170M; c.ycbcr_enc = V4L2_YCBCR_ENC_601; } else { c.colorspace = V4L2_COLORSPACE_REC709; c.ycbcr_enc = V4L2_YCBCR_ENC_709; } c.xfer_func = V4L2_XFER_FUNC_709; break; case HDMI_COLORIMETRY_ITU_601: c.colorspace = V4L2_COLORSPACE_SMPTE170M; c.ycbcr_enc = V4L2_YCBCR_ENC_601; c.xfer_func = V4L2_XFER_FUNC_709; break; case HDMI_COLORIMETRY_ITU_709: c.colorspace = V4L2_COLORSPACE_REC709; c.ycbcr_enc = V4L2_YCBCR_ENC_709; c.xfer_func = V4L2_XFER_FUNC_709; break; case HDMI_COLORIMETRY_EXTENDED: switch (avi->extended_colorimetry) { case HDMI_EXTENDED_COLORIMETRY_XV_YCC_601: c.colorspace = V4L2_COLORSPACE_REC709; c.ycbcr_enc = V4L2_YCBCR_ENC_XV709; c.xfer_func = V4L2_XFER_FUNC_709; break; case HDMI_EXTENDED_COLORIMETRY_XV_YCC_709: c.colorspace = V4L2_COLORSPACE_REC709; c.ycbcr_enc = V4L2_YCBCR_ENC_XV601; c.xfer_func = V4L2_XFER_FUNC_709; break; case HDMI_EXTENDED_COLORIMETRY_S_YCC_601: c.colorspace = V4L2_COLORSPACE_SRGB; c.ycbcr_enc = V4L2_YCBCR_ENC_601; c.xfer_func = V4L2_XFER_FUNC_SRGB; break; case HDMI_EXTENDED_COLORIMETRY_OPYCC_601: c.colorspace = V4L2_COLORSPACE_OPRGB; c.ycbcr_enc = V4L2_YCBCR_ENC_601; c.xfer_func = V4L2_XFER_FUNC_OPRGB; break; case HDMI_EXTENDED_COLORIMETRY_BT2020: c.colorspace = V4L2_COLORSPACE_BT2020; c.ycbcr_enc = V4L2_YCBCR_ENC_BT2020; c.xfer_func = V4L2_XFER_FUNC_709; break; case HDMI_EXTENDED_COLORIMETRY_BT2020_CONST_LUM: c.colorspace = V4L2_COLORSPACE_BT2020; c.ycbcr_enc = V4L2_YCBCR_ENC_BT2020_CONST_LUM; c.xfer_func = V4L2_XFER_FUNC_709; break; default: /* fall back to ITU_709 */ c.colorspace = V4L2_COLORSPACE_REC709; c.ycbcr_enc = V4L2_YCBCR_ENC_709; c.xfer_func = V4L2_XFER_FUNC_709; break; } break; default: break; } /* * YCC Quantization Range signaling is more-or-less broken, * let's just ignore this. */ break; } return c; } EXPORT_SYMBOL_GPL(v4l2_hdmi_rx_colorimetry); /** * v4l2_get_edid_phys_addr() - find and return the physical address * * @edid: pointer to the EDID data * @size: size in bytes of the EDID data * @offset: If not %NULL then the location of the physical address * bytes in the EDID will be returned here. This is set to 0 * if there is no physical address found. * * Return: the physical address or CEC_PHYS_ADDR_INVALID if there is none. */ u16 v4l2_get_edid_phys_addr(const u8 *edid, unsigned int size, unsigned int *offset) { unsigned int loc = cec_get_edid_spa_location(edid, size); if (offset) *offset = loc; if (loc == 0) return CEC_PHYS_ADDR_INVALID; return (edid[loc] << 8) | edid[loc + 1]; } EXPORT_SYMBOL_GPL(v4l2_get_edid_phys_addr); /** * v4l2_set_edid_phys_addr() - find and set the physical address * * @edid: pointer to the EDID data * @size: size in bytes of the EDID data * @phys_addr: the new physical address * * This function finds the location of the physical address in the EDID * and fills in the given physical address and updates the checksum * at the end of the EDID block. It does nothing if the EDID doesn't * contain a physical address. */ void v4l2_set_edid_phys_addr(u8 *edid, unsigned int size, u16 phys_addr) { unsigned int loc = cec_get_edid_spa_location(edid, size); u8 sum = 0; unsigned int i; if (loc == 0) return; edid[loc] = phys_addr >> 8; edid[loc + 1] = phys_addr & 0xff; loc &= ~0x7f; /* update the checksum */ for (i = loc; i < loc + 127; i++) sum += edid[i]; edid[i] = 256 - sum; } EXPORT_SYMBOL_GPL(v4l2_set_edid_phys_addr); /** * v4l2_phys_addr_for_input() - calculate the PA for an input * * @phys_addr: the physical address of the parent * @input: the number of the input port, must be between 1 and 15 * * This function calculates a new physical address based on the input * port number. For example: * * PA = 0.0.0.0 and input = 2 becomes 2.0.0.0 * * PA = 3.0.0.0 and input = 1 becomes 3.1.0.0 * * PA = 3.2.1.0 and input = 5 becomes 3.2.1.5 * * PA = 3.2.1.3 and input = 5 becomes f.f.f.f since it maxed out the depth. * * Return: the new physical address or CEC_PHYS_ADDR_INVALID. */ u16 v4l2_phys_addr_for_input(u16 phys_addr, u8 input) { /* Check if input is sane */ if (WARN_ON(input == 0 || input > 0xf)) return CEC_PHYS_ADDR_INVALID; if (phys_addr == 0) return input << 12; if ((phys_addr & 0x0fff) == 0) return phys_addr | (input << 8); if ((phys_addr & 0x00ff) == 0) return phys_addr | (input << 4); if ((phys_addr & 0x000f) == 0) return phys_addr | input; /* * All nibbles are used so no valid physical addresses can be assigned * to the input. */ return CEC_PHYS_ADDR_INVALID; } EXPORT_SYMBOL_GPL(v4l2_phys_addr_for_input); /** * v4l2_phys_addr_validate() - validate a physical address from an EDID * * @phys_addr: the physical address to validate * @parent: if not %NULL, then this is filled with the parents PA. * @port: if not %NULL, then this is filled with the input port. * * This validates a physical address as read from an EDID. If the * PA is invalid (such as 1.0.1.0 since '0' is only allowed at the end), * then it will return -EINVAL. * * The parent PA is passed into %parent and the input port is passed into * %port. For example: * * PA = 0.0.0.0: has parent 0.0.0.0 and input port 0. * * PA = 1.0.0.0: has parent 0.0.0.0 and input port 1. * * PA = 3.2.0.0: has parent 3.0.0.0 and input port 2. * * PA = f.f.f.f: has parent f.f.f.f and input port 0. * * Return: 0 if the PA is valid, -EINVAL if not. */ int v4l2_phys_addr_validate(u16 phys_addr, u16 *parent, u16 *port) { int i; if (parent) *parent = phys_addr; if (port) *port = 0; if (phys_addr == CEC_PHYS_ADDR_INVALID) return 0; for (i = 0; i < 16; i += 4) if (phys_addr & (0xf << i)) break; if (i == 16) return 0; if (parent) *parent = phys_addr & (0xfff0 << i); if (port) *port = (phys_addr >> i) & 0xf; for (i += 4; i < 16; i += 4) if ((phys_addr & (0xf << i)) == 0) return -EINVAL; return 0; } EXPORT_SYMBOL_GPL(v4l2_phys_addr_validate);