/* * Atheros AR9170 driver * * MAC programming * * Copyright 2008, Johannes Berg * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, see * http://www.gnu.org/licenses/. * * This file incorporates work covered by the following copyright and * permission notice: * Copyright (c) 2007-2008 Atheros Communications, Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include "ar9170.h" #include "cmd.h" int ar9170_set_dyn_sifs_ack(struct ar9170 *ar) { u32 val; if (conf_is_ht40(&ar->hw->conf)) val = 0x010a; else { if (ar->hw->conf.channel->band == IEEE80211_BAND_2GHZ) val = 0x105; else val = 0x104; } return ar9170_write_reg(ar, AR9170_MAC_REG_DYNAMIC_SIFS_ACK, val); } int ar9170_set_slot_time(struct ar9170 *ar) { u32 slottime = 20; if (!ar->vif) return 0; if ((ar->hw->conf.channel->band == IEEE80211_BAND_5GHZ) || ar->vif->bss_conf.use_short_slot) slottime = 9; return ar9170_write_reg(ar, AR9170_MAC_REG_SLOT_TIME, slottime << 10); } int ar9170_set_basic_rates(struct ar9170 *ar) { u8 cck, ofdm; if (!ar->vif) return 0; ofdm = ar->vif->bss_conf.basic_rates >> 4; /* FIXME: is still necessary? */ if (ar->hw->conf.channel->band == IEEE80211_BAND_5GHZ) cck = 0; else cck = ar->vif->bss_conf.basic_rates & 0xf; return ar9170_write_reg(ar, AR9170_MAC_REG_BASIC_RATE, ofdm << 8 | cck); } int ar9170_set_qos(struct ar9170 *ar) { ar9170_regwrite_begin(ar); ar9170_regwrite(AR9170_MAC_REG_AC0_CW, ar->edcf[0].cw_min | (ar->edcf[0].cw_max << 16)); ar9170_regwrite(AR9170_MAC_REG_AC1_CW, ar->edcf[1].cw_min | (ar->edcf[1].cw_max << 16)); ar9170_regwrite(AR9170_MAC_REG_AC2_CW, ar->edcf[2].cw_min | (ar->edcf[2].cw_max << 16)); ar9170_regwrite(AR9170_MAC_REG_AC3_CW, ar->edcf[3].cw_min | (ar->edcf[3].cw_max << 16)); ar9170_regwrite(AR9170_MAC_REG_AC4_CW, ar->edcf[4].cw_min | (ar->edcf[4].cw_max << 16)); ar9170_regwrite(AR9170_MAC_REG_AC1_AC0_AIFS, ((ar->edcf[0].aifs * 9 + 10)) | ((ar->edcf[1].aifs * 9 + 10) << 12) | ((ar->edcf[2].aifs * 9 + 10) << 24)); ar9170_regwrite(AR9170_MAC_REG_AC3_AC2_AIFS, ((ar->edcf[2].aifs * 9 + 10) >> 8) | ((ar->edcf[3].aifs * 9 + 10) << 4) | ((ar->edcf[4].aifs * 9 + 10) << 16)); ar9170_regwrite(AR9170_MAC_REG_AC1_AC0_TXOP, ar->edcf[0].txop | ar->edcf[1].txop << 16); ar9170_regwrite(AR9170_MAC_REG_AC3_AC2_TXOP, ar->edcf[1].txop | ar->edcf[3].txop << 16); ar9170_regwrite_finish(); return ar9170_regwrite_result(); } static int ar9170_set_ampdu_density(struct ar9170 *ar, u8 mpdudensity) { u32 val; /* don't allow AMPDU density > 8us */ if (mpdudensity > 6) return -EINVAL; /* Watch out! Otus uses slightly different density values. */ val = 0x140a00 | (mpdudensity ? (mpdudensity + 1) : 0); ar9170_regwrite_begin(ar); ar9170_regwrite(AR9170_MAC_REG_AMPDU_DENSITY, val); ar9170_regwrite_finish(); return ar9170_regwrite_result(); } int ar9170_init_mac(struct ar9170 *ar) { ar9170_regwrite_begin(ar); ar9170_regwrite(AR9170_MAC_REG_ACK_EXTENSION, 0x40); ar9170_regwrite(AR9170_MAC_REG_RETRY_MAX, 0); /* enable MMIC */ ar9170_regwrite(AR9170_MAC_REG_SNIFFER, AR9170_MAC_REG_SNIFFER_DEFAULTS); ar9170_regwrite(AR9170_MAC_REG_RX_THRESHOLD, 0xc1f80); ar9170_regwrite(AR9170_MAC_REG_RX_PE_DELAY, 0x70); ar9170_regwrite(AR9170_MAC_REG_EIFS_AND_SIFS, 0xa144000); ar9170_regwrite(AR9170_MAC_REG_SLOT_TIME, 9 << 10); /* CF-END mode */ ar9170_regwrite(0x1c3b2c, 0x19000000); /* NAV protects ACK only (in TXOP) */ ar9170_regwrite(0x1c3b38, 0x201); /* Set Beacon PHY CTRL's TPC to 0x7, TA1=1 */ /* OTUS set AM to 0x1 */ ar9170_regwrite(AR9170_MAC_REG_BCN_HT1, 0x8000170); ar9170_regwrite(AR9170_MAC_REG_BACKOFF_PROTECT, 0x105); /* AGG test code*/ /* Aggregation MAX number and timeout */ ar9170_regwrite(0x1c3b9c, 0x10000a); ar9170_regwrite(AR9170_MAC_REG_FRAMETYPE_FILTER, AR9170_MAC_REG_FTF_DEFAULTS); /* Enable deaggregator, response in sniffer mode */ ar9170_regwrite(0x1c3c40, 0x1 | 1<<30); /* rate sets */ ar9170_regwrite(AR9170_MAC_REG_BASIC_RATE, 0x150f); ar9170_regwrite(AR9170_MAC_REG_MANDATORY_RATE, 0x150f); ar9170_regwrite(AR9170_MAC_REG_RTS_CTS_RATE, 0x10b01bb); /* MIMO response control */ ar9170_regwrite(0x1c3694, 0x4003C1E);/* bit 26~28 otus-AM */ /* switch MAC to OTUS interface */ ar9170_regwrite(0x1c3600, 0x3); ar9170_regwrite(AR9170_MAC_REG_AMPDU_RX_THRESH, 0xffff); /* set PHY register read timeout (??) */ ar9170_regwrite(AR9170_MAC_REG_MISC_680, 0xf00008); /* Disable Rx TimeOut, workaround for BB. */ ar9170_regwrite(AR9170_MAC_REG_RX_TIMEOUT, 0x0); /* Set CPU clock frequency to 88/80MHz */ ar9170_regwrite(AR9170_PWR_REG_CLOCK_SEL, AR9170_PWR_CLK_AHB_80_88MHZ | AR9170_PWR_CLK_DAC_160_INV_DLY); /* Set WLAN DMA interrupt mode: generate int per packet */ ar9170_regwrite(AR9170_MAC_REG_TXRX_MPI, 0x110011); ar9170_regwrite(AR9170_MAC_REG_FCS_SELECT, AR9170_MAC_FCS_FIFO_PROT); /* Disables the CF_END frame, undocumented register */ ar9170_regwrite(AR9170_MAC_REG_TXOP_NOT_ENOUGH_IND, 0x141E0F48); ar9170_regwrite_finish(); return ar9170_regwrite_result(); } static int ar9170_set_mac_reg(struct ar9170 *ar, const u32 reg, const u8 *mac) { static const u8 zero[ETH_ALEN] = { 0 }; if (!mac) mac = zero; ar9170_regwrite_begin(ar); ar9170_regwrite(reg, (mac[3] << 24) | (mac[2] << 16) | (mac[1] << 8) | mac[0]); ar9170_regwrite(reg + 4, (mac[5] << 8) | mac[4]); ar9170_regwrite_finish(); return ar9170_regwrite_result(); } int ar9170_update_multicast(struct ar9170 *ar, const u64 mc_hash) { int err; ar9170_regwrite_begin(ar); ar9170_regwrite(AR9170_MAC_REG_GROUP_HASH_TBL_H, mc_hash >> 32); ar9170_regwrite(AR9170_MAC_REG_GROUP_HASH_TBL_L, mc_hash); ar9170_regwrite_finish(); err = ar9170_regwrite_result(); if (err) return err; ar->cur_mc_hash = mc_hash; return 0; } int ar9170_update_frame_filter(struct ar9170 *ar, const u32 filter) { int err; err = ar9170_write_reg(ar, AR9170_MAC_REG_FRAMETYPE_FILTER, filter); if (err) return err; ar->cur_filter = filter; return 0; } static int ar9170_set_promiscouous(struct ar9170 *ar) { u32 encr_mode, sniffer; int err; err = ar9170_read_reg(ar, AR9170_MAC_REG_SNIFFER, &sniffer); if (err) return err; err = ar9170_read_reg(ar, AR9170_MAC_REG_ENCRYPTION, &encr_mode); if (err) return err; if (ar->sniffer_enabled) { sniffer |= AR9170_MAC_REG_SNIFFER_ENABLE_PROMISC; /* * Rx decryption works in place. * * If we don't disable it, the hardware will render all * encrypted frames which are encrypted with an unknown * key useless. */ encr_mode |= AR9170_MAC_REG_ENCRYPTION_RX_SOFTWARE; ar->sniffer_enabled = true; } else { sniffer &= ~AR9170_MAC_REG_SNIFFER_ENABLE_PROMISC; if (ar->rx_software_decryption) encr_mode |= AR9170_MAC_REG_ENCRYPTION_RX_SOFTWARE; else encr_mode &= ~AR9170_MAC_REG_ENCRYPTION_RX_SOFTWARE; } ar9170_regwrite_begin(ar); ar9170_regwrite(AR9170_MAC_REG_ENCRYPTION, encr_mode); ar9170_regwrite(AR9170_MAC_REG_SNIFFER, sniffer); ar9170_regwrite_finish(); return ar9170_regwrite_result(); } int ar9170_set_operating_mode(struct ar9170 *ar) { u32 pm_mode = AR9170_MAC_REG_POWERMGT_DEFAULTS; u8 *mac_addr, *bssid; int err; if (ar->vif) { mac_addr = ar->mac_addr; bssid = ar->bssid; switch (ar->vif->type) { case NL80211_IFTYPE_MESH_POINT: case NL80211_IFTYPE_ADHOC: pm_mode |= AR9170_MAC_REG_POWERMGT_IBSS; break; case NL80211_IFTYPE_AP: pm_mode |= AR9170_MAC_REG_POWERMGT_AP; break; case NL80211_IFTYPE_WDS: pm_mode |= AR9170_MAC_REG_POWERMGT_AP_WDS; break; case NL80211_IFTYPE_MONITOR: ar->sniffer_enabled = true; ar->rx_software_decryption = true; break; default: pm_mode |= AR9170_MAC_REG_POWERMGT_STA; break; } } else { mac_addr = NULL; bssid = NULL; } err = ar9170_set_mac_reg(ar, AR9170_MAC_REG_MAC_ADDR_L, mac_addr); if (err) return err; err = ar9170_set_mac_reg(ar, AR9170_MAC_REG_BSSID_L, bssid); if (err) return err; err = ar9170_set_promiscouous(ar); if (err) return err; /* set AMPDU density to 8us. */ err = ar9170_set_ampdu_density(ar, 6); if (err) return err; ar9170_regwrite_begin(ar); ar9170_regwrite(AR9170_MAC_REG_POWERMANAGEMENT, pm_mode); ar9170_regwrite_finish(); return ar9170_regwrite_result(); } int ar9170_set_hwretry_limit(struct ar9170 *ar, unsigned int max_retry) { u32 tmp = min_t(u32, 0x33333, max_retry * 0x11111); return ar9170_write_reg(ar, AR9170_MAC_REG_RETRY_MAX, tmp); } int ar9170_set_beacon_timers(struct ar9170 *ar) { u32 v = 0; u32 pretbtt = 0; if (ar->vif) { v |= ar->vif->bss_conf.beacon_int; if (ar->enable_beacon) { switch (ar->vif->type) { case NL80211_IFTYPE_MESH_POINT: case NL80211_IFTYPE_ADHOC: v |= BIT(25); break; case NL80211_IFTYPE_AP: v |= BIT(24); pretbtt = (ar->vif->bss_conf.beacon_int - 6) << 16; break; default: break; } } v |= ar->vif->bss_conf.dtim_period << 16; } ar9170_regwrite_begin(ar); ar9170_regwrite(AR9170_MAC_REG_PRETBTT, pretbtt); ar9170_regwrite(AR9170_MAC_REG_BCN_PERIOD, v); ar9170_regwrite_finish(); return ar9170_regwrite_result(); } int ar9170_update_beacon(struct ar9170 *ar) { struct sk_buff *skb; __le32 *data, *old = NULL; u32 word; int i; skb = ieee80211_beacon_get(ar->hw, ar->vif); if (!skb) return -ENOMEM; data = (__le32 *)skb->data; if (ar->beacon) old = (__le32 *)ar->beacon->data; ar9170_regwrite_begin(ar); for (i = 0; i < DIV_ROUND_UP(skb->len, 4); i++) { /* * XXX: This accesses beyond skb data for up * to the last 3 bytes!! */ if (old && (data[i] == old[i])) continue; word = le32_to_cpu(data[i]); ar9170_regwrite(AR9170_BEACON_BUFFER_ADDRESS + 4 * i, word); } /* XXX: use skb->cb info */ if (ar->hw->conf.channel->band == IEEE80211_BAND_2GHZ) ar9170_regwrite(AR9170_MAC_REG_BCN_PLCP, ((skb->len + 4) << (3 + 16)) + 0x0400); else ar9170_regwrite(AR9170_MAC_REG_BCN_PLCP, ((skb->len + 4) << 16) + 0x001b); ar9170_regwrite(AR9170_MAC_REG_BCN_LENGTH, skb->len + 4); ar9170_regwrite(AR9170_MAC_REG_BCN_ADDR, AR9170_BEACON_BUFFER_ADDRESS); ar9170_regwrite(AR9170_MAC_REG_BCN_CTRL, 1); ar9170_regwrite_finish(); dev_kfree_skb(ar->beacon); ar->beacon = skb; return ar9170_regwrite_result(); } void ar9170_new_beacon(struct work_struct *work) { struct ar9170 *ar = container_of(work, struct ar9170, beacon_work); struct sk_buff *skb; if (unlikely(!IS_STARTED(ar))) return ; mutex_lock(&ar->mutex); if (!ar->vif) goto out; ar9170_update_beacon(ar); rcu_read_lock(); while ((skb = ieee80211_get_buffered_bc(ar->hw, ar->vif))) ar9170_op_tx(ar->hw, skb); rcu_read_unlock(); out: mutex_unlock(&ar->mutex); } int ar9170_upload_key(struct ar9170 *ar, u8 id, const u8 *mac, u8 ktype, u8 keyidx, u8 *keydata, int keylen) { __le32 vals[7]; static const u8 bcast[ETH_ALEN] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; u8 dummy; mac = mac ? : bcast; vals[0] = cpu_to_le32((keyidx << 16) + id); vals[1] = cpu_to_le32(mac[1] << 24 | mac[0] << 16 | ktype); vals[2] = cpu_to_le32(mac[5] << 24 | mac[4] << 16 | mac[3] << 8 | mac[2]); memset(&vals[3], 0, 16); if (keydata) memcpy(&vals[3], keydata, keylen); return ar->exec_cmd(ar, AR9170_CMD_EKEY, sizeof(vals), (u8 *)vals, 1, &dummy); } int ar9170_disable_key(struct ar9170 *ar, u8 id) { __le32 val = cpu_to_le32(id); u8 dummy; return ar->exec_cmd(ar, AR9170_CMD_EKEY, sizeof(val), (u8 *)&val, 1, &dummy); }