/* cx25840 audio functions * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #include "cx25840-core.h" static int set_audclk_freq(struct i2c_client *client, u32 freq) { struct cx25840_state *state = to_state(i2c_get_clientdata(client)); if (freq != 32000 && freq != 44100 && freq != 48000) return -EINVAL; /* common for all inputs and rates */ /* SA_MCLK_SEL=1, SA_MCLK_DIV=0x10 */ if (!state->is_cx23885 && !state->is_cx231xx) cx25840_write(client, 0x127, 0x50); if (state->aud_input != CX25840_AUDIO_SERIAL) { switch (freq) { case 32000: if (state->is_cx23885) { /* We don't have register values * so avoid destroying registers. */ break; } if (!state->is_cx231xx) { /* VID_PLL and AUX_PLL */ cx25840_write4(client, 0x108, 0x1006040f); /* AUX_PLL_FRAC */ cx25840_write4(client, 0x110, 0x01bb39ee); } if (state->is_cx25836) break; /* src3/4/6_ctl = 0x0801f77f */ cx25840_write4(client, 0x900, 0x0801f77f); cx25840_write4(client, 0x904, 0x0801f77f); cx25840_write4(client, 0x90c, 0x0801f77f); break; case 44100: if (state->is_cx23885) { /* We don't have register values * so avoid destroying registers. */ break; } if (!state->is_cx231xx) { /* VID_PLL and AUX_PLL */ cx25840_write4(client, 0x108, 0x1009040f); /* AUX_PLL_FRAC */ cx25840_write4(client, 0x110, 0x00ec6bd6); } if (state->is_cx25836) break; /* src3/4/6_ctl = 0x08016d59 */ cx25840_write4(client, 0x900, 0x08016d59); cx25840_write4(client, 0x904, 0x08016d59); cx25840_write4(client, 0x90c, 0x08016d59); break; case 48000: if (state->is_cx23885) { /* We don't have register values * so avoid destroying registers. */ break; } if (!state->is_cx231xx) { /* VID_PLL and AUX_PLL */ cx25840_write4(client, 0x108, 0x100a040f); /* AUX_PLL_FRAC */ cx25840_write4(client, 0x110, 0x0098d6e5); } if (state->is_cx25836) break; /* src3/4/6_ctl = 0x08014faa */ cx25840_write4(client, 0x900, 0x08014faa); cx25840_write4(client, 0x904, 0x08014faa); cx25840_write4(client, 0x90c, 0x08014faa); break; } } else { switch (freq) { case 32000: if (state->is_cx23885) { /* We don't have register values * so avoid destroying registers. */ break; } if (!state->is_cx231xx) { /* VID_PLL and AUX_PLL */ cx25840_write4(client, 0x108, 0x1e08040f); /* AUX_PLL_FRAC */ cx25840_write4(client, 0x110, 0x012a0869); } if (state->is_cx25836) break; /* src1_ctl = 0x08010000 */ cx25840_write4(client, 0x8f8, 0x08010000); /* src3/4/6_ctl = 0x08020000 */ cx25840_write4(client, 0x900, 0x08020000); cx25840_write4(client, 0x904, 0x08020000); cx25840_write4(client, 0x90c, 0x08020000); /* SA_MCLK_SEL=1, SA_MCLK_DIV=0x14 */ cx25840_write(client, 0x127, 0x54); break; case 44100: if (state->is_cx23885) { /* We don't have register values * so avoid destroying registers. */ break; } if (!state->is_cx231xx) { /* VID_PLL and AUX_PLL */ cx25840_write4(client, 0x108, 0x1809040f); /* AUX_PLL_FRAC */ cx25840_write4(client, 0x110, 0x00ec6bd6); } if (state->is_cx25836) break; /* src1_ctl = 0x08010000 */ cx25840_write4(client, 0x8f8, 0x080160cd); /* src3/4/6_ctl = 0x08020000 */ cx25840_write4(client, 0x900, 0x08017385); cx25840_write4(client, 0x904, 0x08017385); cx25840_write4(client, 0x90c, 0x08017385); break; case 48000: if (!state->is_cx23885 && !state->is_cx231xx) { /* VID_PLL and AUX_PLL */ cx25840_write4(client, 0x108, 0x180a040f); /* AUX_PLL_FRAC */ cx25840_write4(client, 0x110, 0x0098d6e5); } if (state->is_cx25836) break; if (!state->is_cx23885 && !state->is_cx231xx) { /* src1_ctl */ cx25840_write4(client, 0x8f8, 0x08018000); /* src3/4/6_ctl */ cx25840_write4(client, 0x900, 0x08015555); cx25840_write4(client, 0x904, 0x08015555); cx25840_write4(client, 0x90c, 0x08015555); } else { cx25840_write4(client, 0x8f8, 0x0801867c); cx25840_write4(client, 0x900, 0x08014faa); cx25840_write4(client, 0x904, 0x08014faa); cx25840_write4(client, 0x90c, 0x08014faa); } break; } } state->audclk_freq = freq; return 0; } void cx25840_audio_set_path(struct i2c_client *client) { struct cx25840_state *state = to_state(i2c_get_clientdata(client)); /* assert soft reset */ cx25840_and_or(client, 0x810, ~0x1, 0x01); /* stop microcontroller */ cx25840_and_or(client, 0x803, ~0x10, 0); /* Mute everything to prevent the PFFT! */ cx25840_write(client, 0x8d3, 0x1f); if (state->aud_input == CX25840_AUDIO_SERIAL) { /* Set Path1 to Serial Audio Input */ cx25840_write4(client, 0x8d0, 0x01011012); /* The microcontroller should not be started for the * non-tuner inputs: autodetection is specific for * TV audio. */ } else { /* Set Path1 to Analog Demod Main Channel */ cx25840_write4(client, 0x8d0, 0x1f063870); } set_audclk_freq(client, state->audclk_freq); if (state->aud_input != CX25840_AUDIO_SERIAL) { /* When the microcontroller detects the * audio format, it will unmute the lines */ cx25840_and_or(client, 0x803, ~0x10, 0x10); } /* deassert soft reset */ cx25840_and_or(client, 0x810, ~0x1, 0x00); /* Ensure the controller is running when we exit */ if (state->is_cx23885 || state->is_cx231xx) cx25840_and_or(client, 0x803, ~0x10, 0x10); } static int get_volume(struct i2c_client *client) { struct cx25840_state *state = to_state(i2c_get_clientdata(client)); int vol; if (state->unmute_volume >= 0) return state->unmute_volume; /* Volume runs +18dB to -96dB in 1/2dB steps * change to fit the msp3400 -114dB to +12dB range */ /* check PATH1_VOLUME */ vol = 228 - cx25840_read(client, 0x8d4); vol = (vol / 2) + 23; return vol << 9; } static void set_volume(struct i2c_client *client, int volume) { struct cx25840_state *state = to_state(i2c_get_clientdata(client)); int vol; if (state->unmute_volume >= 0) { state->unmute_volume = volume; return; } /* Convert the volume to msp3400 values (0-127) */ vol = volume >> 9; /* now scale it up to cx25840 values * -114dB to -96dB maps to 0 * this should be 19, but in my testing that was 4dB too loud */ if (vol <= 23) { vol = 0; } else { vol -= 23; } /* PATH1_VOLUME */ cx25840_write(client, 0x8d4, 228 - (vol * 2)); } static int get_bass(struct i2c_client *client) { /* bass is 49 steps +12dB to -12dB */ /* check PATH1_EQ_BASS_VOL */ int bass = cx25840_read(client, 0x8d9) & 0x3f; bass = (((48 - bass) * 0xffff) + 47) / 48; return bass; } static void set_bass(struct i2c_client *client, int bass) { /* PATH1_EQ_BASS_VOL */ cx25840_and_or(client, 0x8d9, ~0x3f, 48 - (bass * 48 / 0xffff)); } static int get_treble(struct i2c_client *client) { /* treble is 49 steps +12dB to -12dB */ /* check PATH1_EQ_TREBLE_VOL */ int treble = cx25840_read(client, 0x8db) & 0x3f; treble = (((48 - treble) * 0xffff) + 47) / 48; return treble; } static void set_treble(struct i2c_client *client, int treble) { /* PATH1_EQ_TREBLE_VOL */ cx25840_and_or(client, 0x8db, ~0x3f, 48 - (treble * 48 / 0xffff)); } static int get_balance(struct i2c_client *client) { /* balance is 7 bit, 0 to -96dB */ /* check PATH1_BAL_LEVEL */ int balance = cx25840_read(client, 0x8d5) & 0x7f; /* check PATH1_BAL_LEFT */ if ((cx25840_read(client, 0x8d5) & 0x80) == 0) balance = 0x80 - balance; else balance = 0x80 + balance; return balance << 8; } static void set_balance(struct i2c_client *client, int balance) { int bal = balance >> 8; if (bal > 0x80) { /* PATH1_BAL_LEFT */ cx25840_and_or(client, 0x8d5, 0x7f, 0x80); /* PATH1_BAL_LEVEL */ cx25840_and_or(client, 0x8d5, ~0x7f, bal & 0x7f); } else { /* PATH1_BAL_LEFT */ cx25840_and_or(client, 0x8d5, 0x7f, 0x00); /* PATH1_BAL_LEVEL */ cx25840_and_or(client, 0x8d5, ~0x7f, 0x80 - bal); } } static int get_mute(struct i2c_client *client) { struct cx25840_state *state = to_state(i2c_get_clientdata(client)); return state->unmute_volume >= 0; } static void set_mute(struct i2c_client *client, int mute) { struct cx25840_state *state = to_state(i2c_get_clientdata(client)); if (mute && state->unmute_volume == -1) { int vol = get_volume(client); set_volume(client, 0); state->unmute_volume = vol; } else if (!mute && state->unmute_volume != -1) { int vol = state->unmute_volume; state->unmute_volume = -1; set_volume(client, vol); } } int cx25840_s_clock_freq(struct v4l2_subdev *sd, u32 freq) { struct i2c_client *client = v4l2_get_subdevdata(sd); struct cx25840_state *state = to_state(sd); int retval; if (!state->is_cx25836) cx25840_and_or(client, 0x810, ~0x1, 1); if (state->aud_input != CX25840_AUDIO_SERIAL) { cx25840_and_or(client, 0x803, ~0x10, 0); cx25840_write(client, 0x8d3, 0x1f); } retval = set_audclk_freq(client, freq); if (state->aud_input != CX25840_AUDIO_SERIAL) cx25840_and_or(client, 0x803, ~0x10, 0x10); if (!state->is_cx25836) cx25840_and_or(client, 0x810, ~0x1, 0); return retval; } int cx25840_audio_g_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl) { struct i2c_client *client = v4l2_get_subdevdata(sd); switch (ctrl->id) { case V4L2_CID_AUDIO_VOLUME: ctrl->value = get_volume(client); break; case V4L2_CID_AUDIO_BASS: ctrl->value = get_bass(client); break; case V4L2_CID_AUDIO_TREBLE: ctrl->value = get_treble(client); break; case V4L2_CID_AUDIO_BALANCE: ctrl->value = get_balance(client); break; case V4L2_CID_AUDIO_MUTE: ctrl->value = get_mute(client); break; default: return -EINVAL; } return 0; } int cx25840_audio_s_ctrl(struct v4l2_subdev *sd, struct v4l2_control *ctrl) { struct i2c_client *client = v4l2_get_subdevdata(sd); switch (ctrl->id) { case V4L2_CID_AUDIO_VOLUME: set_volume(client, ctrl->value); break; case V4L2_CID_AUDIO_BASS: set_bass(client, ctrl->value); break; case V4L2_CID_AUDIO_TREBLE: set_treble(client, ctrl->value); break; case V4L2_CID_AUDIO_BALANCE: set_balance(client, ctrl->value); break; case V4L2_CID_AUDIO_MUTE: set_mute(client, ctrl->value); break; default: return -EINVAL; } return 0; }