/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 2007 MIPS Technologies, Inc. * Copyright (C) 2007 Ralf Baechle <ralf@linux-mips.org> */ #include <linux/clockchips.h> #include <linux/interrupt.h> #include <linux/percpu.h> #include <linux/smp.h> #include <linux/irq.h> #include <asm/time.h> #include <asm/cevt-r4k.h> static int mips_next_event(unsigned long delta, struct clock_event_device *evt) { unsigned int cnt; int res; cnt = read_c0_count(); cnt += delta; write_c0_compare(cnt); res = ((int)(read_c0_count() - cnt) >= 0) ? -ETIME : 0; return res; } /** * calculate_min_delta() - Calculate a good minimum delta for mips_next_event(). * * Running under virtualisation can introduce overhead into mips_next_event() in * the form of hypervisor emulation of CP0_Count/CP0_Compare registers, * potentially with an unnatural frequency, which makes a fixed min_delta_ns * value inappropriate as it may be too small. * * It can also introduce occasional latency from the guest being descheduled. * * This function calculates a good minimum delta based roughly on the 75th * percentile of the time taken to do the mips_next_event() sequence, in order * to handle potentially higher overhead while also eliminating outliers due to * unpredictable hypervisor latency (which can be handled by retries). * * Return: An appropriate minimum delta for the clock event device. */ static unsigned int calculate_min_delta(void) { unsigned int cnt, i, j, k, l; unsigned int buf1[4], buf2[3]; unsigned int min_delta; /* * Calculate the median of 5 75th percentiles of 5 samples of how long * it takes to set CP0_Compare = CP0_Count + delta. */ for (i = 0; i < 5; ++i) { for (j = 0; j < 5; ++j) { /* * This is like the code in mips_next_event(), and * directly measures the borderline "safe" delta. */ cnt = read_c0_count(); write_c0_compare(cnt); cnt = read_c0_count() - cnt; /* Sorted insert into buf1 */ for (k = 0; k < j; ++k) { if (cnt < buf1[k]) { l = min_t(unsigned int, j, ARRAY_SIZE(buf1) - 1); for (; l > k; --l) buf1[l] = buf1[l - 1]; break; } } if (k < ARRAY_SIZE(buf1)) buf1[k] = cnt; } /* Sorted insert of 75th percentile into buf2 */ for (k = 0; k < i && k < ARRAY_SIZE(buf2); ++k) { if (buf1[ARRAY_SIZE(buf1) - 1] < buf2[k]) { l = min_t(unsigned int, i, ARRAY_SIZE(buf2) - 1); for (; l > k; --l) buf2[l] = buf2[l - 1]; break; } } if (k < ARRAY_SIZE(buf2)) buf2[k] = buf1[ARRAY_SIZE(buf1) - 1]; } /* Use 2 * median of 75th percentiles */ min_delta = buf2[ARRAY_SIZE(buf2) - 1] * 2; /* Don't go too low */ if (min_delta < 0x300) min_delta = 0x300; pr_debug("%s: median 75th percentile=%#x, min_delta=%#x\n", __func__, buf2[ARRAY_SIZE(buf2) - 1], min_delta); return min_delta; } DEFINE_PER_CPU(struct clock_event_device, mips_clockevent_device); int cp0_timer_irq_installed; /* * Possibly handle a performance counter interrupt. * Return true if the timer interrupt should not be checked */ static inline int handle_perf_irq(int r2) { /* * The performance counter overflow interrupt may be shared with the * timer interrupt (cp0_perfcount_irq < 0). If it is and a * performance counter has overflowed (perf_irq() == IRQ_HANDLED) * and we can't reliably determine if a counter interrupt has also * happened (!r2) then don't check for a timer interrupt. */ return (cp0_perfcount_irq < 0) && perf_irq() == IRQ_HANDLED && !r2; } irqreturn_t c0_compare_interrupt(int irq, void *dev_id) { const int r2 = cpu_has_mips_r2_r6; struct clock_event_device *cd; int cpu = smp_processor_id(); /* * Suckage alert: * Before R2 of the architecture there was no way to see if a * performance counter interrupt was pending, so we have to run * the performance counter interrupt handler anyway. */ if (handle_perf_irq(r2)) return IRQ_HANDLED; /* * The same applies to performance counter interrupts. But with the * above we now know that the reason we got here must be a timer * interrupt. Being the paranoiacs we are we check anyway. */ if (!r2 || (read_c0_cause() & CAUSEF_TI)) { /* Clear Count/Compare Interrupt */ write_c0_compare(read_c0_compare()); cd = &per_cpu(mips_clockevent_device, cpu); cd->event_handler(cd); return IRQ_HANDLED; } return IRQ_NONE; } struct irqaction c0_compare_irqaction = { .handler = c0_compare_interrupt, /* * IRQF_SHARED: The timer interrupt may be shared with other interrupts * such as perf counter and FDC interrupts. */ .flags = IRQF_PERCPU | IRQF_TIMER | IRQF_SHARED, .name = "timer", }; void mips_event_handler(struct clock_event_device *dev) { } /* * FIXME: This doesn't hold for the relocated E9000 compare interrupt. */ static int c0_compare_int_pending(void) { /* When cpu_has_mips_r2, this checks Cause.TI instead of Cause.IP7 */ return (read_c0_cause() >> cp0_compare_irq_shift) & (1ul << CAUSEB_IP); } /* * Compare interrupt can be routed and latched outside the core, * so wait up to worst case number of cycle counter ticks for timer interrupt * changes to propagate to the cause register. */ #define COMPARE_INT_SEEN_TICKS 50 int c0_compare_int_usable(void) { unsigned int delta; unsigned int cnt; #ifdef CONFIG_KVM_GUEST return 1; #endif /* * IP7 already pending? Try to clear it by acking the timer. */ if (c0_compare_int_pending()) { cnt = read_c0_count(); write_c0_compare(cnt); back_to_back_c0_hazard(); while (read_c0_count() < (cnt + COMPARE_INT_SEEN_TICKS)) if (!c0_compare_int_pending()) break; if (c0_compare_int_pending()) return 0; } for (delta = 0x10; delta <= 0x400000; delta <<= 1) { cnt = read_c0_count(); cnt += delta; write_c0_compare(cnt); back_to_back_c0_hazard(); if ((int)(read_c0_count() - cnt) < 0) break; /* increase delta if the timer was already expired */ } while ((int)(read_c0_count() - cnt) <= 0) ; /* Wait for expiry */ while (read_c0_count() < (cnt + COMPARE_INT_SEEN_TICKS)) if (c0_compare_int_pending()) break; if (!c0_compare_int_pending()) return 0; cnt = read_c0_count(); write_c0_compare(cnt); back_to_back_c0_hazard(); while (read_c0_count() < (cnt + COMPARE_INT_SEEN_TICKS)) if (!c0_compare_int_pending()) break; if (c0_compare_int_pending()) return 0; /* * Feels like a real count / compare timer. */ return 1; } unsigned int __weak get_c0_compare_int(void) { return MIPS_CPU_IRQ_BASE + cp0_compare_irq; } int r4k_clockevent_init(void) { unsigned int cpu = smp_processor_id(); struct clock_event_device *cd; unsigned int irq, min_delta; if (!cpu_has_counter || !mips_hpt_frequency) return -ENXIO; if (!c0_compare_int_usable()) return -ENXIO; /* * With vectored interrupts things are getting platform specific. * get_c0_compare_int is a hook to allow a platform to return the * interrupt number of its liking. */ irq = get_c0_compare_int(); cd = &per_cpu(mips_clockevent_device, cpu); cd->name = "MIPS"; cd->features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_C3STOP | CLOCK_EVT_FEAT_PERCPU; min_delta = calculate_min_delta(); cd->rating = 300; cd->irq = irq; cd->cpumask = cpumask_of(cpu); cd->set_next_event = mips_next_event; cd->event_handler = mips_event_handler; clockevents_config_and_register(cd, mips_hpt_frequency, min_delta, 0x7fffffff); if (cp0_timer_irq_installed) return 0; cp0_timer_irq_installed = 1; setup_irq(irq, &c0_compare_irqaction); return 0; }