/* chronyd/chronyc - Programs for keeping computer clocks accurate. ********************************************************************** * Copyright (C) Richard P. Curnow 1997-2003 * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * ********************************************************************** ======================================================================= Driver file for the SunOS 4.1.x operating system. */ #ifdef SUNOS #include #include #include #include #include #include #include #include "sys_sunos.h" #include "localp.h" #include "logging.h" #include "util.h" #include "sched.h" /* ================================================== */ /* This register contains the number of seconds by which the local clock was estimated to be fast of reference time at the epoch when gettimeofday() returned T0 */ static double offset_register; /* This register contains the epoch to which the offset is referenced */ static struct timeval T0; /* This register contains the current estimate of the system frequency, in absolute (NOT ppm) */ static double current_freq; /* This register contains the number of seconds of adjustment that were passed to adjtime last time it was called. */ static double adjustment_requested; /* Eventually, this needs to be a user-defined parameter - e.g. user might want 5 to get much finer resolution like xntpd. We stick with a reasonable number so that slewing can work. This value has to be a factor of 1 million, otherwise the noddy method we use for rounding an adjustment to the nearest multiple of this value won't work!! */ static unsigned long our_tickadj = 100; /* ================================================== */ static void clock_initialise(void) { struct timeval newadj, oldadj; offset_register = 0.0; adjustment_requested = 0.0; current_freq = 0.0; if (gettimeofday(&T0, NULL) < 0) { LOG_FATAL(LOGF_SysSunOS, "gettimeofday() failed"); } newadj.tv_sec = 0; newadj.tv_usec = 0; if (adjtime(&newadj, &oldadj) < 0) { LOG_FATAL(LOGF_SysSunOS, "adjtime() failed"); } if (adjtime(&newadj, &oldadj) < 0) { LOG_FATAL(LOGF_SysSunOS, "adjtime() failed"); } return; } /* ================================================== */ static void clock_finalise(void) { /* Nothing to do yet */ return; } /* ================================================== */ static void start_adjust(void) { struct timeval newadj, oldadj; struct timeval T1; double elapsed, accrued_error; double adjust_required; struct timeval exact_newadj; double rounding_error; double old_adjust_remaining; long remainder, multiplier; /* Determine the amount of error built up since the last adjustment */ if (gettimeofday(&T1, NULL) < 0) { LOG_FATAL(LOGF_SysSunOS, "gettimeofday() failed"); } UTI_DiffTimevalsToDouble(&elapsed, &T1, &T0); accrued_error = elapsed * current_freq; adjust_required = - (accrued_error + offset_register); UTI_DoubleToTimeval(adjust_required, &exact_newadj); /* At this point, we need to round the required adjustment to the closest multiple of _tickadj --- because SunOS can't process other adjustments exactly and will silently discard the residual. Obviously such behaviour can't be tolerated for us. */ newadj = exact_newadj; remainder = newadj.tv_usec % our_tickadj; multiplier = newadj.tv_usec / our_tickadj; if (remainder >= (our_tickadj >> 1)) { newadj.tv_usec = (multiplier + 1) * our_tickadj; } else { newadj.tv_usec = multiplier * our_tickadj; } UTI_NormaliseTimeval(&newadj); /* Want to *add* rounding error back onto offset register. Note that the exact adjustment was the offset register *negated* */ UTI_DiffTimevalsToDouble(&rounding_error, &newadj, &exact_newadj); if (adjtime(&newadj, &oldadj) < 0) { LOG_FATAL(LOGF_SysSunOS, "adjtime() failed"); } UTI_TimevalToDouble(&oldadj, &old_adjust_remaining); offset_register = rounding_error - old_adjust_remaining; T0 = T1; UTI_TimevalToDouble(&newadj, &adjustment_requested); } /* ================================================== */ static void stop_adjust(void) { struct timeval T1; struct timeval zeroadj, remadj; double adjustment_remaining, adjustment_achieved; double gap; double elapsed, elapsed_plus_adjust; zeroadj.tv_sec = 0; zeroadj.tv_usec = 0; if (adjtime(&zeroadj, &remadj) < 0) { LOG_FATAL(LOGF_SysSunOS, "adjtime() failed"); } if (gettimeofday(&T1, NULL) < 0) { LOG_FATAL(LOGF_SysSunOS, "gettimeofday() failed"); } UTI_DiffTimevalsToDouble(&elapsed, &T1, &T0); UTI_TimevalToDouble(&remadj, &adjustment_remaining); adjustment_achieved = adjustment_requested - adjustment_remaining; elapsed_plus_adjust = elapsed - adjustment_achieved; offset_register += current_freq * elapsed_plus_adjust - adjustment_remaining; adjustment_requested = 0.0; T0 = T1; } /* ================================================== */ /* Positive offset means system clock is fast of true time, therefore slew backwards */ static void accrue_offset(double offset) { stop_adjust(); offset_register += offset; start_adjust(); return; } /* ================================================== */ /* Positive offset means system clock is fast of true time, therefore step backwards */ static void apply_step_offset(double offset) { struct timeval old_time, new_time, T1; stop_adjust(); if (gettimeofday(&old_time, NULL) < 0) { LOG_FATAL(LOGF_SysSunOS, "gettimeofday() failed"); } UTI_AddDoubleToTimeval(&old_time, -offset, &new_time); if (settimeofday(&new_time, NULL) < 0) { LOG_FATAL(LOGF_SysSunOS, "settimeofday() failed"); } UTI_AddDoubleToTimeval(&T0, offset, &T1); T0 = T1; start_adjust(); } /* ================================================== */ static double set_frequency(double new_freq_ppm) { stop_adjust(); current_freq = new_freq_ppm * 1.0e-6; start_adjust(); return current_freq * 1.0e6; } /* ================================================== */ static double read_frequency(void) { return current_freq * 1.0e6; } /* ================================================== */ static void get_offset_correction(struct timeval *raw, double *corr, double *err) { stop_adjust(); *corr = -offset_register; start_adjust(); if (err) *err = 0.0; return; } /* ================================================== */ static void immediate_step(void) { return; } /* ================================================== */ /* Interval in seconds between adjustments to cancel systematic drift */ #define DRIFT_REMOVAL_INTERVAL (4.0) static int drift_removal_running = 0; static SCH_TimeoutID drift_removal_id; /* ================================================== */ /* This is the timer callback routine which is called periodically to invoke a time adjustment to take out the machine's drift. Otherwise, times reported through this software (e.g. by running ntpdate from another machine) show the machine being correct (since they correct for drift build-up), but any program on this machine that reads the system time will be given an erroneous value, the degree of error depending on how long it is since get_offset_correction was last called. */ static void drift_removal_timeout(SCH_ArbitraryArgument not_used) { stop_adjust(); start_adjust(); drift_removal_id = SCH_AddTimeoutByDelay(DRIFT_REMOVAL_INTERVAL, drift_removal_timeout, NULL); } /* ================================================== */ static void setup_kernel(unsigned long on_off) { static struct nlist nl[] = { {"_dosynctodr"}, {"_tick"}, {"_tickadj"}, {NULL} }; kvm_t *kt; unsigned long read_back; unsigned long our_tick = 10000; unsigned long default_tickadj = 625; assert(on_off == 1 || on_off == 0); kt = kvm_open(NULL, NULL, NULL, O_RDWR, NULL); if (!kt) { LOG(LOGS_ERR, LOGF_SysSunOS, "Cannot open kvm"); return; } if (kvm_nlist(kt, nl) < 0) { LOG(LOGS_ERR, LOGF_SysSunOS, "Cannot read kernel symbols"); kvm_close(kt); return; } if (kvm_write(kt, nl[0].n_value, (char *)(&on_off), sizeof(unsigned long)) < 0) { LOG(LOGS_ERR, LOGF_SysSunOS, "Cannot write to _dosynctodr"); kvm_close(kt); return; } if (kvm_write(kt, nl[1].n_value, (char *)(&our_tick), sizeof(unsigned long)) < 0) { LOG(LOGS_ERR, LOGF_SysSunOS, "Cannot write to _tick"); kvm_close(kt); return; } if (kvm_write(kt, nl[2].n_value, (char *)(on_off ? &default_tickadj : &our_tickadj), sizeof(unsigned long)) < 0) { LOG(LOGS_ERR, LOGF_SysSunOS, "Cannot write to _tickadj"); kvm_close(kt); return; } kvm_close(kt); #if 0 LOG(LOGS_INFO, LOGF_SysSunOS, "Set value of _dosynctodr to %d", on_off); #endif } /* ================================================== */ void SYS_SunOS_Initialise(void) { /* Need to do KVM stuff to turn off dosynctodr. */ clock_initialise(); lcl_RegisterSystemDrivers(read_frequency, set_frequency, accrue_offset, apply_step_offset, get_offset_correction, NULL /* set_leap */); /* Turn off the kernel switch that keeps the system clock in step with the non-volatile clock */ setup_kernel(0); drift_removal_id = SCH_AddTimeoutByDelay(DRIFT_REMOVAL_INTERVAL, drift_removal_timeout, NULL); drift_removal_running = 1; } /* ================================================== */ void SYS_SunOS_Finalise(void) { if (drift_removal_running) { SCH_RemoveTimeout(drift_removal_id); } /* Turn dosynctodr back on?? */ clock_finalise(); /* When exiting, we want to return the machine to its 'autonomous' tracking mode */ setup_kernel(1); return; } /* ================================================== */ #endif /* SUNOS */