/* comedi/drivers/comedi_test.c Generates fake waveform signals that can be read through the command interface. It does _not_ read from any board; it just generates deterministic waveforms. Useful for various testing purposes. Copyright (C) 2002 Joachim Wuttke Copyright (C) 2002 Frank Mori Hess COMEDI - Linux Control and Measurement Device Interface Copyright (C) 2000 David A. Schleef This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. ************************************************************************/ /* Driver: comedi_test Description: generates fake waveforms Author: Joachim Wuttke , Frank Mori Hess , ds Devices: Status: works Updated: Sat, 16 Mar 2002 17:34:48 -0800 This driver is mainly for testing purposes, but can also be used to generate sample waveforms on systems that don't have data acquisition hardware. Configuration options: [0] - Amplitude in microvolts for fake waveforms (default 1 volt) [1] - Period in microseconds for fake waveforms (default 0.1 sec) Generates a sawtooth wave on channel 0, square wave on channel 1, additional waveforms could be added to other channels (currently they return flatline zero volts). */ #include "../comedidev.h" #include #include "comedi_fc.h" #include /* Board descriptions */ struct waveform_board { const char *name; int ai_chans; int ai_bits; int have_dio; }; #define N_CHANS 8 static const struct waveform_board waveform_boards[] = { { .name = "comedi_test", .ai_chans = N_CHANS, .ai_bits = 16, .have_dio = 0, }, }; #define thisboard ((const struct waveform_board *)dev->board_ptr) /* Data unique to this driver */ struct waveform_private { struct timer_list timer; struct timeval last; /* time at which last timer interrupt occured */ unsigned int uvolt_amplitude; /* waveform amplitude in microvolts */ unsigned long usec_period; /* waveform period in microseconds */ unsigned long usec_current; /* current time (modulo waveform period) */ unsigned long usec_remainder; /* usec since last scan; */ unsigned long ai_count; /* number of conversions remaining */ unsigned int scan_period; /* scan period in usec */ unsigned int convert_period; /* conversion period in usec */ unsigned timer_running:1; unsigned int ao_loopbacks[N_CHANS]; }; #define devpriv ((struct waveform_private *)dev->private) static int waveform_attach(struct comedi_device *dev, struct comedi_devconfig *it); static int waveform_detach(struct comedi_device *dev); static struct comedi_driver driver_waveform = { .driver_name = "comedi_test", .module = THIS_MODULE, .attach = waveform_attach, .detach = waveform_detach, .board_name = &waveform_boards[0].name, .offset = sizeof(struct waveform_board), .num_names = ARRAY_SIZE(waveform_boards), }; COMEDI_INITCLEANUP(driver_waveform); static int waveform_ai_cmdtest(struct comedi_device *dev, struct comedi_subdevice *s, struct comedi_cmd *cmd); static int waveform_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s); static int waveform_ai_cancel(struct comedi_device *dev, struct comedi_subdevice *s); static int waveform_ai_insn_read(struct comedi_device *dev, struct comedi_subdevice *s, struct comedi_insn *insn, unsigned int *data); static int waveform_ao_insn_write(struct comedi_device *dev, struct comedi_subdevice *s, struct comedi_insn *insn, unsigned int *data); static short fake_sawtooth(struct comedi_device *dev, unsigned int range, unsigned long current_time); static short fake_squarewave(struct comedi_device *dev, unsigned int range, unsigned long current_time); static short fake_flatline(struct comedi_device *dev, unsigned int range, unsigned long current_time); static short fake_waveform(struct comedi_device *dev, unsigned int channel, unsigned int range, unsigned long current_time); /* 1000 nanosec in a microsec */ static const int nano_per_micro = 1000; /* fake analog input ranges */ static const struct comedi_lrange waveform_ai_ranges = { 2, { BIP_RANGE(10), BIP_RANGE(5), } }; /* This is the background routine used to generate arbitrary data. It should run in the background; therefore it is scheduled by a timer mechanism. */ static void waveform_ai_interrupt(unsigned long arg) { struct comedi_device *dev = (struct comedi_device *)arg; struct comedi_async *async = dev->read_subdev->async; struct comedi_cmd *cmd = &async->cmd; unsigned int i, j; /* all times in microsec */ unsigned long elapsed_time; unsigned int num_scans; struct timeval now; do_gettimeofday(&now); elapsed_time = 1000000 * (now.tv_sec - devpriv->last.tv_sec) + now.tv_usec - devpriv->last.tv_usec; devpriv->last = now; num_scans = (devpriv->usec_remainder + elapsed_time) / devpriv->scan_period; devpriv->usec_remainder = (devpriv->usec_remainder + elapsed_time) % devpriv->scan_period; async->events = 0; for (i = 0; i < num_scans; i++) { for (j = 0; j < cmd->chanlist_len; j++) { cfc_write_to_buffer(dev->read_subdev, fake_waveform(dev, CR_CHAN(cmd-> chanlist[j]), CR_RANGE(cmd-> chanlist[j]), devpriv-> usec_current + i * devpriv->scan_period + j * devpriv-> convert_period)); } devpriv->ai_count++; if (cmd->stop_src == TRIG_COUNT && devpriv->ai_count >= cmd->stop_arg) { async->events |= COMEDI_CB_EOA; break; } } devpriv->usec_current += elapsed_time; devpriv->usec_current %= devpriv->usec_period; if ((async->events & COMEDI_CB_EOA) == 0 && devpriv->timer_running) mod_timer(&devpriv->timer, jiffies + 1); else del_timer(&devpriv->timer); comedi_event(dev, dev->read_subdev); } static int waveform_attach(struct comedi_device *dev, struct comedi_devconfig *it) { struct comedi_subdevice *s; int amplitude = it->options[0]; int period = it->options[1]; int i; dev->board_name = thisboard->name; if (alloc_private(dev, sizeof(struct waveform_private)) < 0) return -ENOMEM; /* set default amplitude and period */ if (amplitude <= 0) amplitude = 1000000; /* 1 volt */ if (period <= 0) period = 100000; /* 0.1 sec */ devpriv->uvolt_amplitude = amplitude; devpriv->usec_period = period; dev->n_subdevices = 2; if (alloc_subdevices(dev, dev->n_subdevices) < 0) return -ENOMEM; s = dev->subdevices + 0; dev->read_subdev = s; /* analog input subdevice */ s->type = COMEDI_SUBD_AI; s->subdev_flags = SDF_READABLE | SDF_GROUND | SDF_CMD_READ; s->n_chan = thisboard->ai_chans; s->maxdata = (1 << thisboard->ai_bits) - 1; s->range_table = &waveform_ai_ranges; s->len_chanlist = s->n_chan * 2; s->insn_read = waveform_ai_insn_read; s->do_cmd = waveform_ai_cmd; s->do_cmdtest = waveform_ai_cmdtest; s->cancel = waveform_ai_cancel; s = dev->subdevices + 1; dev->write_subdev = s; /* analog output subdevice (loopback) */ s->type = COMEDI_SUBD_AO; s->subdev_flags = SDF_WRITEABLE | SDF_GROUND; s->n_chan = thisboard->ai_chans; s->maxdata = (1 << thisboard->ai_bits) - 1; s->range_table = &waveform_ai_ranges; s->len_chanlist = s->n_chan * 2; s->insn_write = waveform_ao_insn_write; s->do_cmd = NULL; s->do_cmdtest = NULL; s->cancel = NULL; /* Our default loopback value is just a 0V flatline */ for (i = 0; i < s->n_chan; i++) devpriv->ao_loopbacks[i] = s->maxdata / 2; init_timer(&(devpriv->timer)); devpriv->timer.function = waveform_ai_interrupt; devpriv->timer.data = (unsigned long)dev; printk(KERN_INFO "comedi%d: comedi_test: " "%i microvolt, %li microsecond waveform attached\n", dev->minor, devpriv->uvolt_amplitude, devpriv->usec_period); return 1; } static int waveform_detach(struct comedi_device *dev) { printk("comedi%d: comedi_test: remove\n", dev->minor); if (dev->private) waveform_ai_cancel(dev, dev->read_subdev); return 0; } static int waveform_ai_cmdtest(struct comedi_device *dev, struct comedi_subdevice *s, struct comedi_cmd *cmd) { int err = 0; int tmp; /* step 1: make sure trigger sources are trivially valid */ tmp = cmd->start_src; cmd->start_src &= TRIG_NOW; if (!cmd->start_src || tmp != cmd->start_src) err++; tmp = cmd->scan_begin_src; cmd->scan_begin_src &= TRIG_TIMER; if (!cmd->scan_begin_src || tmp != cmd->scan_begin_src) err++; tmp = cmd->convert_src; cmd->convert_src &= TRIG_NOW | TRIG_TIMER; if (!cmd->convert_src || tmp != cmd->convert_src) err++; tmp = cmd->scan_end_src; cmd->scan_end_src &= TRIG_COUNT; if (!cmd->scan_end_src || tmp != cmd->scan_end_src) err++; tmp = cmd->stop_src; cmd->stop_src &= TRIG_COUNT | TRIG_NONE; if (!cmd->stop_src || tmp != cmd->stop_src) err++; if (err) return 1; /* * step 2: make sure trigger sources are unique and mutually compatible */ if (cmd->convert_src != TRIG_NOW && cmd->convert_src != TRIG_TIMER) err++; if (cmd->stop_src != TRIG_COUNT && cmd->stop_src != TRIG_NONE) err++; if (err) return 2; /* step 3: make sure arguments are trivially compatible */ if (cmd->start_arg != 0) { cmd->start_arg = 0; err++; } if (cmd->convert_src == TRIG_NOW) { if (cmd->convert_arg != 0) { cmd->convert_arg = 0; err++; } } if (cmd->scan_begin_src == TRIG_TIMER) { if (cmd->scan_begin_arg < nano_per_micro) { cmd->scan_begin_arg = nano_per_micro; err++; } if (cmd->convert_src == TRIG_TIMER && cmd->scan_begin_arg < cmd->convert_arg * cmd->chanlist_len) { cmd->scan_begin_arg = cmd->convert_arg * cmd->chanlist_len; err++; } } /* * XXX these checks are generic and should go in core if not there * already */ if (!cmd->chanlist_len) { cmd->chanlist_len = 1; err++; } if (cmd->scan_end_arg != cmd->chanlist_len) { cmd->scan_end_arg = cmd->chanlist_len; err++; } if (cmd->stop_src == TRIG_COUNT) { if (!cmd->stop_arg) { cmd->stop_arg = 1; err++; } } else { /* TRIG_NONE */ if (cmd->stop_arg != 0) { cmd->stop_arg = 0; err++; } } if (err) return 3; /* step 4: fix up any arguments */ if (cmd->scan_begin_src == TRIG_TIMER) { tmp = cmd->scan_begin_arg; /* round to nearest microsec */ cmd->scan_begin_arg = nano_per_micro * ((tmp + (nano_per_micro / 2)) / nano_per_micro); if (tmp != cmd->scan_begin_arg) err++; } if (cmd->convert_src == TRIG_TIMER) { tmp = cmd->convert_arg; /* round to nearest microsec */ cmd->convert_arg = nano_per_micro * ((tmp + (nano_per_micro / 2)) / nano_per_micro); if (tmp != cmd->convert_arg) err++; } if (err) return 4; return 0; } static int waveform_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s) { struct comedi_cmd *cmd = &s->async->cmd; if (cmd->flags & TRIG_RT) { comedi_error(dev, "commands at RT priority not supported in this driver"); return -1; } devpriv->timer_running = 1; devpriv->ai_count = 0; devpriv->scan_period = cmd->scan_begin_arg / nano_per_micro; if (cmd->convert_src == TRIG_NOW) devpriv->convert_period = 0; else if (cmd->convert_src == TRIG_TIMER) devpriv->convert_period = cmd->convert_arg / nano_per_micro; else { comedi_error(dev, "bug setting conversion period"); return -1; } do_gettimeofday(&devpriv->last); devpriv->usec_current = devpriv->last.tv_usec % devpriv->usec_period; devpriv->usec_remainder = 0; devpriv->timer.expires = jiffies + 1; add_timer(&devpriv->timer); return 0; } static int waveform_ai_cancel(struct comedi_device *dev, struct comedi_subdevice *s) { devpriv->timer_running = 0; del_timer(&devpriv->timer); return 0; } static short fake_sawtooth(struct comedi_device *dev, unsigned int range_index, unsigned long current_time) { struct comedi_subdevice *s = dev->read_subdev; unsigned int offset = s->maxdata / 2; u64 value; const struct comedi_krange *krange = &s->range_table->range[range_index]; u64 binary_amplitude; binary_amplitude = s->maxdata; binary_amplitude *= devpriv->uvolt_amplitude; do_div(binary_amplitude, krange->max - krange->min); current_time %= devpriv->usec_period; value = current_time; value *= binary_amplitude * 2; do_div(value, devpriv->usec_period); value -= binary_amplitude; /* get rid of sawtooth's dc offset */ return offset + value; } static short fake_squarewave(struct comedi_device *dev, unsigned int range_index, unsigned long current_time) { struct comedi_subdevice *s = dev->read_subdev; unsigned int offset = s->maxdata / 2; u64 value; const struct comedi_krange *krange = &s->range_table->range[range_index]; current_time %= devpriv->usec_period; value = s->maxdata; value *= devpriv->uvolt_amplitude; do_div(value, krange->max - krange->min); if (current_time < devpriv->usec_period / 2) value *= -1; return offset + value; } static short fake_flatline(struct comedi_device *dev, unsigned int range_index, unsigned long current_time) { return dev->read_subdev->maxdata / 2; } /* generates a different waveform depending on what channel is read */ static short fake_waveform(struct comedi_device *dev, unsigned int channel, unsigned int range, unsigned long current_time) { enum { SAWTOOTH_CHAN, SQUARE_CHAN, }; switch (channel) { case SAWTOOTH_CHAN: return fake_sawtooth(dev, range, current_time); break; case SQUARE_CHAN: return fake_squarewave(dev, range, current_time); break; default: break; } return fake_flatline(dev, range, current_time); } static int waveform_ai_insn_read(struct comedi_device *dev, struct comedi_subdevice *s, struct comedi_insn *insn, unsigned int *data) { int i, chan = CR_CHAN(insn->chanspec); for (i = 0; i < insn->n; i++) data[i] = devpriv->ao_loopbacks[chan]; return insn->n; } static int waveform_ao_insn_write(struct comedi_device *dev, struct comedi_subdevice *s, struct comedi_insn *insn, unsigned int *data) { int i, chan = CR_CHAN(insn->chanspec); for (i = 0; i < insn->n; i++) devpriv->ao_loopbacks[chan] = data[i]; return insn->n; }