/* arch/arm/mach-msm/qdsp5/audio_in.c * * pcm audio input device * * Copyright (C) 2008 Google, Inc. * Copyright (C) 2008 HTC Corporation * * This software is licensed under the terms of the GNU General Public * License version 2, as published by the Free Software Foundation, and * may be copied, distributed, and modified under those terms. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #include <linux/module.h> #include <linux/fs.h> #include <linux/miscdevice.h> #include <linux/uaccess.h> #include <linux/kthread.h> #include <linux/wait.h> #include <linux/dma-mapping.h> #include <linux/delay.h> #include <linux/msm_audio.h> #include <asm/atomic.h> #include <asm/ioctls.h> #include <mach/msm_adsp.h> #include <mach/msm_rpcrouter.h> #include "audmgr.h" #include <mach/qdsp5/qdsp5audpreproccmdi.h> #include <mach/qdsp5/qdsp5audpreprocmsg.h> #include <mach/qdsp5/qdsp5audreccmdi.h> #include <mach/qdsp5/qdsp5audrecmsg.h> /* for queue ids - should be relative to module number*/ #include "adsp.h" /* FRAME_NUM must be a power of two */ #define FRAME_NUM (8) #define FRAME_SIZE (2052 * 2) #define MONO_DATA_SIZE (2048) #define STEREO_DATA_SIZE (MONO_DATA_SIZE * 2) #define DMASZ (FRAME_SIZE * FRAME_NUM) #define AGC_PARAM_SIZE (20) #define NS_PARAM_SIZE (6) #define IIR_PARAM_SIZE (48) #define DEBUG (0) #define AGC_ENABLE 0x0001 #define NS_ENABLE 0x0002 #define IIR_ENABLE 0x0004 struct tx_agc_config { uint16_t agc_params[AGC_PARAM_SIZE]; }; struct ns_config { uint16_t ns_params[NS_PARAM_SIZE]; }; struct tx_iir_filter { uint16_t num_bands; uint16_t iir_params[IIR_PARAM_SIZE]; }; struct audpre_cmd_iir_config_type { uint16_t cmd_id; uint16_t active_flag; uint16_t num_bands; uint16_t iir_params[IIR_PARAM_SIZE]; }; struct buffer { void *data; uint32_t size; uint32_t read; uint32_t addr; }; struct audio_in { struct buffer in[FRAME_NUM]; spinlock_t dsp_lock; atomic_t in_bytes; struct mutex lock; struct mutex read_lock; wait_queue_head_t wait; struct msm_adsp_module *audpre; struct msm_adsp_module *audrec; /* configuration to use on next enable */ uint32_t samp_rate; uint32_t channel_mode; uint32_t buffer_size; /* 2048 for mono, 4096 for stereo */ uint32_t type; /* 0 for PCM ,1 for AAC */ uint32_t dsp_cnt; uint32_t in_head; /* next buffer dsp will write */ uint32_t in_tail; /* next buffer read() will read */ uint32_t in_count; /* number of buffers available to read() */ unsigned short samp_rate_index; struct audmgr audmgr; /* data allocated for various buffers */ char *data; dma_addr_t phys; int opened; int enabled; int running; int stopped; /* set when stopped, cleared on flush */ /* audpre settings */ int agc_enable; struct tx_agc_config agc; int ns_enable; struct ns_config ns; int iir_enable; struct tx_iir_filter iir; }; static int audio_in_dsp_enable(struct audio_in *audio, int enable); static int audio_in_encoder_config(struct audio_in *audio); static int audio_dsp_read_buffer(struct audio_in *audio, uint32_t read_cnt); static void audio_flush(struct audio_in *audio); static int audio_dsp_set_agc(struct audio_in *audio); static int audio_dsp_set_ns(struct audio_in *audio); static int audio_dsp_set_tx_iir(struct audio_in *audio); static unsigned convert_dsp_samp_index(unsigned index) { switch (index) { case 48000: return AUDREC_CMD_SAMP_RATE_INDX_48000; case 44100: return AUDREC_CMD_SAMP_RATE_INDX_44100; case 32000: return AUDREC_CMD_SAMP_RATE_INDX_32000; case 24000: return AUDREC_CMD_SAMP_RATE_INDX_24000; case 22050: return AUDREC_CMD_SAMP_RATE_INDX_22050; case 16000: return AUDREC_CMD_SAMP_RATE_INDX_16000; case 12000: return AUDREC_CMD_SAMP_RATE_INDX_12000; case 11025: return AUDREC_CMD_SAMP_RATE_INDX_11025; case 8000: return AUDREC_CMD_SAMP_RATE_INDX_8000; default: return AUDREC_CMD_SAMP_RATE_INDX_11025; } } static unsigned convert_samp_rate(unsigned hz) { switch (hz) { case 48000: return RPC_AUD_DEF_SAMPLE_RATE_48000; case 44100: return RPC_AUD_DEF_SAMPLE_RATE_44100; case 32000: return RPC_AUD_DEF_SAMPLE_RATE_32000; case 24000: return RPC_AUD_DEF_SAMPLE_RATE_24000; case 22050: return RPC_AUD_DEF_SAMPLE_RATE_22050; case 16000: return RPC_AUD_DEF_SAMPLE_RATE_16000; case 12000: return RPC_AUD_DEF_SAMPLE_RATE_12000; case 11025: return RPC_AUD_DEF_SAMPLE_RATE_11025; case 8000: return RPC_AUD_DEF_SAMPLE_RATE_8000; default: return RPC_AUD_DEF_SAMPLE_RATE_11025; } } static unsigned convert_samp_index(unsigned index) { switch (index) { case RPC_AUD_DEF_SAMPLE_RATE_48000: return 48000; case RPC_AUD_DEF_SAMPLE_RATE_44100: return 44100; case RPC_AUD_DEF_SAMPLE_RATE_32000: return 32000; case RPC_AUD_DEF_SAMPLE_RATE_24000: return 24000; case RPC_AUD_DEF_SAMPLE_RATE_22050: return 22050; case RPC_AUD_DEF_SAMPLE_RATE_16000: return 16000; case RPC_AUD_DEF_SAMPLE_RATE_12000: return 12000; case RPC_AUD_DEF_SAMPLE_RATE_11025: return 11025; case RPC_AUD_DEF_SAMPLE_RATE_8000: return 8000; default: return 11025; } } /* must be called with audio->lock held */ static int audio_in_enable(struct audio_in *audio) { struct audmgr_config cfg; int rc; if (audio->enabled) return 0; cfg.tx_rate = audio->samp_rate; cfg.rx_rate = RPC_AUD_DEF_SAMPLE_RATE_NONE; cfg.def_method = RPC_AUD_DEF_METHOD_RECORD; if (audio->type == AUDREC_CMD_TYPE_0_INDEX_WAV) cfg.codec = RPC_AUD_DEF_CODEC_PCM; else cfg.codec = RPC_AUD_DEF_CODEC_AAC; cfg.snd_method = RPC_SND_METHOD_MIDI; rc = audmgr_enable(&audio->audmgr, &cfg); if (rc < 0) return rc; if (msm_adsp_enable(audio->audpre)) { pr_err("audrec: msm_adsp_enable(audpre) failed\n"); return -ENODEV; } if (msm_adsp_enable(audio->audrec)) { pr_err("audrec: msm_adsp_enable(audrec) failed\n"); return -ENODEV; } audio->enabled = 1; audio_in_dsp_enable(audio, 1); return 0; } /* must be called with audio->lock held */ static int audio_in_disable(struct audio_in *audio) { if (audio->enabled) { audio->enabled = 0; audio_in_dsp_enable(audio, 0); wake_up(&audio->wait); msm_adsp_disable(audio->audrec); msm_adsp_disable(audio->audpre); audmgr_disable(&audio->audmgr); } return 0; } /* ------------------- dsp --------------------- */ static void audpre_dsp_event(void *data, unsigned id, size_t len, void (*getevent)(void *ptr, size_t len)) { uint16_t msg[2]; getevent(msg, sizeof(msg)); switch (id) { case AUDPREPROC_MSG_CMD_CFG_DONE_MSG: pr_info("audpre: type %d, status_flag %d\n", msg[0], msg[1]); break; case AUDPREPROC_MSG_ERROR_MSG_ID: pr_info("audpre: err_index %d\n", msg[0]); break; default: pr_err("audpre: unknown event %d\n", id); } } struct audio_frame { uint16_t count_low; uint16_t count_high; uint16_t bytes; uint16_t unknown; unsigned char samples[]; } __attribute__((packed)); static void audio_in_get_dsp_frames(struct audio_in *audio) { struct audio_frame *frame; uint32_t index; unsigned long flags; index = audio->in_head; /* XXX check for bogus frame size? */ frame = (void *) (((char *)audio->in[index].data) - sizeof(*frame)); spin_lock_irqsave(&audio->dsp_lock, flags); audio->in[index].size = frame->bytes; audio->in_head = (audio->in_head + 1) & (FRAME_NUM - 1); /* If overflow, move the tail index foward. */ if (audio->in_head == audio->in_tail) audio->in_tail = (audio->in_tail + 1) & (FRAME_NUM - 1); else audio->in_count++; audio_dsp_read_buffer(audio, audio->dsp_cnt++); spin_unlock_irqrestore(&audio->dsp_lock, flags); wake_up(&audio->wait); } static void audrec_dsp_event(void *data, unsigned id, size_t len, void (*getevent)(void *ptr, size_t len)) { struct audio_in *audio = data; uint16_t msg[3]; getevent(msg, sizeof(msg)); switch (id) { case AUDREC_MSG_CMD_CFG_DONE_MSG: if (msg[0] & AUDREC_MSG_CFG_DONE_TYPE_0_UPDATE) { if (msg[0] & AUDREC_MSG_CFG_DONE_TYPE_0_ENA) { pr_info("audpre: CFG ENABLED\n"); audio_dsp_set_agc(audio); audio_dsp_set_ns(audio); audio_dsp_set_tx_iir(audio); audio_in_encoder_config(audio); } else { pr_info("audrec: CFG SLEEP\n"); audio->running = 0; } } else { pr_info("audrec: CMD_CFG_DONE %x\n", msg[0]); } break; case AUDREC_MSG_CMD_AREC_PARAM_CFG_DONE_MSG: { pr_info("audrec: PARAM CFG DONE\n"); audio->running = 1; break; } case AUDREC_MSG_FATAL_ERR_MSG: pr_err("audrec: ERROR %x\n", msg[0]); break; case AUDREC_MSG_PACKET_READY_MSG: /* REC_DBG("type %x, count %d", msg[0], (msg[1] | (msg[2] << 16))); */ audio_in_get_dsp_frames(audio); break; default: pr_err("audrec: unknown event %d\n", id); } } struct msm_adsp_ops audpre_adsp_ops = { .event = audpre_dsp_event, }; struct msm_adsp_ops audrec_adsp_ops = { .event = audrec_dsp_event, }; #define audio_send_queue_pre(audio, cmd, len) \ msm_adsp_write(audio->audpre, QDSP_uPAudPreProcCmdQueue, cmd, len) #define audio_send_queue_recbs(audio, cmd, len) \ msm_adsp_write(audio->audrec, QDSP_uPAudRecBitStreamQueue, cmd, len) #define audio_send_queue_rec(audio, cmd, len) \ msm_adsp_write(audio->audrec, \ QDSP_uPAudRecCmdQueue, cmd, len) static int audio_dsp_set_agc(struct audio_in *audio) { audpreproc_cmd_cfg_agc_params cmd; memset(&cmd, 0, sizeof(cmd)); cmd.cmd_id = AUDPREPROC_CMD_CFG_AGC_PARAMS; if (audio->agc_enable) { /* cmd.tx_agc_param_mask = 0xFE00 from sample code */ cmd.tx_agc_param_mask = (1 << AUDPREPROC_CMD_TX_AGC_PARAM_MASK_COMP_SLOPE) | (1 << AUDPREPROC_CMD_TX_AGC_PARAM_MASK_COMP_TH) | (1 << AUDPREPROC_CMD_TX_AGC_PARAM_MASK_EXP_SLOPE) | (1 << AUDPREPROC_CMD_TX_AGC_PARAM_MASK_EXP_TH) | (1 << AUDPREPROC_CMD_TX_AGC_PARAM_MASK_COMP_AIG_FLAG) | (1 << AUDPREPROC_CMD_TX_AGC_PARAM_MASK_COMP_STATIC_GAIN) | (1 << AUDPREPROC_CMD_TX_AGC_PARAM_MASK_TX_AGC_ENA_FLAG); cmd.tx_agc_enable_flag = AUDPREPROC_CMD_TX_AGC_ENA_FLAG_ENA; memcpy(&cmd.static_gain, &audio->agc.agc_params[0], sizeof(uint16_t) * 6); /* cmd.param_mask = 0xFFF0 from sample code */ cmd.param_mask = (1 << AUDPREPROC_CMD_PARAM_MASK_RMS_TAY) | (1 << AUDPREPROC_CMD_PARAM_MASK_RELEASEK) | (1 << AUDPREPROC_CMD_PARAM_MASK_DELAY) | (1 << AUDPREPROC_CMD_PARAM_MASK_ATTACKK) | (1 << AUDPREPROC_CMD_PARAM_MASK_LEAKRATE_SLOW) | (1 << AUDPREPROC_CMD_PARAM_MASK_LEAKRATE_FAST) | (1 << AUDPREPROC_CMD_PARAM_MASK_AIG_RELEASEK) | (1 << AUDPREPROC_CMD_PARAM_MASK_AIG_MIN) | (1 << AUDPREPROC_CMD_PARAM_MASK_AIG_MAX) | (1 << AUDPREPROC_CMD_PARAM_MASK_LEAK_UP) | (1 << AUDPREPROC_CMD_PARAM_MASK_LEAK_DOWN) | (1 << AUDPREPROC_CMD_PARAM_MASK_AIG_ATTACKK); memcpy(&cmd.aig_attackk, &audio->agc.agc_params[6], sizeof(uint16_t) * 14); } else { cmd.tx_agc_param_mask = (1 << AUDPREPROC_CMD_TX_AGC_PARAM_MASK_TX_AGC_ENA_FLAG); cmd.tx_agc_enable_flag = AUDPREPROC_CMD_TX_AGC_ENA_FLAG_DIS; } #if DEBUG pr_info("cmd_id = 0x%04x\n", cmd.cmd_id); pr_info("tx_agc_param_mask = 0x%04x\n", cmd.tx_agc_param_mask); pr_info("tx_agc_enable_flag = 0x%04x\n", cmd.tx_agc_enable_flag); pr_info("static_gain = 0x%04x\n", cmd.static_gain); pr_info("adaptive_gain_flag = 0x%04x\n", cmd.adaptive_gain_flag); pr_info("expander_th = 0x%04x\n", cmd.expander_th); pr_info("expander_slope = 0x%04x\n", cmd.expander_slope); pr_info("compressor_th = 0x%04x\n", cmd.compressor_th); pr_info("compressor_slope = 0x%04x\n", cmd.compressor_slope); pr_info("param_mask = 0x%04x\n", cmd.param_mask); pr_info("aig_attackk = 0x%04x\n", cmd.aig_attackk); pr_info("aig_leak_down = 0x%04x\n", cmd.aig_leak_down); pr_info("aig_leak_up = 0x%04x\n", cmd.aig_leak_up); pr_info("aig_max = 0x%04x\n", cmd.aig_max); pr_info("aig_min = 0x%04x\n", cmd.aig_min); pr_info("aig_releasek = 0x%04x\n", cmd.aig_releasek); pr_info("aig_leakrate_fast = 0x%04x\n", cmd.aig_leakrate_fast); pr_info("aig_leakrate_slow = 0x%04x\n", cmd.aig_leakrate_slow); pr_info("attackk_msw = 0x%04x\n", cmd.attackk_msw); pr_info("attackk_lsw = 0x%04x\n", cmd.attackk_lsw); pr_info("delay = 0x%04x\n", cmd.delay); pr_info("releasek_msw = 0x%04x\n", cmd.releasek_msw); pr_info("releasek_lsw = 0x%04x\n", cmd.releasek_lsw); pr_info("rms_tav = 0x%04x\n", cmd.rms_tav); #endif return audio_send_queue_pre(audio, &cmd, sizeof(cmd)); } static int audio_dsp_set_ns(struct audio_in *audio) { audpreproc_cmd_cfg_ns_params cmd; memset(&cmd, 0, sizeof(cmd)); cmd.cmd_id = AUDPREPROC_CMD_CFG_NS_PARAMS; if (audio->ns_enable) { /* cmd.ec_mode_new is fixed as 0x0064 when enable from sample code */ cmd.ec_mode_new = AUDPREPROC_CMD_EC_MODE_NEW_NS_ENA | AUDPREPROC_CMD_EC_MODE_NEW_HB_ENA | AUDPREPROC_CMD_EC_MODE_NEW_VA_ENA; memcpy(&cmd.dens_gamma_n, &audio->ns.ns_params, sizeof(audio->ns.ns_params)); } else { cmd.ec_mode_new = AUDPREPROC_CMD_EC_MODE_NEW_NLMS_DIS | AUDPREPROC_CMD_EC_MODE_NEW_DES_DIS | AUDPREPROC_CMD_EC_MODE_NEW_NS_DIS | AUDPREPROC_CMD_EC_MODE_NEW_CNI_DIS | AUDPREPROC_CMD_EC_MODE_NEW_NLES_DIS | AUDPREPROC_CMD_EC_MODE_NEW_HB_DIS | AUDPREPROC_CMD_EC_MODE_NEW_VA_DIS | AUDPREPROC_CMD_EC_MODE_NEW_PCD_DIS | AUDPREPROC_CMD_EC_MODE_NEW_FEHI_DIS | AUDPREPROC_CMD_EC_MODE_NEW_NEHI_DIS | AUDPREPROC_CMD_EC_MODE_NEW_NLPP_DIS | AUDPREPROC_CMD_EC_MODE_NEW_FNE_DIS | AUDPREPROC_CMD_EC_MODE_NEW_PRENLMS_DIS; } #if DEBUG pr_info("cmd_id = 0x%04x\n", cmd.cmd_id); pr_info("ec_mode_new = 0x%04x\n", cmd.ec_mode_new); pr_info("dens_gamma_n = 0x%04x\n", cmd.dens_gamma_n); pr_info("dens_nfe_block_size = 0x%04x\n", cmd.dens_nfe_block_size); pr_info("dens_limit_ns = 0x%04x\n", cmd.dens_limit_ns); pr_info("dens_limit_ns_d = 0x%04x\n", cmd.dens_limit_ns_d); pr_info("wb_gamma_e = 0x%04x\n", cmd.wb_gamma_e); pr_info("wb_gamma_n = 0x%04x\n", cmd.wb_gamma_n); #endif return audio_send_queue_pre(audio, &cmd, sizeof(cmd)); } static int audio_dsp_set_tx_iir(struct audio_in *audio) { struct audpre_cmd_iir_config_type cmd; memset(&cmd, 0, sizeof(cmd)); cmd.cmd_id = AUDPREPROC_CMD_CFG_IIR_TUNING_FILTER_PARAMS; if (audio->iir_enable) { cmd.active_flag = AUDPREPROC_CMD_IIR_ACTIVE_FLAG_ENA; cmd.num_bands = audio->iir.num_bands; memcpy(&cmd.iir_params, &audio->iir.iir_params, sizeof(audio->iir.iir_params)); } else { cmd.active_flag = AUDPREPROC_CMD_IIR_ACTIVE_FLAG_DIS; } #if DEBUG pr_info("cmd_id = 0x%04x\n", cmd.cmd_id); pr_info("active_flag = 0x%04x\n", cmd.active_flag); #endif return audio_send_queue_pre(audio, &cmd, sizeof(cmd)); } static int audio_in_dsp_enable(struct audio_in *audio, int enable) { audrec_cmd_cfg cmd; memset(&cmd, 0, sizeof(cmd)); cmd.cmd_id = AUDREC_CMD_CFG; cmd.type_0 = enable ? AUDREC_CMD_TYPE_0_ENA : AUDREC_CMD_TYPE_0_DIS; cmd.type_0 |= (AUDREC_CMD_TYPE_0_UPDATE | audio->type); cmd.type_1 = 0; return audio_send_queue_rec(audio, &cmd, sizeof(cmd)); } static int audio_in_encoder_config(struct audio_in *audio) { audrec_cmd_arec0param_cfg cmd; uint16_t *data = (void *) audio->data; unsigned n; memset(&cmd, 0, sizeof(cmd)); cmd.cmd_id = AUDREC_CMD_AREC0PARAM_CFG; cmd.ptr_to_extpkt_buffer_msw = audio->phys >> 16; cmd.ptr_to_extpkt_buffer_lsw = audio->phys; cmd.buf_len = FRAME_NUM; /* Both WAV and AAC use 8 frames */ cmd.samp_rate_index = audio->samp_rate_index; cmd.stereo_mode = audio->channel_mode; /* 0 for mono, 1 for stereo */ /* FIXME have no idea why cmd.rec_quality is fixed * as 0x1C00 from sample code */ cmd.rec_quality = 0x1C00; /* prepare buffer pointers: * Mono: 1024 samples + 4 halfword header * Stereo: 2048 samples + 4 halfword header * AAC * Mono/Stere: 768 + 4 halfword header */ for (n = 0; n < FRAME_NUM; n++) { audio->in[n].data = data + 4; if (audio->type == AUDREC_CMD_TYPE_0_INDEX_WAV) data += (4 + (audio->channel_mode ? 2048 : 1024)); else if (audio->type == AUDREC_CMD_TYPE_0_INDEX_AAC) data += (4 + 768); } return audio_send_queue_rec(audio, &cmd, sizeof(cmd)); } static int audio_dsp_read_buffer(struct audio_in *audio, uint32_t read_cnt) { audrec_cmd_packet_ext_ptr cmd; memset(&cmd, 0, sizeof(cmd)); cmd.cmd_id = AUDREC_CMD_PACKET_EXT_PTR; /* Both WAV and AAC use AUDREC_CMD_TYPE_0 */ cmd.type = AUDREC_CMD_TYPE_0; cmd.curr_rec_count_msw = read_cnt >> 16; cmd.curr_rec_count_lsw = read_cnt; return audio_send_queue_recbs(audio, &cmd, sizeof(cmd)); } /* ------------------- device --------------------- */ static void audio_enable_agc(struct audio_in *audio, int enable) { if (audio->agc_enable != enable) { audio->agc_enable = enable; if (audio->running) audio_dsp_set_agc(audio); } } static void audio_enable_ns(struct audio_in *audio, int enable) { if (audio->ns_enable != enable) { audio->ns_enable = enable; if (audio->running) audio_dsp_set_ns(audio); } } static void audio_enable_tx_iir(struct audio_in *audio, int enable) { if (audio->iir_enable != enable) { audio->iir_enable = enable; if (audio->running) audio_dsp_set_tx_iir(audio); } } static void audio_flush(struct audio_in *audio) { int i; audio->dsp_cnt = 0; audio->in_head = 0; audio->in_tail = 0; audio->in_count = 0; for (i = 0; i < FRAME_NUM; i++) { audio->in[i].size = 0; audio->in[i].read = 0; } } static long audio_in_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { struct audio_in *audio = file->private_data; int rc; if (cmd == AUDIO_GET_STATS) { struct msm_audio_stats stats; stats.byte_count = atomic_read(&audio->in_bytes); if (copy_to_user((void *) arg, &stats, sizeof(stats))) return -EFAULT; return 0; } mutex_lock(&audio->lock); switch (cmd) { case AUDIO_START: rc = audio_in_enable(audio); break; case AUDIO_STOP: rc = audio_in_disable(audio); audio->stopped = 1; break; case AUDIO_FLUSH: if (audio->stopped) { /* Make sure we're stopped and we wake any threads * that might be blocked holding the read_lock. * While audio->stopped read threads will always * exit immediately. */ wake_up(&audio->wait); mutex_lock(&audio->read_lock); audio_flush(audio); mutex_unlock(&audio->read_lock); } case AUDIO_SET_CONFIG: { struct msm_audio_config cfg; if (copy_from_user(&cfg, (void *) arg, sizeof(cfg))) { rc = -EFAULT; break; } if (cfg.channel_count == 1) { cfg.channel_count = AUDREC_CMD_STEREO_MODE_MONO; } else if (cfg.channel_count == 2) { cfg.channel_count = AUDREC_CMD_STEREO_MODE_STEREO; } else { rc = -EINVAL; break; } if (cfg.type == 0) { cfg.type = AUDREC_CMD_TYPE_0_INDEX_WAV; } else if (cfg.type == 1) { cfg.type = AUDREC_CMD_TYPE_0_INDEX_AAC; } else { rc = -EINVAL; break; } audio->samp_rate = convert_samp_rate(cfg.sample_rate); audio->samp_rate_index = convert_dsp_samp_index(cfg.sample_rate); audio->channel_mode = cfg.channel_count; audio->buffer_size = audio->channel_mode ? STEREO_DATA_SIZE : MONO_DATA_SIZE; audio->type = cfg.type; rc = 0; break; } case AUDIO_GET_CONFIG: { struct msm_audio_config cfg; cfg.buffer_size = audio->buffer_size; cfg.buffer_count = FRAME_NUM; cfg.sample_rate = convert_samp_index(audio->samp_rate); if (audio->channel_mode == AUDREC_CMD_STEREO_MODE_MONO) cfg.channel_count = 1; else cfg.channel_count = 2; if (audio->type == AUDREC_CMD_TYPE_0_INDEX_WAV) cfg.type = 0; else cfg.type = 1; cfg.unused[0] = 0; cfg.unused[1] = 0; cfg.unused[2] = 0; if (copy_to_user((void *) arg, &cfg, sizeof(cfg))) rc = -EFAULT; else rc = 0; break; } default: rc = -EINVAL; } mutex_unlock(&audio->lock); return rc; } static ssize_t audio_in_read(struct file *file, char __user *buf, size_t count, loff_t *pos) { struct audio_in *audio = file->private_data; unsigned long flags; const char __user *start = buf; void *data; uint32_t index; uint32_t size; int rc = 0; mutex_lock(&audio->read_lock); while (count > 0) { rc = wait_event_interruptible( audio->wait, (audio->in_count > 0) || audio->stopped); if (rc < 0) break; if (audio->stopped) { rc = -EBUSY; break; } index = audio->in_tail; data = (uint8_t *) audio->in[index].data; size = audio->in[index].size; if (count >= size) { if (copy_to_user(buf, data, size)) { rc = -EFAULT; break; } spin_lock_irqsave(&audio->dsp_lock, flags); if (index != audio->in_tail) { /* overrun -- data is invalid and we need to retry */ spin_unlock_irqrestore(&audio->dsp_lock, flags); continue; } audio->in[index].size = 0; audio->in_tail = (audio->in_tail + 1) & (FRAME_NUM - 1); audio->in_count--; spin_unlock_irqrestore(&audio->dsp_lock, flags); count -= size; buf += size; if (audio->type == AUDREC_CMD_TYPE_0_INDEX_AAC) break; } else { pr_err("audio_in: short read\n"); break; } if (audio->type == AUDREC_CMD_TYPE_0_INDEX_AAC) break; /* AAC only read one frame */ } mutex_unlock(&audio->read_lock); if (buf > start) return buf - start; return rc; } static ssize_t audio_in_write(struct file *file, const char __user *buf, size_t count, loff_t *pos) { return -EINVAL; } static int audio_in_release(struct inode *inode, struct file *file) { struct audio_in *audio = file->private_data; mutex_lock(&audio->lock); audio_in_disable(audio); audio_flush(audio); msm_adsp_put(audio->audrec); msm_adsp_put(audio->audpre); audio->audrec = NULL; audio->audpre = NULL; audio->opened = 0; mutex_unlock(&audio->lock); return 0; } static struct audio_in the_audio_in; static int audio_in_open(struct inode *inode, struct file *file) { struct audio_in *audio = &the_audio_in; int rc; mutex_lock(&audio->lock); if (audio->opened) { rc = -EBUSY; goto done; } /* Settings will be re-config at AUDIO_SET_CONFIG, * but at least we need to have initial config */ audio->samp_rate = RPC_AUD_DEF_SAMPLE_RATE_11025; audio->samp_rate_index = AUDREC_CMD_SAMP_RATE_INDX_11025; audio->channel_mode = AUDREC_CMD_STEREO_MODE_MONO; audio->buffer_size = MONO_DATA_SIZE; audio->type = AUDREC_CMD_TYPE_0_INDEX_WAV; rc = audmgr_open(&audio->audmgr); if (rc) goto done; rc = msm_adsp_get("AUDPREPROCTASK", &audio->audpre, &audpre_adsp_ops, audio); if (rc) goto done; rc = msm_adsp_get("AUDRECTASK", &audio->audrec, &audrec_adsp_ops, audio); if (rc) goto done; audio->dsp_cnt = 0; audio->stopped = 0; audio_flush(audio); file->private_data = audio; audio->opened = 1; rc = 0; done: mutex_unlock(&audio->lock); return rc; } static long audpre_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { struct audio_in *audio = file->private_data; int rc = 0, enable; uint16_t enable_mask; #if DEBUG int i; #endif mutex_lock(&audio->lock); switch (cmd) { case AUDIO_ENABLE_AUDPRE: { if (copy_from_user(&enable_mask, (void *) arg, sizeof(enable_mask))) goto out_fault; enable = (enable_mask & AGC_ENABLE) ? 1 : 0; audio_enable_agc(audio, enable); enable = (enable_mask & NS_ENABLE) ? 1 : 0; audio_enable_ns(audio, enable); enable = (enable_mask & IIR_ENABLE) ? 1 : 0; audio_enable_tx_iir(audio, enable); break; } case AUDIO_SET_AGC: { if (copy_from_user(&audio->agc, (void *) arg, sizeof(audio->agc))) goto out_fault; #if DEBUG pr_info("set agc\n"); for (i = 0; i < AGC_PARAM_SIZE; i++) \ pr_info("agc_params[%d] = 0x%04x\n", i, audio->agc.agc_params[i]); #endif break; } case AUDIO_SET_NS: { if (copy_from_user(&audio->ns, (void *) arg, sizeof(audio->ns))) goto out_fault; #if DEBUG pr_info("set ns\n"); for (i = 0; i < NS_PARAM_SIZE; i++) \ pr_info("ns_params[%d] = 0x%04x\n", i, audio->ns.ns_params[i]); #endif break; } case AUDIO_SET_TX_IIR: { if (copy_from_user(&audio->iir, (void *) arg, sizeof(audio->iir))) goto out_fault; #if DEBUG pr_info("set iir\n"); pr_info("iir.num_bands = 0x%04x\n", audio->iir.num_bands); for (i = 0; i < IIR_PARAM_SIZE; i++) \ pr_info("iir_params[%d] = 0x%04x\n", i, audio->iir.iir_params[i]); #endif break; } default: rc = -EINVAL; } goto out; out_fault: rc = -EFAULT; out: mutex_unlock(&audio->lock); return rc; } static int audpre_open(struct inode *inode, struct file *file) { struct audio_in *audio = &the_audio_in; file->private_data = audio; return 0; } static struct file_operations audio_fops = { .owner = THIS_MODULE, .open = audio_in_open, .release = audio_in_release, .read = audio_in_read, .write = audio_in_write, .unlocked_ioctl = audio_in_ioctl, }; static struct file_operations audpre_fops = { .owner = THIS_MODULE, .open = audpre_open, .unlocked_ioctl = audpre_ioctl, }; struct miscdevice audio_in_misc = { .minor = MISC_DYNAMIC_MINOR, .name = "msm_pcm_in", .fops = &audio_fops, }; struct miscdevice audpre_misc = { .minor = MISC_DYNAMIC_MINOR, .name = "msm_audpre", .fops = &audpre_fops, }; static int __init audio_in_init(void) { int rc; the_audio_in.data = dma_alloc_coherent(NULL, DMASZ, &the_audio_in.phys, GFP_KERNEL); if (!the_audio_in.data) { printk(KERN_ERR "%s: Unable to allocate DMA buffer\n", __func__); return -ENOMEM; } mutex_init(&the_audio_in.lock); mutex_init(&the_audio_in.read_lock); spin_lock_init(&the_audio_in.dsp_lock); init_waitqueue_head(&the_audio_in.wait); rc = misc_register(&audio_in_misc); if (!rc) { rc = misc_register(&audpre_misc); if (rc < 0) misc_deregister(&audio_in_misc); } return rc; } device_initcall(audio_in_init);