/* SIP extension for IP connection tracking. * * (C) 2005 by Christian Hentschel * based on RR's ip_conntrack_ftp.c and other modules. * (C) 2007 United Security Providers * (C) 2007, 2008 Patrick McHardy * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if defined(CONFIG_BCM_KF_NETFILTER_SIP) #include #include extern spinlock_t ct_derived_conn_lock; #endif MODULE_LICENSE("GPL"); MODULE_AUTHOR("Christian Hentschel "); MODULE_DESCRIPTION("SIP connection tracking helper"); MODULE_ALIAS("ip_conntrack_sip"); MODULE_ALIAS_NFCT_HELPER("sip"); #define MAX_PORTS 8 static unsigned short ports[MAX_PORTS]; static unsigned int ports_c; module_param_array(ports, ushort, &ports_c, 0400); MODULE_PARM_DESC(ports, "port numbers of SIP servers"); static unsigned int sip_timeout __read_mostly = SIP_TIMEOUT; module_param(sip_timeout, uint, 0600); MODULE_PARM_DESC(sip_timeout, "timeout for the master SIP session"); static int sip_direct_signalling __read_mostly = 1; module_param(sip_direct_signalling, int, 0600); MODULE_PARM_DESC(sip_direct_signalling, "expect incoming calls from registrar " "only (default 1)"); static int sip_direct_media __read_mostly = 1; module_param(sip_direct_media, int, 0600); MODULE_PARM_DESC(sip_direct_media, "Expect Media streams between signalling " "endpoints only (default 1)"); const struct nf_nat_sip_hooks *nf_nat_sip_hooks; EXPORT_SYMBOL_GPL(nf_nat_sip_hooks); static int string_len(const struct nf_conn *ct, const char *dptr, const char *limit, int *shift) { int len = 0; while (dptr < limit && isalpha(*dptr)) { dptr++; len++; } return len; } static int digits_len(const struct nf_conn *ct, const char *dptr, const char *limit, int *shift) { int len = 0; while (dptr < limit && isdigit(*dptr)) { dptr++; len++; } return len; } static int iswordc(const char c) { if (isalnum(c) || c == '!' || c == '"' || c == '%' || (c >= '(' && c <= '/') || c == ':' || c == '<' || c == '>' || c == '?' || (c >= '[' && c <= ']') || c == '_' || c == '`' || c == '{' || c == '}' || c == '~') return 1; return 0; } static int word_len(const char *dptr, const char *limit) { int len = 0; while (dptr < limit && iswordc(*dptr)) { dptr++; len++; } return len; } static int callid_len(const struct nf_conn *ct, const char *dptr, const char *limit, int *shift) { int len, domain_len; len = word_len(dptr, limit); dptr += len; if (!len || dptr == limit || *dptr != '@') return len; dptr++; len++; domain_len = word_len(dptr, limit); if (!domain_len) return 0; return len + domain_len; } /* get media type + port length */ static int media_len(const struct nf_conn *ct, const char *dptr, const char *limit, int *shift) { int len = string_len(ct, dptr, limit, shift); dptr += len; if (dptr >= limit || *dptr != ' ') return 0; len++; dptr++; return len + digits_len(ct, dptr, limit, shift); } static int sip_parse_addr(const struct nf_conn *ct, const char *cp, const char **endp, union nf_inet_addr *addr, const char *limit, bool delim) { const char *end; int ret; if (!ct) return 0; memset(addr, 0, sizeof(*addr)); switch (nf_ct_l3num(ct)) { case AF_INET: ret = in4_pton(cp, limit - cp, (u8 *)&addr->ip, -1, &end); if (ret == 0) return 0; break; case AF_INET6: if (cp < limit && *cp == '[') cp++; else if (delim) return 0; ret = in6_pton(cp, limit - cp, (u8 *)&addr->ip6, -1, &end); if (ret == 0) return 0; if (end < limit && *end == ']') end++; else if (delim) return 0; break; default: BUG(); } if (endp) *endp = end; return 1; } /* skip ip address. returns its length. */ static int epaddr_len(const struct nf_conn *ct, const char *dptr, const char *limit, int *shift) { union nf_inet_addr addr; const char *aux = dptr; if (!sip_parse_addr(ct, dptr, &dptr, &addr, limit, true)) { pr_debug("ip: %s parse failed.!\n", dptr); return 0; } /* Port number */ if (*dptr == ':') { dptr++; dptr += digits_len(ct, dptr, limit, shift); } return dptr - aux; } /* get address length, skiping user info. */ static int skp_epaddr_len(const struct nf_conn *ct, const char *dptr, const char *limit, int *shift) { const char *start = dptr; int s = *shift; /* Search for @, but stop at the end of the line. * We are inside a sip: URI, so we don't need to worry about * continuation lines. */ while (dptr < limit && *dptr != '@' && *dptr != '\r' && *dptr != '\n') { (*shift)++; dptr++; } if (dptr < limit && *dptr == '@') { dptr++; (*shift)++; } else { dptr = start; *shift = s; } return epaddr_len(ct, dptr, limit, shift); } /* Parse a SIP request line of the form: * * Request-Line = Method SP Request-URI SP SIP-Version CRLF * * and return the offset and length of the address contained in the Request-URI. */ int ct_sip_parse_request(const struct nf_conn *ct, const char *dptr, unsigned int datalen, unsigned int *matchoff, unsigned int *matchlen, union nf_inet_addr *addr, __be16 *port) { const char *start = dptr, *limit = dptr + datalen, *end; unsigned int mlen; unsigned int p; int shift = 0; /* Skip method and following whitespace */ mlen = string_len(ct, dptr, limit, NULL); if (!mlen) return 0; dptr += mlen; if (++dptr >= limit) return 0; /* Find SIP URI */ for (; dptr < limit - strlen("sip:"); dptr++) { if (*dptr == '\r' || *dptr == '\n') return -1; if (strncasecmp(dptr, "sip:", strlen("sip:")) == 0) { dptr += strlen("sip:"); break; } } if (!skp_epaddr_len(ct, dptr, limit, &shift)) return 0; dptr += shift; if (!sip_parse_addr(ct, dptr, &end, addr, limit, true)) return -1; if (end < limit && *end == ':') { end++; p = simple_strtoul(end, (char **)&end, 10); if (p < 1024 || p > 65535) return -1; *port = htons(p); } else *port = htons(SIP_PORT); if (end == dptr) return 0; *matchoff = dptr - start; *matchlen = end - dptr; return 1; } EXPORT_SYMBOL_GPL(ct_sip_parse_request); /* SIP header parsing: SIP headers are located at the beginning of a line, but * may span several lines, in which case the continuation lines begin with a * whitespace character. RFC 2543 allows lines to be terminated with CR, LF or * CRLF, RFC 3261 allows only CRLF, we support both. * * Headers are followed by (optionally) whitespace, a colon, again (optionally) * whitespace and the values. Whitespace in this context means any amount of * tabs, spaces and continuation lines, which are treated as a single whitespace * character. * * Some headers may appear multiple times. A comma separated list of values is * equivalent to multiple headers. */ static const struct sip_header ct_sip_hdrs[] = { [SIP_HDR_CSEQ] = SIP_HDR("CSeq", NULL, NULL, digits_len), [SIP_HDR_FROM] = SIP_HDR("From", "f", "sip:", skp_epaddr_len), [SIP_HDR_TO] = SIP_HDR("To", "t", "sip:", skp_epaddr_len), [SIP_HDR_CONTACT] = SIP_HDR("Contact", "m", "sip:", skp_epaddr_len), [SIP_HDR_VIA_UDP] = SIP_HDR("Via", "v", "UDP ", epaddr_len), [SIP_HDR_VIA_TCP] = SIP_HDR("Via", "v", "TCP ", epaddr_len), [SIP_HDR_EXPIRES] = SIP_HDR("Expires", NULL, NULL, digits_len), [SIP_HDR_CONTENT_LENGTH] = SIP_HDR("Content-Length", "l", NULL, digits_len), [SIP_HDR_CALL_ID] = SIP_HDR("Call-Id", "i", NULL, callid_len), }; static const char *sip_follow_continuation(const char *dptr, const char *limit) { /* Walk past newline */ if (++dptr >= limit) return NULL; /* Skip '\n' in CR LF */ if (*(dptr - 1) == '\r' && *dptr == '\n') { if (++dptr >= limit) return NULL; } /* Continuation line? */ if (*dptr != ' ' && *dptr != '\t') return NULL; /* skip leading whitespace */ for (; dptr < limit; dptr++) { if (*dptr != ' ' && *dptr != '\t') break; } return dptr; } static const char *sip_skip_whitespace(const char *dptr, const char *limit) { for (; dptr < limit; dptr++) { if (*dptr == ' ') continue; if (*dptr != '\r' && *dptr != '\n') break; dptr = sip_follow_continuation(dptr, limit); if (dptr == NULL) return NULL; } return dptr; } /* Search within a SIP header value, dealing with continuation lines */ static const char *ct_sip_header_search(const char *dptr, const char *limit, const char *needle, unsigned int len) { for (limit -= len; dptr < limit; dptr++) { if (*dptr == '\r' || *dptr == '\n') { dptr = sip_follow_continuation(dptr, limit); if (dptr == NULL) break; continue; } if (strncasecmp(dptr, needle, len) == 0) return dptr; } return NULL; } int ct_sip_get_header(const struct nf_conn *ct, const char *dptr, unsigned int dataoff, unsigned int datalen, enum sip_header_types type, unsigned int *matchoff, unsigned int *matchlen) { const struct sip_header *hdr = &ct_sip_hdrs[type]; const char *start = dptr, *limit = dptr + datalen; int shift = 0; for (dptr += dataoff; dptr < limit; dptr++) { /* Find beginning of line */ if (*dptr != '\r' && *dptr != '\n') continue; if (++dptr >= limit) break; if (*(dptr - 1) == '\r' && *dptr == '\n') { if (++dptr >= limit) break; } /* Skip continuation lines */ if (*dptr == ' ' || *dptr == '\t') continue; /* Find header. Compact headers must be followed by a * non-alphabetic character to avoid mismatches. */ if (limit - dptr >= hdr->len && strncasecmp(dptr, hdr->name, hdr->len) == 0) dptr += hdr->len; else if (hdr->cname && limit - dptr >= hdr->clen + 1 && strncasecmp(dptr, hdr->cname, hdr->clen) == 0 && !isalpha(*(dptr + hdr->clen))) dptr += hdr->clen; else continue; /* Find and skip colon */ dptr = sip_skip_whitespace(dptr, limit); if (dptr == NULL) break; if (*dptr != ':' || ++dptr >= limit) break; /* Skip whitespace after colon */ dptr = sip_skip_whitespace(dptr, limit); if (dptr == NULL) break; *matchoff = dptr - start; if (hdr->search) { dptr = ct_sip_header_search(dptr, limit, hdr->search, hdr->slen); if (!dptr) return -1; dptr += hdr->slen; } *matchlen = hdr->match_len(ct, dptr, limit, &shift); if (!*matchlen) return -1; *matchoff = dptr - start + shift; return 1; } return 0; } EXPORT_SYMBOL_GPL(ct_sip_get_header); /* Get next header field in a list of comma separated values */ static int ct_sip_next_header(const struct nf_conn *ct, const char *dptr, unsigned int dataoff, unsigned int datalen, enum sip_header_types type, unsigned int *matchoff, unsigned int *matchlen) { const struct sip_header *hdr = &ct_sip_hdrs[type]; const char *start = dptr, *limit = dptr + datalen; int shift = 0; dptr += dataoff; dptr = ct_sip_header_search(dptr, limit, ",", strlen(",")); if (!dptr) return 0; dptr = ct_sip_header_search(dptr, limit, hdr->search, hdr->slen); if (!dptr) return 0; dptr += hdr->slen; *matchoff = dptr - start; *matchlen = hdr->match_len(ct, dptr, limit, &shift); if (!*matchlen) return -1; *matchoff += shift; return 1; } /* Walk through headers until a parsable one is found or no header of the * given type is left. */ static int ct_sip_walk_headers(const struct nf_conn *ct, const char *dptr, unsigned int dataoff, unsigned int datalen, enum sip_header_types type, int *in_header, unsigned int *matchoff, unsigned int *matchlen) { int ret; if (in_header && *in_header) { while (1) { ret = ct_sip_next_header(ct, dptr, dataoff, datalen, type, matchoff, matchlen); if (ret > 0) return ret; if (ret == 0) break; dataoff += *matchoff; } *in_header = 0; } while (1) { ret = ct_sip_get_header(ct, dptr, dataoff, datalen, type, matchoff, matchlen); if (ret > 0) break; if (ret == 0) return ret; dataoff += *matchoff; } if (in_header) *in_header = 1; return 1; } /* Locate a SIP header, parse the URI and return the offset and length of * the address as well as the address and port themselves. A stream of * headers can be parsed by handing in a non-NULL datalen and in_header * pointer. */ int ct_sip_parse_header_uri(const struct nf_conn *ct, const char *dptr, unsigned int *dataoff, unsigned int datalen, enum sip_header_types type, int *in_header, unsigned int *matchoff, unsigned int *matchlen, union nf_inet_addr *addr, __be16 *port) { const char *c, *limit = dptr + datalen; unsigned int p; int ret; ret = ct_sip_walk_headers(ct, dptr, dataoff ? *dataoff : 0, datalen, type, in_header, matchoff, matchlen); WARN_ON(ret < 0); if (ret == 0) return ret; if (!sip_parse_addr(ct, dptr + *matchoff, &c, addr, limit, true)) return -1; if (*c == ':') { c++; p = simple_strtoul(c, (char **)&c, 10); if (p < 1024 || p > 65535) return -1; *port = htons(p); } else *port = htons(SIP_PORT); if (dataoff) *dataoff = c - dptr; return 1; } EXPORT_SYMBOL_GPL(ct_sip_parse_header_uri); static int ct_sip_parse_param(const struct nf_conn *ct, const char *dptr, unsigned int dataoff, unsigned int datalen, const char *name, unsigned int *matchoff, unsigned int *matchlen) { const char *limit = dptr + datalen; const char *start; const char *end; limit = ct_sip_header_search(dptr + dataoff, limit, ",", strlen(",")); if (!limit) limit = dptr + datalen; start = ct_sip_header_search(dptr + dataoff, limit, name, strlen(name)); if (!start) return 0; start += strlen(name); end = ct_sip_header_search(start, limit, ";", strlen(";")); if (!end) end = limit; *matchoff = start - dptr; *matchlen = end - start; return 1; } /* Parse address from header parameter and return address, offset and length */ int ct_sip_parse_address_param(const struct nf_conn *ct, const char *dptr, unsigned int dataoff, unsigned int datalen, const char *name, unsigned int *matchoff, unsigned int *matchlen, union nf_inet_addr *addr, bool delim) { const char *limit = dptr + datalen; const char *start, *end; limit = ct_sip_header_search(dptr + dataoff, limit, ",", strlen(",")); if (!limit) limit = dptr + datalen; start = ct_sip_header_search(dptr + dataoff, limit, name, strlen(name)); if (!start) return 0; start += strlen(name); if (!sip_parse_addr(ct, start, &end, addr, limit, delim)) return 0; *matchoff = start - dptr; *matchlen = end - start; return 1; } EXPORT_SYMBOL_GPL(ct_sip_parse_address_param); /* Parse numerical header parameter and return value, offset and length */ int ct_sip_parse_numerical_param(const struct nf_conn *ct, const char *dptr, unsigned int dataoff, unsigned int datalen, const char *name, unsigned int *matchoff, unsigned int *matchlen, unsigned int *val) { const char *limit = dptr + datalen; const char *start; char *end; limit = ct_sip_header_search(dptr + dataoff, limit, ",", strlen(",")); if (!limit) limit = dptr + datalen; start = ct_sip_header_search(dptr + dataoff, limit, name, strlen(name)); if (!start) return 0; start += strlen(name); *val = simple_strtoul(start, &end, 0); if (start == end) return 0; if (matchoff && matchlen) { *matchoff = start - dptr; *matchlen = end - start; } return 1; } EXPORT_SYMBOL_GPL(ct_sip_parse_numerical_param); static int ct_sip_parse_transport(struct nf_conn *ct, const char *dptr, unsigned int dataoff, unsigned int datalen, u8 *proto) { unsigned int matchoff, matchlen; if (ct_sip_parse_param(ct, dptr, dataoff, datalen, "transport=", &matchoff, &matchlen)) { if (!strncasecmp(dptr + matchoff, "TCP", strlen("TCP"))) *proto = IPPROTO_TCP; else if (!strncasecmp(dptr + matchoff, "UDP", strlen("UDP"))) *proto = IPPROTO_UDP; else return 0; if (*proto != nf_ct_protonum(ct)) return 0; } else *proto = nf_ct_protonum(ct); return 1; } static int sdp_parse_addr(const struct nf_conn *ct, const char *cp, const char **endp, union nf_inet_addr *addr, const char *limit) { const char *end; int ret; memset(addr, 0, sizeof(*addr)); switch (nf_ct_l3num(ct)) { case AF_INET: ret = in4_pton(cp, limit - cp, (u8 *)&addr->ip, -1, &end); break; case AF_INET6: ret = in6_pton(cp, limit - cp, (u8 *)&addr->ip6, -1, &end); break; default: BUG(); } if (ret == 0) return 0; if (endp) *endp = end; return 1; } /* skip ip address. returns its length. */ static int sdp_addr_len(const struct nf_conn *ct, const char *dptr, const char *limit, int *shift) { union nf_inet_addr addr; const char *aux = dptr; if (!sdp_parse_addr(ct, dptr, &dptr, &addr, limit)) { pr_debug("ip: %s parse failed.!\n", dptr); return 0; } return dptr - aux; } /* SDP header parsing: a SDP session description contains an ordered set of * headers, starting with a section containing general session parameters, * optionally followed by multiple media descriptions. * * SDP headers always start at the beginning of a line. According to RFC 2327: * "The sequence CRLF (0x0d0a) is used to end a record, although parsers should * be tolerant and also accept records terminated with a single newline * character". We handle both cases. */ static const struct sip_header ct_sdp_hdrs_v4[] = { [SDP_HDR_VERSION] = SDP_HDR("v=", NULL, digits_len), [SDP_HDR_OWNER] = SDP_HDR("o=", "IN IP4 ", sdp_addr_len), [SDP_HDR_CONNECTION] = SDP_HDR("c=", "IN IP4 ", sdp_addr_len), [SDP_HDR_MEDIA] = SDP_HDR("m=", NULL, media_len), }; static const struct sip_header ct_sdp_hdrs_v6[] = { [SDP_HDR_VERSION] = SDP_HDR("v=", NULL, digits_len), [SDP_HDR_OWNER] = SDP_HDR("o=", "IN IP6 ", sdp_addr_len), [SDP_HDR_CONNECTION] = SDP_HDR("c=", "IN IP6 ", sdp_addr_len), [SDP_HDR_MEDIA] = SDP_HDR("m=", NULL, media_len), }; /* Linear string search within SDP header values */ static const char *ct_sdp_header_search(const char *dptr, const char *limit, const char *needle, unsigned int len) { for (limit -= len; dptr < limit; dptr++) { if (*dptr == '\r' || *dptr == '\n') break; if (strncmp(dptr, needle, len) == 0) return dptr; } return NULL; } /* Locate a SDP header (optionally a substring within the header value), * optionally stopping at the first occurrence of the term header, parse * it and return the offset and length of the data we're interested in. */ int ct_sip_get_sdp_header(const struct nf_conn *ct, const char *dptr, unsigned int dataoff, unsigned int datalen, enum sdp_header_types type, enum sdp_header_types term, unsigned int *matchoff, unsigned int *matchlen) { const struct sip_header *hdrs, *hdr, *thdr; const char *start = dptr, *limit = dptr + datalen; int shift = 0; hdrs = nf_ct_l3num(ct) == NFPROTO_IPV4 ? ct_sdp_hdrs_v4 : ct_sdp_hdrs_v6; hdr = &hdrs[type]; thdr = &hdrs[term]; for (dptr += dataoff; dptr < limit; dptr++) { /* Find beginning of line */ if (*dptr != '\r' && *dptr != '\n') continue; if (++dptr >= limit) break; if (*(dptr - 1) == '\r' && *dptr == '\n') { if (++dptr >= limit) break; } if (term != SDP_HDR_UNSPEC && limit - dptr >= thdr->len && strncasecmp(dptr, thdr->name, thdr->len) == 0) break; else if (limit - dptr >= hdr->len && strncasecmp(dptr, hdr->name, hdr->len) == 0) dptr += hdr->len; else continue; *matchoff = dptr - start; if (hdr->search) { dptr = ct_sdp_header_search(dptr, limit, hdr->search, hdr->slen); if (!dptr) return -1; dptr += hdr->slen; } *matchlen = hdr->match_len(ct, dptr, limit, &shift); if (!*matchlen) return -1; *matchoff = dptr - start + shift; return 1; } return 0; } EXPORT_SYMBOL_GPL(ct_sip_get_sdp_header); static int ct_sip_parse_sdp_addr(const struct nf_conn *ct, const char *dptr, unsigned int dataoff, unsigned int datalen, enum sdp_header_types type, enum sdp_header_types term, unsigned int *matchoff, unsigned int *matchlen, union nf_inet_addr *addr) { int ret; ret = ct_sip_get_sdp_header(ct, dptr, dataoff, datalen, type, term, matchoff, matchlen); if (ret <= 0) return ret; if (!sdp_parse_addr(ct, dptr + *matchoff, NULL, addr, dptr + *matchoff + *matchlen)) return -1; return 1; } #if defined(CONFIG_BCM_KF_NETFILTER_SIP) static void release_conflicting_expect(const struct nf_conn *ct, const struct nf_conntrack_expect *expect, const enum sip_expectation_classes class) { struct nf_conntrack_expect *exp; struct net *net = nf_ct_net(ct); exp = __nf_ct_expect_find(net, nf_ct_zone(ct), &expect->tuple); if (exp && exp->master != ct && nfct_help(exp->master)->helper == nfct_help(ct)->helper && exp->class == class) nf_ct_unexpect_related(exp); } #endif /* CONFIG_BCM_KF_NETFILTER_SIP */ static int refresh_signalling_expectation(struct nf_conn *ct, union nf_inet_addr *addr, u8 proto, __be16 port, unsigned int expires) { struct nf_conn_help *help = nfct_help(ct); struct nf_conntrack_expect *exp; struct hlist_node *next; int found = 0; spin_lock_bh(&nf_conntrack_expect_lock); hlist_for_each_entry_safe(exp, next, &help->expectations, lnode) { if (exp->class != SIP_EXPECT_SIGNALLING || !nf_inet_addr_cmp(&exp->tuple.dst.u3, addr) || exp->tuple.dst.protonum != proto || exp->tuple.dst.u.udp.port != port) continue; if (!del_timer(&exp->timeout)) continue; exp->flags &= ~NF_CT_EXPECT_INACTIVE; exp->timeout.expires = jiffies + expires * HZ; add_timer(&exp->timeout); found = 1; break; } spin_unlock_bh(&nf_conntrack_expect_lock); return found; } static void flush_expectations(struct nf_conn *ct, bool media) { struct nf_conn_help *help = nfct_help(ct); struct nf_conntrack_expect *exp; struct hlist_node *next; spin_lock_bh(&nf_conntrack_expect_lock); hlist_for_each_entry_safe(exp, next, &help->expectations, lnode) { if ((exp->class != SIP_EXPECT_SIGNALLING) ^ media) continue; if (!del_timer(&exp->timeout)) continue; nf_ct_unlink_expect(exp); nf_ct_expect_put(exp); if (!media) break; } spin_unlock_bh(&nf_conntrack_expect_lock); } #if defined(CONFIG_BCM_KF_NETFILTER_SIP) static void bcm_sip_expectfn(struct nf_conn *ct, struct nf_conntrack_expect *exp) { iqos_add_L4port(IPPROTO_UDP, ntohs(ct->tuplehash[IP_CT_DIR_REPLY].tuple.dst.u.udp.port), IQOS_ENT_DYN, IQOS_PRIO_HIGH ); iqos_add_L4port( IPPROTO_UDP, ntohs(ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u.udp.port), IQOS_ENT_DYN, IQOS_PRIO_HIGH ); set_bit(IPS_IQOS_BIT, &ct->status); } static inline unsigned int bcm_nf_sip_sdp_media(struct sk_buff *skb, unsigned int protoff, unsigned int dataoff, const char **dptr, unsigned int *datalen, struct nf_conntrack_expect *rtp_exp, struct nf_conntrack_expect *rtcp_exp, unsigned int mediaoff, unsigned int medialen, union nf_inet_addr *rtp_addr) { /* even when NAT is not present we need to call expectfn to add RTP&RTCP * ports to IQ table */ rtp_exp->expectfn = bcm_sip_expectfn; rtcp_exp->expectfn = bcm_sip_expectfn; if (nf_ct_expect_related(rtp_exp) == 0) { if (nf_ct_expect_related(rtcp_exp) != 0) nf_ct_unexpect_related(rtp_exp); else{ return NF_ACCEPT; } } return NF_DROP; } #endif static int set_expected_rtp_rtcp(struct sk_buff *skb, unsigned int protoff, unsigned int dataoff, const char **dptr, unsigned int *datalen, union nf_inet_addr *daddr, __be16 port, enum sip_expectation_classes class, unsigned int mediaoff, unsigned int medialen) { struct nf_conntrack_expect *exp, *rtp_exp, *rtcp_exp; enum ip_conntrack_info ctinfo; struct nf_conn *ct = nf_ct_get(skb, &ctinfo); struct net *net = nf_ct_net(ct); enum ip_conntrack_dir dir = CTINFO2DIR(ctinfo); union nf_inet_addr *saddr; struct nf_conntrack_tuple tuple; int direct_rtp = 0, skip_expect = 0, ret = NF_DROP; u_int16_t base_port; __be16 rtp_port, rtcp_port; const struct nf_nat_sip_hooks *hooks; saddr = NULL; if (sip_direct_media) { if (!nf_inet_addr_cmp(daddr, &ct->tuplehash[dir].tuple.src.u3)) return NF_ACCEPT; saddr = &ct->tuplehash[!dir].tuple.src.u3; } /* We need to check whether the registration exists before attempting * to register it since we can see the same media description multiple * times on different connections in case multiple endpoints receive * the same call. * * RTP optimization: if we find a matching media channel expectation * and both the expectation and this connection are SNATed, we assume * both sides can reach each other directly and use the final * destination address from the expectation. We still need to keep * the NATed expectations for media that might arrive from the * outside, and additionally need to expect the direct RTP stream * in case it passes through us even without NAT. */ memset(&tuple, 0, sizeof(tuple)); if (saddr) tuple.src.u3 = *saddr; tuple.src.l3num = nf_ct_l3num(ct); tuple.dst.protonum = IPPROTO_UDP; tuple.dst.u3 = *daddr; tuple.dst.u.udp.port = port; rcu_read_lock(); do { exp = __nf_ct_expect_find(net, nf_ct_zone(ct), &tuple); if (!exp || exp->master == ct || nfct_help(exp->master)->helper != nfct_help(ct)->helper || exp->class != class) break; #ifdef CONFIG_NF_NAT_NEEDED if (!direct_rtp && (!nf_inet_addr_cmp(&exp->saved_addr, &exp->tuple.dst.u3) || exp->saved_proto.udp.port != exp->tuple.dst.u.udp.port) && ct->status & IPS_NAT_MASK) { #if defined(CONFIG_BCM_KF_NETFILTER_SIP) if (exp->saved_addr.ip != 0) { *daddr = exp->saved_addr; tuple.dst.u3 = exp->saved_addr; tuple.dst.u.udp.port = exp->saved_proto.udp.port; } #else *daddr = exp->saved_addr; tuple.dst.u3 = exp->saved_addr; tuple.dst.u.udp.port = exp->saved_proto.udp.port; #endif direct_rtp = 1; } else #endif skip_expect = 1; } while (!skip_expect); base_port = ntohs(tuple.dst.u.udp.port) & ~1; rtp_port = htons(base_port); rtcp_port = htons(base_port + 1); if (direct_rtp) { hooks = rcu_dereference(nf_nat_sip_hooks); if (hooks && !hooks->sdp_port(skb, protoff, dataoff, dptr, datalen, mediaoff, medialen, ntohs(rtp_port))) goto err1; } if (skip_expect) { rcu_read_unlock(); return NF_ACCEPT; } rtp_exp = nf_ct_expect_alloc(ct); if (rtp_exp == NULL) goto err1; nf_ct_expect_init(rtp_exp, class, nf_ct_l3num(ct), saddr, daddr, IPPROTO_UDP, NULL, &rtp_port); rtcp_exp = nf_ct_expect_alloc(ct); if (rtcp_exp == NULL) goto err2; nf_ct_expect_init(rtcp_exp, class, nf_ct_l3num(ct), saddr, daddr, IPPROTO_UDP, NULL, &rtcp_port); hooks = rcu_dereference(nf_nat_sip_hooks); if (hooks && ct->status & IPS_NAT_MASK && !direct_rtp) ret = hooks->sdp_media(skb, protoff, dataoff, dptr, datalen, rtp_exp, rtcp_exp, mediaoff, medialen, daddr); else { #if defined(CONFIG_BCM_KF_NETFILTER_SIP) release_conflicting_expect(ct, rtp_exp, class); release_conflicting_expect(ct, rtcp_exp, class); ret = bcm_nf_sip_sdp_media(skb, protoff, dataoff, dptr, datalen, rtp_exp, rtcp_exp, mediaoff, medialen, daddr); #else if (nf_ct_expect_related(rtp_exp) == 0) { if (nf_ct_expect_related(rtcp_exp) != 0) nf_ct_unexpect_related(rtp_exp); else ret = NF_ACCEPT; } #endif } nf_ct_expect_put(rtcp_exp); err2: nf_ct_expect_put(rtp_exp); err1: rcu_read_unlock(); return ret; } static const struct sdp_media_type sdp_media_types[] = { SDP_MEDIA_TYPE("audio ", SIP_EXPECT_AUDIO), SDP_MEDIA_TYPE("video ", SIP_EXPECT_VIDEO), SDP_MEDIA_TYPE("image ", SIP_EXPECT_IMAGE), }; static const struct sdp_media_type *sdp_media_type(const char *dptr, unsigned int matchoff, unsigned int matchlen) { const struct sdp_media_type *t; unsigned int i; for (i = 0; i < ARRAY_SIZE(sdp_media_types); i++) { t = &sdp_media_types[i]; if (matchlen < t->len || strncmp(dptr + matchoff, t->name, t->len)) continue; return t; } return NULL; } static int process_sdp(struct sk_buff *skb, unsigned int protoff, unsigned int dataoff, const char **dptr, unsigned int *datalen, unsigned int cseq) { enum ip_conntrack_info ctinfo; struct nf_conn *ct = nf_ct_get(skb, &ctinfo); unsigned int matchoff, matchlen; unsigned int mediaoff, medialen; unsigned int sdpoff; unsigned int caddr_len, maddr_len; unsigned int i; union nf_inet_addr caddr, maddr, rtp_addr; const struct nf_nat_sip_hooks *hooks; unsigned int port; const struct sdp_media_type *t; int ret = NF_ACCEPT; hooks = rcu_dereference(nf_nat_sip_hooks); /* Find beginning of session description */ if (ct_sip_get_sdp_header(ct, *dptr, 0, *datalen, SDP_HDR_VERSION, SDP_HDR_UNSPEC, &matchoff, &matchlen) <= 0) return NF_ACCEPT; sdpoff = matchoff; /* The connection information is contained in the session description * and/or once per media description. The first media description marks * the end of the session description. */ caddr_len = 0; if (ct_sip_parse_sdp_addr(ct, *dptr, sdpoff, *datalen, SDP_HDR_CONNECTION, SDP_HDR_MEDIA, &matchoff, &matchlen, &caddr) > 0) caddr_len = matchlen; mediaoff = sdpoff; for (i = 0; i < ARRAY_SIZE(sdp_media_types); ) { if (ct_sip_get_sdp_header(ct, *dptr, mediaoff, *datalen, SDP_HDR_MEDIA, SDP_HDR_UNSPEC, &mediaoff, &medialen) <= 0) break; /* Get media type and port number. A media port value of zero * indicates an inactive stream. */ t = sdp_media_type(*dptr, mediaoff, medialen); if (!t) { mediaoff += medialen; continue; } mediaoff += t->len; medialen -= t->len; port = simple_strtoul(*dptr + mediaoff, NULL, 10); if (port == 0) continue; if (port < 1024 || port > 65535) { nf_ct_helper_log(skb, ct, "wrong port %u", port); return NF_DROP; } /* The media description overrides the session description. */ maddr_len = 0; if (ct_sip_parse_sdp_addr(ct, *dptr, mediaoff, *datalen, SDP_HDR_CONNECTION, SDP_HDR_MEDIA, &matchoff, &matchlen, &maddr) > 0) { maddr_len = matchlen; memcpy(&rtp_addr, &maddr, sizeof(rtp_addr)); } else if (caddr_len) memcpy(&rtp_addr, &caddr, sizeof(rtp_addr)); else { nf_ct_helper_log(skb, ct, "cannot parse SDP message"); return NF_DROP; } ret = set_expected_rtp_rtcp(skb, protoff, dataoff, dptr, datalen, &rtp_addr, htons(port), t->class, mediaoff, medialen); if (ret != NF_ACCEPT) { nf_ct_helper_log(skb, ct, "cannot add expectation for voice"); return ret; } /* Update media connection address if present */ if (maddr_len && hooks && ct->status & IPS_NAT_MASK) { ret = hooks->sdp_addr(skb, protoff, dataoff, dptr, datalen, mediaoff, SDP_HDR_CONNECTION, SDP_HDR_MEDIA, &rtp_addr); if (ret != NF_ACCEPT) { nf_ct_helper_log(skb, ct, "cannot mangle SDP"); return ret; } } i++; } /* Update session connection and owner addresses */ hooks = rcu_dereference(nf_nat_sip_hooks); if (hooks && ct->status & IPS_NAT_MASK) ret = hooks->sdp_session(skb, protoff, dataoff, dptr, datalen, sdpoff, &rtp_addr); return ret; } static int process_invite_response(struct sk_buff *skb, unsigned int protoff, unsigned int dataoff, const char **dptr, unsigned int *datalen, unsigned int cseq, unsigned int code) { enum ip_conntrack_info ctinfo; struct nf_conn *ct = nf_ct_get(skb, &ctinfo); struct nf_ct_sip_master *ct_sip_info = nfct_help_data(ct); if ((code >= 100 && code <= 199) || (code >= 200 && code <= 299)) return process_sdp(skb, protoff, dataoff, dptr, datalen, cseq); else if (ct_sip_info->invite_cseq == cseq) flush_expectations(ct, true); return NF_ACCEPT; } static int process_update_response(struct sk_buff *skb, unsigned int protoff, unsigned int dataoff, const char **dptr, unsigned int *datalen, unsigned int cseq, unsigned int code) { enum ip_conntrack_info ctinfo; struct nf_conn *ct = nf_ct_get(skb, &ctinfo); struct nf_ct_sip_master *ct_sip_info = nfct_help_data(ct); if ((code >= 100 && code <= 199) || (code >= 200 && code <= 299)) return process_sdp(skb, protoff, dataoff, dptr, datalen, cseq); else if (ct_sip_info->invite_cseq == cseq) flush_expectations(ct, true); return NF_ACCEPT; } static int process_prack_response(struct sk_buff *skb, unsigned int protoff, unsigned int dataoff, const char **dptr, unsigned int *datalen, unsigned int cseq, unsigned int code) { enum ip_conntrack_info ctinfo; struct nf_conn *ct = nf_ct_get(skb, &ctinfo); struct nf_ct_sip_master *ct_sip_info = nfct_help_data(ct); if ((code >= 100 && code <= 199) || (code >= 200 && code <= 299)) return process_sdp(skb, protoff, dataoff, dptr, datalen, cseq); else if (ct_sip_info->invite_cseq == cseq) flush_expectations(ct, true); return NF_ACCEPT; } static int process_invite_request(struct sk_buff *skb, unsigned int protoff, unsigned int dataoff, const char **dptr, unsigned int *datalen, unsigned int cseq) { enum ip_conntrack_info ctinfo; struct nf_conn *ct = nf_ct_get(skb, &ctinfo); struct nf_ct_sip_master *ct_sip_info = nfct_help_data(ct); unsigned int ret; flush_expectations(ct, true); ret = process_sdp(skb, protoff, dataoff, dptr, datalen, cseq); if (ret == NF_ACCEPT) ct_sip_info->invite_cseq = cseq; return ret; } static int process_bye_request(struct sk_buff *skb, unsigned int protoff, unsigned int dataoff, const char **dptr, unsigned int *datalen, unsigned int cseq) { enum ip_conntrack_info ctinfo; struct nf_conn *ct = nf_ct_get(skb, &ctinfo); #if defined(CONFIG_BCM_KF_NETFILTER_SIP) struct nf_conntrack_helper *helper = nfct_help(ct)->helper; struct nf_conn *child; /* cdrouter_sip_60 */ spin_lock_bh(&ct_derived_conn_lock); list_for_each_entry(child, &ct->derived_connections, derived_list) { struct nf_conn_help *child_help = nfct_help(child); /* Leave signalling children alone, we need to close only media ones. */ if (child_help != NULL && child_help->helper == helper) continue; #if defined(CONFIG_BCM_KF_BLOG) && defined(CONFIG_BLOG) blog_lock(); if ((child->blog_key[IP_CT_DIR_ORIGINAL] != BLOG_KEY_FC_INVALID) || (child->blog_key[IP_CT_DIR_REPLY] != BLOG_KEY_FC_INVALID)) { /* remove flow from flow cache */ blog_notify(DESTROY_FLOWTRACK, (void*)child, (uint32_t)child->blog_key[IP_CT_DIR_ORIGINAL], (uint32_t)child->blog_key[IP_CT_DIR_REPLY]); set_bit(IPS_BLOG_BIT, &child->status); /* Enable conntrack blogging */ } blog_unlock(); #endif child->derived_timeout = 5*HZ; nf_ct_refresh(child, skb, 5*HZ); } spin_unlock_bh(&ct_derived_conn_lock); #endif flush_expectations(ct, true); return NF_ACCEPT; } /* Parse a REGISTER request and create a permanent expectation for incoming * signalling connections. The expectation is marked inactive and is activated * when receiving a response indicating success from the registrar. */ static int process_register_request(struct sk_buff *skb, unsigned int protoff, unsigned int dataoff, const char **dptr, unsigned int *datalen, unsigned int cseq) { enum ip_conntrack_info ctinfo; struct nf_conn *ct = nf_ct_get(skb, &ctinfo); struct nf_ct_sip_master *ct_sip_info = nfct_help_data(ct); enum ip_conntrack_dir dir = CTINFO2DIR(ctinfo); unsigned int matchoff, matchlen; struct nf_conntrack_expect *exp; union nf_inet_addr *saddr, daddr; const struct nf_nat_sip_hooks *hooks; __be16 port; u8 proto; unsigned int expires = 0; int ret; /* Expected connections can not register again. */ if (ct->status & IPS_EXPECTED) return NF_ACCEPT; /* We must check the expiration time: a value of zero signals the * registrar to release the binding. We'll remove our expectation * when receiving the new bindings in the response, but we don't * want to create new ones. * * The expiration time may be contained in Expires: header, the * Contact: header parameters or the URI parameters. */ if (ct_sip_get_header(ct, *dptr, 0, *datalen, SIP_HDR_EXPIRES, &matchoff, &matchlen) > 0) expires = simple_strtoul(*dptr + matchoff, NULL, 10); ret = ct_sip_parse_header_uri(ct, *dptr, NULL, *datalen, SIP_HDR_CONTACT, NULL, &matchoff, &matchlen, &daddr, &port); if (ret < 0) { nf_ct_helper_log(skb, ct, "cannot parse contact"); return NF_DROP; } else if (ret == 0) return NF_ACCEPT; /* We don't support third-party registrations */ if (!nf_inet_addr_cmp(&ct->tuplehash[dir].tuple.src.u3, &daddr)) return NF_ACCEPT; if (ct_sip_parse_transport(ct, *dptr, matchoff + matchlen, *datalen, &proto) == 0) return NF_ACCEPT; if (ct_sip_parse_numerical_param(ct, *dptr, matchoff + matchlen, *datalen, "expires=", NULL, NULL, &expires) < 0) { nf_ct_helper_log(skb, ct, "cannot parse expires"); return NF_DROP; } if (expires == 0) { ret = NF_ACCEPT; goto store_cseq; } exp = nf_ct_expect_alloc(ct); if (!exp) { nf_ct_helper_log(skb, ct, "cannot alloc expectation"); return NF_DROP; } saddr = NULL; if (sip_direct_signalling) saddr = &ct->tuplehash[!dir].tuple.src.u3; nf_ct_expect_init(exp, SIP_EXPECT_SIGNALLING, nf_ct_l3num(ct), saddr, &daddr, proto, NULL, &port); exp->timeout.expires = sip_timeout * HZ; exp->helper = nfct_help(ct)->helper; exp->flags = NF_CT_EXPECT_PERMANENT | NF_CT_EXPECT_INACTIVE; hooks = rcu_dereference(nf_nat_sip_hooks); if (hooks && ct->status & IPS_NAT_MASK) ret = hooks->expect(skb, protoff, dataoff, dptr, datalen, exp, matchoff, matchlen); else { if (nf_ct_expect_related(exp) != 0) { nf_ct_helper_log(skb, ct, "cannot add expectation"); ret = NF_DROP; } else ret = NF_ACCEPT; } nf_ct_expect_put(exp); store_cseq: if (ret == NF_ACCEPT) ct_sip_info->register_cseq = cseq; return ret; } static int process_register_response(struct sk_buff *skb, unsigned int protoff, unsigned int dataoff, const char **dptr, unsigned int *datalen, unsigned int cseq, unsigned int code) { enum ip_conntrack_info ctinfo; struct nf_conn *ct = nf_ct_get(skb, &ctinfo); struct nf_ct_sip_master *ct_sip_info = nfct_help_data(ct); enum ip_conntrack_dir dir = CTINFO2DIR(ctinfo); union nf_inet_addr addr; __be16 port; u8 proto; unsigned int matchoff, matchlen, coff = 0; unsigned int expires = 0; int in_contact = 0, ret; /* According to RFC 3261, "UAs MUST NOT send a new registration until * they have received a final response from the registrar for the * previous one or the previous REGISTER request has timed out". * * However, some servers fail to detect retransmissions and send late * responses, so we store the sequence number of the last valid * request and compare it here. */ if (ct_sip_info->register_cseq != cseq) return NF_ACCEPT; if (code >= 100 && code <= 199) return NF_ACCEPT; if (code < 200 || code > 299) goto flush; if (ct_sip_get_header(ct, *dptr, 0, *datalen, SIP_HDR_EXPIRES, &matchoff, &matchlen) > 0) expires = simple_strtoul(*dptr + matchoff, NULL, 10); while (1) { unsigned int c_expires = expires; ret = ct_sip_parse_header_uri(ct, *dptr, &coff, *datalen, SIP_HDR_CONTACT, &in_contact, &matchoff, &matchlen, &addr, &port); if (ret < 0) { nf_ct_helper_log(skb, ct, "cannot parse contact"); return NF_DROP; } else if (ret == 0) break; /* We don't support third-party registrations */ if (!nf_inet_addr_cmp(&ct->tuplehash[dir].tuple.dst.u3, &addr)) continue; if (ct_sip_parse_transport(ct, *dptr, matchoff + matchlen, *datalen, &proto) == 0) continue; ret = ct_sip_parse_numerical_param(ct, *dptr, matchoff + matchlen, *datalen, "expires=", NULL, NULL, &c_expires); if (ret < 0) { nf_ct_helper_log(skb, ct, "cannot parse expires"); return NF_DROP; } if (c_expires == 0) break; if (refresh_signalling_expectation(ct, &addr, proto, port, c_expires)) return NF_ACCEPT; } flush: flush_expectations(ct, false); return NF_ACCEPT; } static const struct sip_handler sip_handlers[] = { SIP_HANDLER("INVITE", process_invite_request, process_invite_response), SIP_HANDLER("UPDATE", process_sdp, process_update_response), SIP_HANDLER("ACK", process_sdp, NULL), SIP_HANDLER("PRACK", process_sdp, process_prack_response), SIP_HANDLER("BYE", process_bye_request, NULL), #if defined(CONFIG_BCM_KF_NETFILTER_SIP) SIP_HANDLER("CANCEL", process_bye_request, NULL), /*cdrouter_sip_62*/ #endif SIP_HANDLER("REGISTER", process_register_request, process_register_response), }; static int process_sip_response(struct sk_buff *skb, unsigned int protoff, unsigned int dataoff, const char **dptr, unsigned int *datalen) { enum ip_conntrack_info ctinfo; struct nf_conn *ct = nf_ct_get(skb, &ctinfo); unsigned int matchoff, matchlen, matchend; unsigned int code, cseq, i; if (*datalen < strlen("SIP/2.0 200")) return NF_ACCEPT; code = simple_strtoul(*dptr + strlen("SIP/2.0 "), NULL, 10); if (!code) { nf_ct_helper_log(skb, ct, "cannot get code"); return NF_DROP; } if (ct_sip_get_header(ct, *dptr, 0, *datalen, SIP_HDR_CSEQ, &matchoff, &matchlen) <= 0) { nf_ct_helper_log(skb, ct, "cannot parse cseq"); return NF_DROP; } cseq = simple_strtoul(*dptr + matchoff, NULL, 10); if (!cseq) { nf_ct_helper_log(skb, ct, "cannot get cseq"); return NF_DROP; } matchend = matchoff + matchlen + 1; for (i = 0; i < ARRAY_SIZE(sip_handlers); i++) { const struct sip_handler *handler; handler = &sip_handlers[i]; if (handler->response == NULL) continue; if (*datalen < matchend + handler->len || strncasecmp(*dptr + matchend, handler->method, handler->len)) continue; return handler->response(skb, protoff, dataoff, dptr, datalen, cseq, code); } return NF_ACCEPT; } static int process_sip_request(struct sk_buff *skb, unsigned int protoff, unsigned int dataoff, const char **dptr, unsigned int *datalen) { enum ip_conntrack_info ctinfo; struct nf_conn *ct = nf_ct_get(skb, &ctinfo); struct nf_ct_sip_master *ct_sip_info = nfct_help_data(ct); enum ip_conntrack_dir dir = CTINFO2DIR(ctinfo); unsigned int matchoff, matchlen; unsigned int cseq, i; union nf_inet_addr addr; __be16 port; /* Many Cisco IP phones use a high source port for SIP requests, but * listen for the response on port 5060. If we are the local * router for one of these phones, save the port number from the * Via: header so that nf_nat_sip can redirect the responses to * the correct port. */ if (ct_sip_parse_header_uri(ct, *dptr, NULL, *datalen, SIP_HDR_VIA_UDP, NULL, &matchoff, &matchlen, &addr, &port) > 0 && port != ct->tuplehash[dir].tuple.src.u.udp.port && nf_inet_addr_cmp(&addr, &ct->tuplehash[dir].tuple.src.u3)) ct_sip_info->forced_dport = port; for (i = 0; i < ARRAY_SIZE(sip_handlers); i++) { const struct sip_handler *handler; handler = &sip_handlers[i]; if (handler->request == NULL) continue; if (*datalen < handler->len + 2 || strncasecmp(*dptr, handler->method, handler->len)) continue; if ((*dptr)[handler->len] != ' ' || !isalpha((*dptr)[handler->len+1])) continue; if (ct_sip_get_header(ct, *dptr, 0, *datalen, SIP_HDR_CSEQ, &matchoff, &matchlen) <= 0) { nf_ct_helper_log(skb, ct, "cannot parse cseq"); return NF_DROP; } cseq = simple_strtoul(*dptr + matchoff, NULL, 10); if (!cseq) { nf_ct_helper_log(skb, ct, "cannot get cseq"); return NF_DROP; } return handler->request(skb, protoff, dataoff, dptr, datalen, cseq); } return NF_ACCEPT; } static int process_sip_msg(struct sk_buff *skb, struct nf_conn *ct, unsigned int protoff, unsigned int dataoff, const char **dptr, unsigned int *datalen) { const struct nf_nat_sip_hooks *hooks; int ret; if (strncasecmp(*dptr, "SIP/2.0 ", strlen("SIP/2.0 ")) != 0) ret = process_sip_request(skb, protoff, dataoff, dptr, datalen); else ret = process_sip_response(skb, protoff, dataoff, dptr, datalen); if (ret == NF_ACCEPT && ct->status & IPS_NAT_MASK) { hooks = rcu_dereference(nf_nat_sip_hooks); if (hooks && !hooks->msg(skb, protoff, dataoff, dptr, datalen)) { nf_ct_helper_log(skb, ct, "cannot NAT SIP message"); ret = NF_DROP; } } return ret; } static int sip_help_tcp(struct sk_buff *skb, unsigned int protoff, struct nf_conn *ct, enum ip_conntrack_info ctinfo) { struct tcphdr *th, _tcph; unsigned int dataoff, datalen; unsigned int matchoff, matchlen, clen; unsigned int msglen, origlen; const char *dptr, *end; s16 diff, tdiff = 0; int ret = NF_ACCEPT; bool term; if (ctinfo != IP_CT_ESTABLISHED && ctinfo != IP_CT_ESTABLISHED_REPLY) return NF_ACCEPT; /* No Data ? */ th = skb_header_pointer(skb, protoff, sizeof(_tcph), &_tcph); if (th == NULL) return NF_ACCEPT; dataoff = protoff + th->doff * 4; if (dataoff >= skb->len) return NF_ACCEPT; nf_ct_refresh(ct, skb, sip_timeout * HZ); if (unlikely(skb_linearize(skb))) return NF_DROP; dptr = skb->data + dataoff; datalen = skb->len - dataoff; if (datalen < strlen("SIP/2.0 200")) return NF_ACCEPT; while (1) { if (ct_sip_get_header(ct, dptr, 0, datalen, SIP_HDR_CONTENT_LENGTH, &matchoff, &matchlen) <= 0) break; clen = simple_strtoul(dptr + matchoff, (char **)&end, 10); if (dptr + matchoff == end) break; term = false; for (; end + strlen("\r\n\r\n") <= dptr + datalen; end++) { if (end[0] == '\r' && end[1] == '\n' && end[2] == '\r' && end[3] == '\n') { term = true; break; } } if (!term) break; end += strlen("\r\n\r\n") + clen; msglen = origlen = end - dptr; if (msglen > datalen) return NF_ACCEPT; ret = process_sip_msg(skb, ct, protoff, dataoff, &dptr, &msglen); /* process_sip_* functions report why this packet is dropped */ if (ret != NF_ACCEPT) break; diff = msglen - origlen; tdiff += diff; dataoff += msglen; dptr += msglen; datalen = datalen + diff - msglen; } if (ret == NF_ACCEPT && ct->status & IPS_NAT_MASK) { const struct nf_nat_sip_hooks *hooks; hooks = rcu_dereference(nf_nat_sip_hooks); if (hooks) hooks->seq_adjust(skb, protoff, tdiff); } return ret; } static int sip_help_udp(struct sk_buff *skb, unsigned int protoff, struct nf_conn *ct, enum ip_conntrack_info ctinfo) { unsigned int dataoff, datalen; const char *dptr; /* No Data ? */ dataoff = protoff + sizeof(struct udphdr); if (dataoff >= skb->len) return NF_ACCEPT; nf_ct_refresh(ct, skb, sip_timeout * HZ); if (unlikely(skb_linearize(skb))) return NF_DROP; dptr = skb->data + dataoff; datalen = skb->len - dataoff; if (datalen < strlen("SIP/2.0 200")) return NF_ACCEPT; return process_sip_msg(skb, ct, protoff, dataoff, &dptr, &datalen); } static struct nf_conntrack_helper sip[MAX_PORTS][4] __read_mostly; static const struct nf_conntrack_expect_policy sip_exp_policy[SIP_EXPECT_MAX + 1] = { [SIP_EXPECT_SIGNALLING] = { .name = "signalling", .max_expected = 1, .timeout = 3 * 60, }, [SIP_EXPECT_AUDIO] = { .name = "audio", .max_expected = 2 * IP_CT_DIR_MAX, .timeout = 3 * 60, }, [SIP_EXPECT_VIDEO] = { .name = "video", .max_expected = 2 * IP_CT_DIR_MAX, .timeout = 3 * 60, }, [SIP_EXPECT_IMAGE] = { .name = "image", .max_expected = IP_CT_DIR_MAX, .timeout = 3 * 60, }, }; static void nf_conntrack_sip_fini(void) { int i, j; for (i = 0; i < ports_c; i++) { for (j = 0; j < ARRAY_SIZE(sip[i]); j++) { if (sip[i][j].me == NULL) continue; nf_conntrack_helper_unregister(&sip[i][j]); } #if defined(CONFIG_BCM_KF_NETFILTER_SIP) /* unregister the SIP ports with ingress QoS classifier */ iqos_rem_L4port( IPPROTO_UDP, ports[i], IQOS_ENT_STAT ); iqos_rem_L4port( IPPROTO_TCP, ports[i], IQOS_ENT_STAT ); #endif } } static int __init nf_conntrack_sip_init(void) { int i, j, ret; if (ports_c == 0) ports[ports_c++] = SIP_PORT; for (i = 0; i < ports_c; i++) { memset(&sip[i], 0, sizeof(sip[i])); sip[i][0].tuple.src.l3num = AF_INET; sip[i][0].tuple.dst.protonum = IPPROTO_UDP; sip[i][0].help = sip_help_udp; sip[i][1].tuple.src.l3num = AF_INET; sip[i][1].tuple.dst.protonum = IPPROTO_TCP; sip[i][1].help = sip_help_tcp; sip[i][2].tuple.src.l3num = AF_INET6; sip[i][2].tuple.dst.protonum = IPPROTO_UDP; sip[i][2].help = sip_help_udp; sip[i][3].tuple.src.l3num = AF_INET6; sip[i][3].tuple.dst.protonum = IPPROTO_TCP; sip[i][3].help = sip_help_tcp; for (j = 0; j < ARRAY_SIZE(sip[i]); j++) { sip[i][j].data_len = sizeof(struct nf_ct_sip_master); sip[i][j].tuple.src.u.udp.port = htons(ports[i]); sip[i][j].expect_policy = sip_exp_policy; sip[i][j].expect_class_max = SIP_EXPECT_MAX; sip[i][j].me = THIS_MODULE; if (ports[i] == SIP_PORT) sprintf(sip[i][j].name, "sip"); else sprintf(sip[i][j].name, "sip-%u", i); pr_debug("port #%u: %u\n", i, ports[i]); ret = nf_conntrack_helper_register(&sip[i][j]); if (ret) { printk(KERN_ERR "nf_ct_sip: failed to register" " helper for pf: %u port: %u\n", sip[i][j].tuple.src.l3num, ports[i]); nf_conntrack_sip_fini(); return ret; } } #if defined(CONFIG_BCM_KF_NETFILTER_SIP) /* register the SIP ports with ingress QoS classifier */ iqos_add_L4port( IPPROTO_UDP, ports[i], IQOS_ENT_STAT, IQOS_PRIO_HIGH ); iqos_add_L4port( IPPROTO_TCP, ports[i], IQOS_ENT_STAT, IQOS_PRIO_HIGH ); #endif } return 0; } module_init(nf_conntrack_sip_init); module_exit(nf_conntrack_sip_fini);