/* * Copyright (c) 2006 Luc Verhaegen (quirks list) * Copyright (c) 2007-2008 Intel Corporation * Jesse Barnes * Copyright 2010 Red Hat, Inc. * * DDC probing routines (drm_ddc_read & drm_do_probe_ddc_edid) originally from * FB layer. * Copyright (C) 2006 Dennis Munsie * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sub license, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include "drm_crtc_internal.h" #define version_greater(edid, maj, min) \ (((edid)->version > (maj)) || \ ((edid)->version == (maj) && (edid)->revision > (min))) #define EDID_EST_TIMINGS 16 #define EDID_STD_TIMINGS 8 #define EDID_DETAILED_TIMINGS 4 /* * EDID blocks out in the wild have a variety of bugs, try to collect * them here (note that userspace may work around broken monitors first, * but fixes should make their way here so that the kernel "just works" * on as many displays as possible). */ /* First detailed mode wrong, use largest 60Hz mode */ #define EDID_QUIRK_PREFER_LARGE_60 (1 << 0) /* Reported 135MHz pixel clock is too high, needs adjustment */ #define EDID_QUIRK_135_CLOCK_TOO_HIGH (1 << 1) /* Prefer the largest mode at 75 Hz */ #define EDID_QUIRK_PREFER_LARGE_75 (1 << 2) /* Detail timing is in cm not mm */ #define EDID_QUIRK_DETAILED_IN_CM (1 << 3) /* Detailed timing descriptors have bogus size values, so just take the * maximum size and use that. */ #define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE (1 << 4) /* Monitor forgot to set the first detailed is preferred bit. */ #define EDID_QUIRK_FIRST_DETAILED_PREFERRED (1 << 5) /* use +hsync +vsync for detailed mode */ #define EDID_QUIRK_DETAILED_SYNC_PP (1 << 6) /* Force reduced-blanking timings for detailed modes */ #define EDID_QUIRK_FORCE_REDUCED_BLANKING (1 << 7) /* Force 8bpc */ #define EDID_QUIRK_FORCE_8BPC (1 << 8) /* Force 12bpc */ #define EDID_QUIRK_FORCE_12BPC (1 << 9) /* Force 6bpc */ #define EDID_QUIRK_FORCE_6BPC (1 << 10) /* Force 10bpc */ #define EDID_QUIRK_FORCE_10BPC (1 << 11) /* Non desktop display (i.e. HMD) */ #define EDID_QUIRK_NON_DESKTOP (1 << 12) struct detailed_mode_closure { struct drm_connector *connector; struct edid *edid; bool preferred; u32 quirks; int modes; }; #define LEVEL_DMT 0 #define LEVEL_GTF 1 #define LEVEL_GTF2 2 #define LEVEL_CVT 3 static const struct edid_quirk { char vendor[4]; int product_id; u32 quirks; } edid_quirk_list[] = { /* Acer AL1706 */ { "ACR", 44358, EDID_QUIRK_PREFER_LARGE_60 }, /* Acer F51 */ { "API", 0x7602, EDID_QUIRK_PREFER_LARGE_60 }, /* Unknown Acer */ { "ACR", 2423, EDID_QUIRK_FIRST_DETAILED_PREFERRED }, /* AEO model 0 reports 8 bpc, but is a 6 bpc panel */ { "AEO", 0, EDID_QUIRK_FORCE_6BPC }, /* BOE model on HP Pavilion 15-n233sl reports 8 bpc, but is a 6 bpc panel */ { "BOE", 0x78b, EDID_QUIRK_FORCE_6BPC }, /* CPT panel of Asus UX303LA reports 8 bpc, but is a 6 bpc panel */ { "CPT", 0x17df, EDID_QUIRK_FORCE_6BPC }, /* SDC panel of Lenovo B50-80 reports 8 bpc, but is a 6 bpc panel */ { "SDC", 0x3652, EDID_QUIRK_FORCE_6BPC }, /* BOE model 0x0771 reports 8 bpc, but is a 6 bpc panel */ { "BOE", 0x0771, EDID_QUIRK_FORCE_6BPC }, /* Belinea 10 15 55 */ { "MAX", 1516, EDID_QUIRK_PREFER_LARGE_60 }, { "MAX", 0x77e, EDID_QUIRK_PREFER_LARGE_60 }, /* Envision Peripherals, Inc. EN-7100e */ { "EPI", 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH }, /* Envision EN2028 */ { "EPI", 8232, EDID_QUIRK_PREFER_LARGE_60 }, /* Funai Electronics PM36B */ { "FCM", 13600, EDID_QUIRK_PREFER_LARGE_75 | EDID_QUIRK_DETAILED_IN_CM }, /* LGD panel of HP zBook 17 G2, eDP 10 bpc, but reports unknown bpc */ { "LGD", 764, EDID_QUIRK_FORCE_10BPC }, /* LG Philips LCD LP154W01-A5 */ { "LPL", 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE }, { "LPL", 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE }, /* Philips 107p5 CRT */ { "PHL", 57364, EDID_QUIRK_FIRST_DETAILED_PREFERRED }, /* Proview AY765C */ { "PTS", 765, EDID_QUIRK_FIRST_DETAILED_PREFERRED }, /* Samsung SyncMaster 205BW. Note: irony */ { "SAM", 541, EDID_QUIRK_DETAILED_SYNC_PP }, /* Samsung SyncMaster 22[5-6]BW */ { "SAM", 596, EDID_QUIRK_PREFER_LARGE_60 }, { "SAM", 638, EDID_QUIRK_PREFER_LARGE_60 }, /* Sony PVM-2541A does up to 12 bpc, but only reports max 8 bpc */ { "SNY", 0x2541, EDID_QUIRK_FORCE_12BPC }, /* ViewSonic VA2026w */ { "VSC", 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING }, /* Medion MD 30217 PG */ { "MED", 0x7b8, EDID_QUIRK_PREFER_LARGE_75 }, /* Lenovo G50 */ { "SDC", 18514, EDID_QUIRK_FORCE_6BPC }, /* Panel in Samsung NP700G7A-S01PL notebook reports 6bpc */ { "SEC", 0xd033, EDID_QUIRK_FORCE_8BPC }, /* Rotel RSX-1058 forwards sink's EDID but only does HDMI 1.1*/ { "ETR", 13896, EDID_QUIRK_FORCE_8BPC }, /* Valve Index Headset */ { "VLV", 0x91a8, EDID_QUIRK_NON_DESKTOP }, { "VLV", 0x91b0, EDID_QUIRK_NON_DESKTOP }, { "VLV", 0x91b1, EDID_QUIRK_NON_DESKTOP }, { "VLV", 0x91b2, EDID_QUIRK_NON_DESKTOP }, { "VLV", 0x91b3, EDID_QUIRK_NON_DESKTOP }, { "VLV", 0x91b4, EDID_QUIRK_NON_DESKTOP }, { "VLV", 0x91b5, EDID_QUIRK_NON_DESKTOP }, { "VLV", 0x91b6, EDID_QUIRK_NON_DESKTOP }, { "VLV", 0x91b7, EDID_QUIRK_NON_DESKTOP }, { "VLV", 0x91b8, EDID_QUIRK_NON_DESKTOP }, { "VLV", 0x91b9, EDID_QUIRK_NON_DESKTOP }, { "VLV", 0x91ba, EDID_QUIRK_NON_DESKTOP }, { "VLV", 0x91bb, EDID_QUIRK_NON_DESKTOP }, { "VLV", 0x91bc, EDID_QUIRK_NON_DESKTOP }, { "VLV", 0x91bd, EDID_QUIRK_NON_DESKTOP }, { "VLV", 0x91be, EDID_QUIRK_NON_DESKTOP }, { "VLV", 0x91bf, EDID_QUIRK_NON_DESKTOP }, /* HTC Vive and Vive Pro VR Headsets */ { "HVR", 0xaa01, EDID_QUIRK_NON_DESKTOP }, { "HVR", 0xaa02, EDID_QUIRK_NON_DESKTOP }, /* Oculus Rift DK1, DK2, CV1 and Rift S VR Headsets */ { "OVR", 0x0001, EDID_QUIRK_NON_DESKTOP }, { "OVR", 0x0003, EDID_QUIRK_NON_DESKTOP }, { "OVR", 0x0004, EDID_QUIRK_NON_DESKTOP }, { "OVR", 0x0012, EDID_QUIRK_NON_DESKTOP }, /* Windows Mixed Reality Headsets */ { "ACR", 0x7fce, EDID_QUIRK_NON_DESKTOP }, { "HPN", 0x3515, EDID_QUIRK_NON_DESKTOP }, { "LEN", 0x0408, EDID_QUIRK_NON_DESKTOP }, { "LEN", 0xb800, EDID_QUIRK_NON_DESKTOP }, { "FUJ", 0x1970, EDID_QUIRK_NON_DESKTOP }, { "DEL", 0x7fce, EDID_QUIRK_NON_DESKTOP }, { "SEC", 0x144a, EDID_QUIRK_NON_DESKTOP }, { "AUS", 0xc102, EDID_QUIRK_NON_DESKTOP }, /* Sony PlayStation VR Headset */ { "SNY", 0x0704, EDID_QUIRK_NON_DESKTOP }, /* Sensics VR Headsets */ { "SEN", 0x1019, EDID_QUIRK_NON_DESKTOP }, /* OSVR HDK and HDK2 VR Headsets */ { "SVR", 0x1019, EDID_QUIRK_NON_DESKTOP }, }; /* * Autogenerated from the DMT spec. * This table is copied from xfree86/modes/xf86EdidModes.c. */ static const struct drm_display_mode drm_dmt_modes[] = { /* 0x01 - 640x350@85Hz */ { DRM_MODE("640x350", DRM_MODE_TYPE_DRIVER, 31500, 640, 672, 736, 832, 0, 350, 382, 385, 445, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 0x02 - 640x400@85Hz */ { DRM_MODE("640x400", DRM_MODE_TYPE_DRIVER, 31500, 640, 672, 736, 832, 0, 400, 401, 404, 445, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x03 - 720x400@85Hz */ { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 756, 828, 936, 0, 400, 401, 404, 446, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x04 - 640x480@60Hz */ { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656, 752, 800, 0, 480, 490, 492, 525, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 0x05 - 640x480@72Hz */ { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664, 704, 832, 0, 480, 489, 492, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 0x06 - 640x480@75Hz */ { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656, 720, 840, 0, 480, 481, 484, 500, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 0x07 - 640x480@85Hz */ { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 36000, 640, 696, 752, 832, 0, 480, 481, 484, 509, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 0x08 - 800x600@56Hz */ { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824, 896, 1024, 0, 600, 601, 603, 625, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x09 - 800x600@60Hz */ { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840, 968, 1056, 0, 600, 601, 605, 628, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x0a - 800x600@72Hz */ { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856, 976, 1040, 0, 600, 637, 643, 666, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x0b - 800x600@75Hz */ { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816, 896, 1056, 0, 600, 601, 604, 625, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x0c - 800x600@85Hz */ { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 56250, 800, 832, 896, 1048, 0, 600, 601, 604, 631, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x0d - 800x600@120Hz RB */ { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 73250, 800, 848, 880, 960, 0, 600, 603, 607, 636, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 0x0e - 848x480@60Hz */ { DRM_MODE("848x480", DRM_MODE_TYPE_DRIVER, 33750, 848, 864, 976, 1088, 0, 480, 486, 494, 517, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x0f - 1024x768@43Hz, interlace */ { DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032, 1208, 1264, 0, 768, 768, 776, 817, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 0x10 - 1024x768@60Hz */ { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048, 1184, 1344, 0, 768, 771, 777, 806, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 0x11 - 1024x768@70Hz */ { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048, 1184, 1328, 0, 768, 771, 777, 806, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 0x12 - 1024x768@75Hz */ { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040, 1136, 1312, 0, 768, 769, 772, 800, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x13 - 1024x768@85Hz */ { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072, 1168, 1376, 0, 768, 769, 772, 808, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x14 - 1024x768@120Hz RB */ { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072, 1104, 1184, 0, 768, 771, 775, 813, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 0x15 - 1152x864@75Hz */ { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216, 1344, 1600, 0, 864, 865, 868, 900, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x55 - 1280x720@60Hz */ { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390, 1430, 1650, 0, 720, 725, 730, 750, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x16 - 1280x768@60Hz RB */ { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328, 1360, 1440, 0, 768, 771, 778, 790, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 0x17 - 1280x768@60Hz */ { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344, 1472, 1664, 0, 768, 771, 778, 798, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x18 - 1280x768@75Hz */ { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360, 1488, 1696, 0, 768, 771, 778, 805, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x19 - 1280x768@85Hz */ { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360, 1496, 1712, 0, 768, 771, 778, 809, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x1a - 1280x768@120Hz RB */ { DRM_MODE("1280x768", DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328, 1360, 1440, 0, 768, 771, 778, 813, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 0x1b - 1280x800@60Hz RB */ { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328, 1360, 1440, 0, 800, 803, 809, 823, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 0x1c - 1280x800@60Hz */ { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352, 1480, 1680, 0, 800, 803, 809, 831, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x1d - 1280x800@75Hz */ { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360, 1488, 1696, 0, 800, 803, 809, 838, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x1e - 1280x800@85Hz */ { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360, 1496, 1712, 0, 800, 803, 809, 843, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x1f - 1280x800@120Hz RB */ { DRM_MODE("1280x800", DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328, 1360, 1440, 0, 800, 803, 809, 847, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 0x20 - 1280x960@60Hz */ { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376, 1488, 1800, 0, 960, 961, 964, 1000, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x21 - 1280x960@85Hz */ { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344, 1504, 1728, 0, 960, 961, 964, 1011, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x22 - 1280x960@120Hz RB */ { DRM_MODE("1280x960", DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328, 1360, 1440, 0, 960, 963, 967, 1017, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 0x23 - 1280x1024@60Hz */ { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328, 1440, 1688, 0, 1024, 1025, 1028, 1066, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x24 - 1280x1024@75Hz */ { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296, 1440, 1688, 0, 1024, 1025, 1028, 1066, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x25 - 1280x1024@85Hz */ { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344, 1504, 1728, 0, 1024, 1025, 1028, 1072, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x26 - 1280x1024@120Hz RB */ { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328, 1360, 1440, 0, 1024, 1027, 1034, 1084, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 0x27 - 1360x768@60Hz */ { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424, 1536, 1792, 0, 768, 771, 777, 795, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x28 - 1360x768@120Hz RB */ { DRM_MODE("1360x768", DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408, 1440, 1520, 0, 768, 771, 776, 813, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 0x51 - 1366x768@60Hz */ { DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 85500, 1366, 1436, 1579, 1792, 0, 768, 771, 774, 798, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x56 - 1366x768@60Hz */ { DRM_MODE("1366x768", DRM_MODE_TYPE_DRIVER, 72000, 1366, 1380, 1436, 1500, 0, 768, 769, 772, 800, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x29 - 1400x1050@60Hz RB */ { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448, 1480, 1560, 0, 1050, 1053, 1057, 1080, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 0x2a - 1400x1050@60Hz */ { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488, 1632, 1864, 0, 1050, 1053, 1057, 1089, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x2b - 1400x1050@75Hz */ { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504, 1648, 1896, 0, 1050, 1053, 1057, 1099, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x2c - 1400x1050@85Hz */ { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504, 1656, 1912, 0, 1050, 1053, 1057, 1105, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x2d - 1400x1050@120Hz RB */ { DRM_MODE("1400x1050", DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448, 1480, 1560, 0, 1050, 1053, 1057, 1112, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 0x2e - 1440x900@60Hz RB */ { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488, 1520, 1600, 0, 900, 903, 909, 926, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 0x2f - 1440x900@60Hz */ { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520, 1672, 1904, 0, 900, 903, 909, 934, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x30 - 1440x900@75Hz */ { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536, 1688, 1936, 0, 900, 903, 909, 942, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x31 - 1440x900@85Hz */ { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544, 1696, 1952, 0, 900, 903, 909, 948, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x32 - 1440x900@120Hz RB */ { DRM_MODE("1440x900", DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488, 1520, 1600, 0, 900, 903, 909, 953, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 0x53 - 1600x900@60Hz */ { DRM_MODE("1600x900", DRM_MODE_TYPE_DRIVER, 108000, 1600, 1624, 1704, 1800, 0, 900, 901, 904, 1000, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x33 - 1600x1200@60Hz */ { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664, 1856, 2160, 0, 1200, 1201, 1204, 1250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x34 - 1600x1200@65Hz */ { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664, 1856, 2160, 0, 1200, 1201, 1204, 1250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x35 - 1600x1200@70Hz */ { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664, 1856, 2160, 0, 1200, 1201, 1204, 1250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x36 - 1600x1200@75Hz */ { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664, 1856, 2160, 0, 1200, 1201, 1204, 1250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x37 - 1600x1200@85Hz */ { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664, 1856, 2160, 0, 1200, 1201, 1204, 1250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x38 - 1600x1200@120Hz RB */ { DRM_MODE("1600x1200", DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648, 1680, 1760, 0, 1200, 1203, 1207, 1271, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 0x39 - 1680x1050@60Hz RB */ { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728, 1760, 1840, 0, 1050, 1053, 1059, 1080, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 0x3a - 1680x1050@60Hz */ { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784, 1960, 2240, 0, 1050, 1053, 1059, 1089, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x3b - 1680x1050@75Hz */ { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800, 1976, 2272, 0, 1050, 1053, 1059, 1099, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x3c - 1680x1050@85Hz */ { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808, 1984, 2288, 0, 1050, 1053, 1059, 1105, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x3d - 1680x1050@120Hz RB */ { DRM_MODE("1680x1050", DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728, 1760, 1840, 0, 1050, 1053, 1059, 1112, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 0x3e - 1792x1344@60Hz */ { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920, 2120, 2448, 0, 1344, 1345, 1348, 1394, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x3f - 1792x1344@75Hz */ { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888, 2104, 2456, 0, 1344, 1345, 1348, 1417, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x40 - 1792x1344@120Hz RB */ { DRM_MODE("1792x1344", DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840, 1872, 1952, 0, 1344, 1347, 1351, 1423, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 0x41 - 1856x1392@60Hz */ { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952, 2176, 2528, 0, 1392, 1393, 1396, 1439, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x42 - 1856x1392@75Hz */ { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984, 2208, 2560, 0, 1392, 1393, 1396, 1500, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x43 - 1856x1392@120Hz RB */ { DRM_MODE("1856x1392", DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904, 1936, 2016, 0, 1392, 1395, 1399, 1474, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 0x52 - 1920x1080@60Hz */ { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008, 2052, 2200, 0, 1080, 1084, 1089, 1125, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 0x44 - 1920x1200@60Hz RB */ { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968, 2000, 2080, 0, 1200, 1203, 1209, 1235, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 0x45 - 1920x1200@60Hz */ { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056, 2256, 2592, 0, 1200, 1203, 1209, 1245, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x46 - 1920x1200@75Hz */ { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056, 2264, 2608, 0, 1200, 1203, 1209, 1255, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x47 - 1920x1200@85Hz */ { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064, 2272, 2624, 0, 1200, 1203, 1209, 1262, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x48 - 1920x1200@120Hz RB */ { DRM_MODE("1920x1200", DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968, 2000, 2080, 0, 1200, 1203, 1209, 1271, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 0x49 - 1920x1440@60Hz */ { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048, 2256, 2600, 0, 1440, 1441, 1444, 1500, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x4a - 1920x1440@75Hz */ { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064, 2288, 2640, 0, 1440, 1441, 1444, 1500, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x4b - 1920x1440@120Hz RB */ { DRM_MODE("1920x1440", DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968, 2000, 2080, 0, 1440, 1443, 1447, 1525, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 0x54 - 2048x1152@60Hz */ { DRM_MODE("2048x1152", DRM_MODE_TYPE_DRIVER, 162000, 2048, 2074, 2154, 2250, 0, 1152, 1153, 1156, 1200, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x4c - 2560x1600@60Hz RB */ { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608, 2640, 2720, 0, 1600, 1603, 1609, 1646, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 0x4d - 2560x1600@60Hz */ { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752, 3032, 3504, 0, 1600, 1603, 1609, 1658, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x4e - 2560x1600@75Hz */ { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768, 3048, 3536, 0, 1600, 1603, 1609, 1672, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x4f - 2560x1600@85Hz */ { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768, 3048, 3536, 0, 1600, 1603, 1609, 1682, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 0x50 - 2560x1600@120Hz RB */ { DRM_MODE("2560x1600", DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608, 2640, 2720, 0, 1600, 1603, 1609, 1694, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 0x57 - 4096x2160@60Hz RB */ { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556744, 4096, 4104, 4136, 4176, 0, 2160, 2208, 2216, 2222, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 0x58 - 4096x2160@59.94Hz RB */ { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 556188, 4096, 4104, 4136, 4176, 0, 2160, 2208, 2216, 2222, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) }, }; /* * These more or less come from the DMT spec. The 720x400 modes are * inferred from historical 80x25 practice. The 640x480@67 and 832x624@75 * modes are old-school Mac modes. The EDID spec says the 1152x864@75 mode * should be 1152x870, again for the Mac, but instead we use the x864 DMT * mode. * * The DMT modes have been fact-checked; the rest are mild guesses. */ static const struct drm_display_mode edid_est_modes[] = { { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 40000, 800, 840, 968, 1056, 0, 600, 601, 605, 628, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@60Hz */ { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 36000, 800, 824, 896, 1024, 0, 600, 601, 603, 625, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@56Hz */ { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 656, 720, 840, 0, 480, 481, 484, 500, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@75Hz */ { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 31500, 640, 664, 704, 832, 0, 480, 489, 492, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@72Hz */ { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 30240, 640, 704, 768, 864, 0, 480, 483, 486, 525, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@67Hz */ { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656, 752, 800, 0, 480, 490, 492, 525, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 640x480@60Hz */ { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 35500, 720, 738, 846, 900, 0, 400, 421, 423, 449, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 720x400@88Hz */ { DRM_MODE("720x400", DRM_MODE_TYPE_DRIVER, 28320, 720, 738, 846, 900, 0, 400, 412, 414, 449, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 720x400@70Hz */ { DRM_MODE("1280x1024", DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296, 1440, 1688, 0, 1024, 1025, 1028, 1066, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1280x1024@75Hz */ { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040, 1136, 1312, 0, 768, 769, 772, 800, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1024x768@75Hz */ { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048, 1184, 1328, 0, 768, 771, 777, 806, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@70Hz */ { DRM_MODE("1024x768", DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048, 1184, 1344, 0, 768, 771, 777, 806, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 1024x768@60Hz */ { DRM_MODE("1024x768i", DRM_MODE_TYPE_DRIVER,44900, 1024, 1032, 1208, 1264, 0, 768, 768, 776, 817, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE) }, /* 1024x768@43Hz */ { DRM_MODE("832x624", DRM_MODE_TYPE_DRIVER, 57284, 832, 864, 928, 1152, 0, 624, 625, 628, 667, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) }, /* 832x624@75Hz */ { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 49500, 800, 816, 896, 1056, 0, 600, 601, 604, 625, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@75Hz */ { DRM_MODE("800x600", DRM_MODE_TYPE_DRIVER, 50000, 800, 856, 976, 1040, 0, 600, 637, 643, 666, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 800x600@72Hz */ { DRM_MODE("1152x864", DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216, 1344, 1600, 0, 864, 865, 868, 900, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) }, /* 1152x864@75Hz */ }; struct minimode { short w; short h; short r; short rb; }; static const struct minimode est3_modes[] = { /* byte 6 */ { 640, 350, 85, 0 }, { 640, 400, 85, 0 }, { 720, 400, 85, 0 }, { 640, 480, 85, 0 }, { 848, 480, 60, 0 }, { 800, 600, 85, 0 }, { 1024, 768, 85, 0 }, { 1152, 864, 75, 0 }, /* byte 7 */ { 1280, 768, 60, 1 }, { 1280, 768, 60, 0 }, { 1280, 768, 75, 0 }, { 1280, 768, 85, 0 }, { 1280, 960, 60, 0 }, { 1280, 960, 85, 0 }, { 1280, 1024, 60, 0 }, { 1280, 1024, 85, 0 }, /* byte 8 */ { 1360, 768, 60, 0 }, { 1440, 900, 60, 1 }, { 1440, 900, 60, 0 }, { 1440, 900, 75, 0 }, { 1440, 900, 85, 0 }, { 1400, 1050, 60, 1 }, { 1400, 1050, 60, 0 }, { 1400, 1050, 75, 0 }, /* byte 9 */ { 1400, 1050, 85, 0 }, { 1680, 1050, 60, 1 }, { 1680, 1050, 60, 0 }, { 1680, 1050, 75, 0 }, { 1680, 1050, 85, 0 }, { 1600, 1200, 60, 0 }, { 1600, 1200, 65, 0 }, { 1600, 1200, 70, 0 }, /* byte 10 */ { 1600, 1200, 75, 0 }, { 1600, 1200, 85, 0 }, { 1792, 1344, 60, 0 }, { 1792, 1344, 75, 0 }, { 1856, 1392, 60, 0 }, { 1856, 1392, 75, 0 }, { 1920, 1200, 60, 1 }, { 1920, 1200, 60, 0 }, /* byte 11 */ { 1920, 1200, 75, 0 }, { 1920, 1200, 85, 0 }, { 1920, 1440, 60, 0 }, { 1920, 1440, 75, 0 }, }; static const struct minimode extra_modes[] = { { 1024, 576, 60, 0 }, { 1366, 768, 60, 0 }, { 1600, 900, 60, 0 }, { 1680, 945, 60, 0 }, { 1920, 1080, 60, 0 }, { 2048, 1152, 60, 0 }, { 2048, 1536, 60, 0 }, }; /* * Probably taken from CEA-861 spec. * This table is converted from xorg's hw/xfree86/modes/xf86EdidModes.c. * * Index using the VIC. */ static const struct drm_display_mode edid_cea_modes[] = { /* 0 - dummy, VICs start at 1 */ { }, /* 1 - 640x480@60Hz 4:3 */ { DRM_MODE("640x480", DRM_MODE_TYPE_DRIVER, 25175, 640, 656, 752, 800, 0, 480, 490, 492, 525, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, /* 2 - 720x480@60Hz 4:3 */ { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736, 798, 858, 0, 480, 489, 495, 525, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, /* 3 - 720x480@60Hz 16:9 */ { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 27000, 720, 736, 798, 858, 0, 480, 489, 495, 525, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 4 - 1280x720@60Hz 16:9 */ { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390, 1430, 1650, 0, 720, 725, 730, 750, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 5 - 1920x1080i@60Hz 16:9 */ { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008, 2052, 2200, 0, 1080, 1084, 1094, 1125, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE), .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 6 - 720(1440)x480i@60Hz 4:3 */ { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739, 801, 858, 0, 480, 488, 494, 525, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, /* 7 - 720(1440)x480i@60Hz 16:9 */ { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 13500, 720, 739, 801, 858, 0, 480, 488, 494, 525, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 8 - 720(1440)x240@60Hz 4:3 */ { DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739, 801, 858, 0, 240, 244, 247, 262, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | DRM_MODE_FLAG_DBLCLK), .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, /* 9 - 720(1440)x240@60Hz 16:9 */ { DRM_MODE("720x240", DRM_MODE_TYPE_DRIVER, 13500, 720, 739, 801, 858, 0, 240, 244, 247, 262, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | DRM_MODE_FLAG_DBLCLK), .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 10 - 2880x480i@60Hz 4:3 */ { DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956, 3204, 3432, 0, 480, 488, 494, 525, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | DRM_MODE_FLAG_INTERLACE), .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, /* 11 - 2880x480i@60Hz 16:9 */ { DRM_MODE("2880x480i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956, 3204, 3432, 0, 480, 488, 494, 525, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | DRM_MODE_FLAG_INTERLACE), .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 12 - 2880x240@60Hz 4:3 */ { DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956, 3204, 3432, 0, 240, 244, 247, 262, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, /* 13 - 2880x240@60Hz 16:9 */ { DRM_MODE("2880x240", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956, 3204, 3432, 0, 240, 244, 247, 262, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 14 - 1440x480@60Hz 4:3 */ { DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472, 1596, 1716, 0, 480, 489, 495, 525, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, /* 15 - 1440x480@60Hz 16:9 */ { DRM_MODE("1440x480", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472, 1596, 1716, 0, 480, 489, 495, 525, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 16 - 1920x1080@60Hz 16:9 */ { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008, 2052, 2200, 0, 1080, 1084, 1089, 1125, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 17 - 720x576@50Hz 4:3 */ { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732, 796, 864, 0, 576, 581, 586, 625, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, /* 18 - 720x576@50Hz 16:9 */ { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 27000, 720, 732, 796, 864, 0, 576, 581, 586, 625, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 19 - 1280x720@50Hz 16:9 */ { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720, 1760, 1980, 0, 720, 725, 730, 750, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 20 - 1920x1080i@50Hz 16:9 */ { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448, 2492, 2640, 0, 1080, 1084, 1094, 1125, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE), .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 21 - 720(1440)x576i@50Hz 4:3 */ { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732, 795, 864, 0, 576, 580, 586, 625, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, /* 22 - 720(1440)x576i@50Hz 16:9 */ { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 13500, 720, 732, 795, 864, 0, 576, 580, 586, 625, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 23 - 720(1440)x288@50Hz 4:3 */ { DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732, 795, 864, 0, 288, 290, 293, 312, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | DRM_MODE_FLAG_DBLCLK), .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, /* 24 - 720(1440)x288@50Hz 16:9 */ { DRM_MODE("720x288", DRM_MODE_TYPE_DRIVER, 13500, 720, 732, 795, 864, 0, 288, 290, 293, 312, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | DRM_MODE_FLAG_DBLCLK), .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 25 - 2880x576i@50Hz 4:3 */ { DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928, 3180, 3456, 0, 576, 580, 586, 625, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | DRM_MODE_FLAG_INTERLACE), .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, /* 26 - 2880x576i@50Hz 16:9 */ { DRM_MODE("2880x576i", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928, 3180, 3456, 0, 576, 580, 586, 625, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | DRM_MODE_FLAG_INTERLACE), .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 27 - 2880x288@50Hz 4:3 */ { DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928, 3180, 3456, 0, 288, 290, 293, 312, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, /* 28 - 2880x288@50Hz 16:9 */ { DRM_MODE("2880x288", DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928, 3180, 3456, 0, 288, 290, 293, 312, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 29 - 1440x576@50Hz 4:3 */ { DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464, 1592, 1728, 0, 576, 581, 586, 625, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, /* 30 - 1440x576@50Hz 16:9 */ { DRM_MODE("1440x576", DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464, 1592, 1728, 0, 576, 581, 586, 625, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 31 - 1920x1080@50Hz 16:9 */ { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448, 2492, 2640, 0, 1080, 1084, 1089, 1125, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 32 - 1920x1080@24Hz 16:9 */ { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558, 2602, 2750, 0, 1080, 1084, 1089, 1125, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 33 - 1920x1080@25Hz 16:9 */ { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448, 2492, 2640, 0, 1080, 1084, 1089, 1125, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 34 - 1920x1080@30Hz 16:9 */ { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008, 2052, 2200, 0, 1080, 1084, 1089, 1125, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 35 - 2880x480@60Hz 4:3 */ { DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944, 3192, 3432, 0, 480, 489, 495, 525, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, /* 36 - 2880x480@60Hz 16:9 */ { DRM_MODE("2880x480", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944, 3192, 3432, 0, 480, 489, 495, 525, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 37 - 2880x576@50Hz 4:3 */ { DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928, 3184, 3456, 0, 576, 581, 586, 625, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, /* 38 - 2880x576@50Hz 16:9 */ { DRM_MODE("2880x576", DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928, 3184, 3456, 0, 576, 581, 586, 625, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 39 - 1920x1080i@50Hz 16:9 */ { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952, 2120, 2304, 0, 1080, 1126, 1136, 1250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC | DRM_MODE_FLAG_INTERLACE), .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 40 - 1920x1080i@100Hz 16:9 */ { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448, 2492, 2640, 0, 1080, 1084, 1094, 1125, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE), .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 41 - 1280x720@100Hz 16:9 */ { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720, 1760, 1980, 0, 720, 725, 730, 750, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 42 - 720x576@100Hz 4:3 */ { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732, 796, 864, 0, 576, 581, 586, 625, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, /* 43 - 720x576@100Hz 16:9 */ { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 54000, 720, 732, 796, 864, 0, 576, 581, 586, 625, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 44 - 720(1440)x576i@100Hz 4:3 */ { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732, 795, 864, 0, 576, 580, 586, 625, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, /* 45 - 720(1440)x576i@100Hz 16:9 */ { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 27000, 720, 732, 795, 864, 0, 576, 580, 586, 625, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 46 - 1920x1080i@120Hz 16:9 */ { DRM_MODE("1920x1080i", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008, 2052, 2200, 0, 1080, 1084, 1094, 1125, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_INTERLACE), .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 47 - 1280x720@120Hz 16:9 */ { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390, 1430, 1650, 0, 720, 725, 730, 750, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 48 - 720x480@120Hz 4:3 */ { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736, 798, 858, 0, 480, 489, 495, 525, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, /* 49 - 720x480@120Hz 16:9 */ { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 54000, 720, 736, 798, 858, 0, 480, 489, 495, 525, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 50 - 720(1440)x480i@120Hz 4:3 */ { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739, 801, 858, 0, 480, 488, 494, 525, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, /* 51 - 720(1440)x480i@120Hz 16:9 */ { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 27000, 720, 739, 801, 858, 0, 480, 488, 494, 525, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 52 - 720x576@200Hz 4:3 */ { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732, 796, 864, 0, 576, 581, 586, 625, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, /* 53 - 720x576@200Hz 16:9 */ { DRM_MODE("720x576", DRM_MODE_TYPE_DRIVER, 108000, 720, 732, 796, 864, 0, 576, 581, 586, 625, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 54 - 720(1440)x576i@200Hz 4:3 */ { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732, 795, 864, 0, 576, 580, 586, 625, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, /* 55 - 720(1440)x576i@200Hz 16:9 */ { DRM_MODE("720x576i", DRM_MODE_TYPE_DRIVER, 54000, 720, 732, 795, 864, 0, 576, 580, 586, 625, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 56 - 720x480@240Hz 4:3 */ { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736, 798, 858, 0, 480, 489, 495, 525, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, /* 57 - 720x480@240Hz 16:9 */ { DRM_MODE("720x480", DRM_MODE_TYPE_DRIVER, 108000, 720, 736, 798, 858, 0, 480, 489, 495, 525, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC), .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 58 - 720(1440)x480i@240Hz 4:3 */ { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739, 801, 858, 0, 480, 488, 494, 525, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, }, /* 59 - 720(1440)x480i@240Hz 16:9 */ { DRM_MODE("720x480i", DRM_MODE_TYPE_DRIVER, 54000, 720, 739, 801, 858, 0, 480, 488, 494, 525, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC | DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK), .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 60 - 1280x720@24Hz 16:9 */ { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040, 3080, 3300, 0, 720, 725, 730, 750, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 61 - 1280x720@25Hz 16:9 */ { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700, 3740, 3960, 0, 720, 725, 730, 750, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 62 - 1280x720@30Hz 16:9 */ { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040, 3080, 3300, 0, 720, 725, 730, 750, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 63 - 1920x1080@120Hz 16:9 */ { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008, 2052, 2200, 0, 1080, 1084, 1089, 1125, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 64 - 1920x1080@100Hz 16:9 */ { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448, 2492, 2640, 0, 1080, 1084, 1089, 1125, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 65 - 1280x720@24Hz 64:27 */ { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040, 3080, 3300, 0, 720, 725, 730, 750, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 66 - 1280x720@25Hz 64:27 */ { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700, 3740, 3960, 0, 720, 725, 730, 750, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 67 - 1280x720@30Hz 64:27 */ { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040, 3080, 3300, 0, 720, 725, 730, 750, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 68 - 1280x720@50Hz 64:27 */ { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720, 1760, 1980, 0, 720, 725, 730, 750, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 69 - 1280x720@60Hz 64:27 */ { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390, 1430, 1650, 0, 720, 725, 730, 750, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 70 - 1280x720@100Hz 64:27 */ { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720, 1760, 1980, 0, 720, 725, 730, 750, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 71 - 1280x720@120Hz 64:27 */ { DRM_MODE("1280x720", DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390, 1430, 1650, 0, 720, 725, 730, 750, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 72 - 1920x1080@24Hz 64:27 */ { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558, 2602, 2750, 0, 1080, 1084, 1089, 1125, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 73 - 1920x1080@25Hz 64:27 */ { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448, 2492, 2640, 0, 1080, 1084, 1089, 1125, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 74 - 1920x1080@30Hz 64:27 */ { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008, 2052, 2200, 0, 1080, 1084, 1089, 1125, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 75 - 1920x1080@50Hz 64:27 */ { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448, 2492, 2640, 0, 1080, 1084, 1089, 1125, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 76 - 1920x1080@60Hz 64:27 */ { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008, 2052, 2200, 0, 1080, 1084, 1089, 1125, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 77 - 1920x1080@100Hz 64:27 */ { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448, 2492, 2640, 0, 1080, 1084, 1089, 1125, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 78 - 1920x1080@120Hz 64:27 */ { DRM_MODE("1920x1080", DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008, 2052, 2200, 0, 1080, 1084, 1089, 1125, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 79 - 1680x720@24Hz 64:27 */ { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 3040, 3080, 3300, 0, 720, 725, 730, 750, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 80 - 1680x720@25Hz 64:27 */ { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2908, 2948, 3168, 0, 720, 725, 730, 750, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 81 - 1680x720@30Hz 64:27 */ { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 59400, 1680, 2380, 2420, 2640, 0, 720, 725, 730, 750, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 82 - 1680x720@50Hz 64:27 */ { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 82500, 1680, 1940, 1980, 2200, 0, 720, 725, 730, 750, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 83 - 1680x720@60Hz 64:27 */ { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 99000, 1680, 1940, 1980, 2200, 0, 720, 725, 730, 750, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 84 - 1680x720@100Hz 64:27 */ { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 165000, 1680, 1740, 1780, 2000, 0, 720, 725, 730, 825, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 85 - 1680x720@120Hz 64:27 */ { DRM_MODE("1680x720", DRM_MODE_TYPE_DRIVER, 198000, 1680, 1740, 1780, 2000, 0, 720, 725, 730, 825, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 86 - 2560x1080@24Hz 64:27 */ { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 99000, 2560, 3558, 3602, 3750, 0, 1080, 1084, 1089, 1100, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 87 - 2560x1080@25Hz 64:27 */ { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 90000, 2560, 3008, 3052, 3200, 0, 1080, 1084, 1089, 1125, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 88 - 2560x1080@30Hz 64:27 */ { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 118800, 2560, 3328, 3372, 3520, 0, 1080, 1084, 1089, 1125, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 89 - 2560x1080@50Hz 64:27 */ { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 185625, 2560, 3108, 3152, 3300, 0, 1080, 1084, 1089, 1125, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 90 - 2560x1080@60Hz 64:27 */ { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 198000, 2560, 2808, 2852, 3000, 0, 1080, 1084, 1089, 1100, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 91 - 2560x1080@100Hz 64:27 */ { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 371250, 2560, 2778, 2822, 2970, 0, 1080, 1084, 1089, 1250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 92 - 2560x1080@120Hz 64:27 */ { DRM_MODE("2560x1080", DRM_MODE_TYPE_DRIVER, 495000, 2560, 3108, 3152, 3300, 0, 1080, 1084, 1089, 1250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 93 - 3840x2160@24Hz 16:9 */ { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116, 5204, 5500, 0, 2160, 2168, 2178, 2250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 94 - 3840x2160@25Hz 16:9 */ { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896, 4984, 5280, 0, 2160, 2168, 2178, 2250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 95 - 3840x2160@30Hz 16:9 */ { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016, 4104, 4400, 0, 2160, 2168, 2178, 2250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 96 - 3840x2160@50Hz 16:9 */ { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896, 4984, 5280, 0, 2160, 2168, 2178, 2250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 97 - 3840x2160@60Hz 16:9 */ { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016, 4104, 4400, 0, 2160, 2168, 2178, 2250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, }, /* 98 - 4096x2160@24Hz 256:135 */ { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5116, 5204, 5500, 0, 2160, 2168, 2178, 2250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, }, /* 99 - 4096x2160@25Hz 256:135 */ { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5064, 5152, 5280, 0, 2160, 2168, 2178, 2250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, }, /* 100 - 4096x2160@30Hz 256:135 */ { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 4184, 4272, 4400, 0, 2160, 2168, 2178, 2250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, }, /* 101 - 4096x2160@50Hz 256:135 */ { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 5064, 5152, 5280, 0, 2160, 2168, 2178, 2250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, }, /* 102 - 4096x2160@60Hz 256:135 */ { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 594000, 4096, 4184, 4272, 4400, 0, 2160, 2168, 2178, 2250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, }, /* 103 - 3840x2160@24Hz 64:27 */ { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116, 5204, 5500, 0, 2160, 2168, 2178, 2250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 104 - 3840x2160@25Hz 64:27 */ { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896, 4984, 5280, 0, 2160, 2168, 2178, 2250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 105 - 3840x2160@30Hz 64:27 */ { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016, 4104, 4400, 0, 2160, 2168, 2178, 2250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 106 - 3840x2160@50Hz 64:27 */ { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896, 4984, 5280, 0, 2160, 2168, 2178, 2250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, /* 107 - 3840x2160@60Hz 64:27 */ { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016, 4104, 4400, 0, 2160, 2168, 2178, 2250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, }, }; /* * HDMI 1.4 4k modes. Index using the VIC. */ static const struct drm_display_mode edid_4k_modes[] = { /* 0 - dummy, VICs start at 1 */ { }, /* 1 - 3840x2160@30Hz */ { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016, 4104, 4400, 0, 2160, 2168, 2178, 2250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .vrefresh = 30, }, /* 2 - 3840x2160@25Hz */ { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896, 4984, 5280, 0, 2160, 2168, 2178, 2250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .vrefresh = 25, }, /* 3 - 3840x2160@24Hz */ { DRM_MODE("3840x2160", DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116, 5204, 5500, 0, 2160, 2168, 2178, 2250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .vrefresh = 24, }, /* 4 - 4096x2160@24Hz (SMPTE) */ { DRM_MODE("4096x2160", DRM_MODE_TYPE_DRIVER, 297000, 4096, 5116, 5204, 5500, 0, 2160, 2168, 2178, 2250, 0, DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC), .vrefresh = 24, }, }; /*** DDC fetch and block validation ***/ static const u8 edid_header[] = { 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00 }; /** * drm_edid_header_is_valid - sanity check the header of the base EDID block * @raw_edid: pointer to raw base EDID block * * Sanity check the header of the base EDID block. * * Return: 8 if the header is perfect, down to 0 if it's totally wrong. */ int drm_edid_header_is_valid(const u8 *raw_edid) { int i, score = 0; for (i = 0; i < sizeof(edid_header); i++) if (raw_edid[i] == edid_header[i]) score++; return score; } EXPORT_SYMBOL(drm_edid_header_is_valid); static int edid_fixup __read_mostly = 6; module_param_named(edid_fixup, edid_fixup, int, 0400); MODULE_PARM_DESC(edid_fixup, "Minimum number of valid EDID header bytes (0-8, default 6)"); static void drm_get_displayid(struct drm_connector *connector, struct edid *edid); static int validate_displayid(u8 *displayid, int length, int idx); static int drm_edid_block_checksum(const u8 *raw_edid) { int i; u8 csum = 0; for (i = 0; i < EDID_LENGTH; i++) csum += raw_edid[i]; return csum; } static bool drm_edid_is_zero(const u8 *in_edid, int length) { if (memchr_inv(in_edid, 0, length)) return false; return true; } /** * drm_edid_block_valid - Sanity check the EDID block (base or extension) * @raw_edid: pointer to raw EDID block * @block: type of block to validate (0 for base, extension otherwise) * @print_bad_edid: if true, dump bad EDID blocks to the console * @edid_corrupt: if true, the header or checksum is invalid * * Validate a base or extension EDID block and optionally dump bad blocks to * the console. * * Return: True if the block is valid, false otherwise. */ bool drm_edid_block_valid(u8 *raw_edid, int block, bool print_bad_edid, bool *edid_corrupt) { u8 csum; struct edid *edid = (struct edid *)raw_edid; if (WARN_ON(!raw_edid)) return false; if (edid_fixup > 8 || edid_fixup < 0) edid_fixup = 6; if (block == 0) { int score = drm_edid_header_is_valid(raw_edid); if (score == 8) { if (edid_corrupt) *edid_corrupt = false; } else if (score >= edid_fixup) { /* Displayport Link CTS Core 1.2 rev1.1 test 4.2.2.6 * The corrupt flag needs to be set here otherwise, the * fix-up code here will correct the problem, the * checksum is correct and the test fails */ if (edid_corrupt) *edid_corrupt = true; DRM_DEBUG("Fixing EDID header, your hardware may be failing\n"); memcpy(raw_edid, edid_header, sizeof(edid_header)); } else { if (edid_corrupt) *edid_corrupt = true; goto bad; } } csum = drm_edid_block_checksum(raw_edid); if (csum) { if (edid_corrupt) *edid_corrupt = true; /* allow CEA to slide through, switches mangle this */ if (raw_edid[0] == CEA_EXT) { DRM_DEBUG("EDID checksum is invalid, remainder is %d\n", csum); DRM_DEBUG("Assuming a KVM switch modified the CEA block but left the original checksum\n"); } else { if (print_bad_edid) DRM_NOTE("EDID checksum is invalid, remainder is %d\n", csum); goto bad; } } /* per-block-type checks */ switch (raw_edid[0]) { case 0: /* base */ if (edid->version != 1) { DRM_NOTE("EDID has major version %d, instead of 1\n", edid->version); goto bad; } if (edid->revision > 4) DRM_DEBUG("EDID minor > 4, assuming backward compatibility\n"); break; default: break; } return true; bad: if (print_bad_edid) { if (drm_edid_is_zero(raw_edid, EDID_LENGTH)) { pr_notice("EDID block is all zeroes\n"); } else { pr_notice("Raw EDID:\n"); print_hex_dump(KERN_NOTICE, " \t", DUMP_PREFIX_NONE, 16, 1, raw_edid, EDID_LENGTH, false); } } return false; } EXPORT_SYMBOL(drm_edid_block_valid); /** * drm_edid_is_valid - sanity check EDID data * @edid: EDID data * * Sanity-check an entire EDID record (including extensions) * * Return: True if the EDID data is valid, false otherwise. */ bool drm_edid_is_valid(struct edid *edid) { int i; u8 *raw = (u8 *)edid; if (!edid) return false; for (i = 0; i <= edid->extensions; i++) if (!drm_edid_block_valid(raw + i * EDID_LENGTH, i, true, NULL)) return false; return true; } EXPORT_SYMBOL(drm_edid_is_valid); #define DDC_SEGMENT_ADDR 0x30 /** * drm_do_probe_ddc_edid() - get EDID information via I2C * @data: I2C device adapter * @buf: EDID data buffer to be filled * @block: 128 byte EDID block to start fetching from * @len: EDID data buffer length to fetch * * Try to fetch EDID information by calling I2C driver functions. * * Return: 0 on success or -1 on failure. */ static int drm_do_probe_ddc_edid(void *data, u8 *buf, unsigned int block, size_t len) { struct i2c_adapter *adapter = data; unsigned char start = block * EDID_LENGTH; unsigned char segment = block >> 1; unsigned char xfers = segment ? 3 : 2; int ret, retries = 5; /* * The core I2C driver will automatically retry the transfer if the * adapter reports EAGAIN. However, we find that bit-banging transfers * are susceptible to errors under a heavily loaded machine and * generate spurious NAKs and timeouts. Retrying the transfer * of the individual block a few times seems to overcome this. */ do { struct i2c_msg msgs[] = { { .addr = DDC_SEGMENT_ADDR, .flags = 0, .len = 1, .buf = &segment, }, { .addr = DDC_ADDR, .flags = 0, .len = 1, .buf = &start, }, { .addr = DDC_ADDR, .flags = I2C_M_RD, .len = len, .buf = buf, } }; /* * Avoid sending the segment addr to not upset non-compliant * DDC monitors. */ ret = i2c_transfer(adapter, &msgs[3 - xfers], xfers); if (ret == -ENXIO) { DRM_DEBUG_KMS("drm: skipping non-existent adapter %s\n", adapter->name); break; } } while (ret != xfers && --retries); return ret == xfers ? 0 : -1; } static void connector_bad_edid(struct drm_connector *connector, u8 *edid, int num_blocks) { int i; if (connector->bad_edid_counter++ && !(drm_debug & DRM_UT_KMS)) return; dev_warn(connector->dev->dev, "%s: EDID is invalid:\n", connector->name); for (i = 0; i < num_blocks; i++) { u8 *block = edid + i * EDID_LENGTH; char prefix[20]; if (drm_edid_is_zero(block, EDID_LENGTH)) sprintf(prefix, "\t[%02x] ZERO ", i); else if (!drm_edid_block_valid(block, i, false, NULL)) sprintf(prefix, "\t[%02x] BAD ", i); else sprintf(prefix, "\t[%02x] GOOD ", i); print_hex_dump(KERN_WARNING, prefix, DUMP_PREFIX_NONE, 16, 1, block, EDID_LENGTH, false); } } /* Get override or firmware EDID */ static struct edid *drm_get_override_edid(struct drm_connector *connector) { struct edid *override = NULL; if (connector->override_edid) override = drm_edid_duplicate(connector->edid_blob_ptr->data); if (!override) override = drm_load_edid_firmware(connector); return IS_ERR(override) ? NULL : override; } /** * drm_add_override_edid_modes - add modes from override/firmware EDID * @connector: connector we're probing * * Add modes from the override/firmware EDID, if available. Only to be used from * drm_helper_probe_single_connector_modes() as a fallback for when DDC probe * failed during drm_get_edid() and caused the override/firmware EDID to be * skipped. * * Return: The number of modes added or 0 if we couldn't find any. */ int drm_add_override_edid_modes(struct drm_connector *connector) { struct edid *override; int num_modes = 0; override = drm_get_override_edid(connector); if (override) { drm_connector_update_edid_property(connector, override); num_modes = drm_add_edid_modes(connector, override); kfree(override); DRM_DEBUG_KMS("[CONNECTOR:%d:%s] adding %d modes via fallback override/firmware EDID\n", connector->base.id, connector->name, num_modes); } return num_modes; } EXPORT_SYMBOL(drm_add_override_edid_modes); /** * drm_do_get_edid - get EDID data using a custom EDID block read function * @connector: connector we're probing * @get_edid_block: EDID block read function * @data: private data passed to the block read function * * When the I2C adapter connected to the DDC bus is hidden behind a device that * exposes a different interface to read EDID blocks this function can be used * to get EDID data using a custom block read function. * * As in the general case the DDC bus is accessible by the kernel at the I2C * level, drivers must make all reasonable efforts to expose it as an I2C * adapter and use drm_get_edid() instead of abusing this function. * * The EDID may be overridden using debugfs override_edid or firmare EDID * (drm_load_edid_firmware() and drm.edid_firmware parameter), in this priority * order. Having either of them bypasses actual EDID reads. * * Return: Pointer to valid EDID or NULL if we couldn't find any. */ struct edid *drm_do_get_edid(struct drm_connector *connector, int (*get_edid_block)(void *data, u8 *buf, unsigned int block, size_t len), void *data) { int i, j = 0, valid_extensions = 0; u8 *edid, *new; struct edid *override; override = drm_get_override_edid(connector); if (override) return override; if ((edid = kmalloc(EDID_LENGTH, GFP_KERNEL)) == NULL) return NULL; /* base block fetch */ for (i = 0; i < 4; i++) { if (get_edid_block(data, edid, 0, EDID_LENGTH)) goto out; if (drm_edid_block_valid(edid, 0, false, &connector->edid_corrupt)) break; if (i == 0 && drm_edid_is_zero(edid, EDID_LENGTH)) { connector->null_edid_counter++; goto carp; } } if (i == 4) goto carp; /* if there's no extensions, we're done */ valid_extensions = edid[0x7e]; if (valid_extensions == 0) return (struct edid *)edid; new = krealloc(edid, (valid_extensions + 1) * EDID_LENGTH, GFP_KERNEL); if (!new) goto out; edid = new; for (j = 1; j <= edid[0x7e]; j++) { u8 *block = edid + j * EDID_LENGTH; for (i = 0; i < 4; i++) { if (get_edid_block(data, block, j, EDID_LENGTH)) goto out; if (drm_edid_block_valid(block, j, false, NULL)) break; } if (i == 4) valid_extensions--; } if (valid_extensions != edid[0x7e]) { u8 *base; connector_bad_edid(connector, edid, edid[0x7e] + 1); edid[EDID_LENGTH-1] += edid[0x7e] - valid_extensions; edid[0x7e] = valid_extensions; new = kmalloc_array(valid_extensions + 1, EDID_LENGTH, GFP_KERNEL); if (!new) goto out; base = new; for (i = 0; i <= edid[0x7e]; i++) { u8 *block = edid + i * EDID_LENGTH; if (!drm_edid_block_valid(block, i, false, NULL)) continue; memcpy(base, block, EDID_LENGTH); base += EDID_LENGTH; } kfree(edid); edid = new; } return (struct edid *)edid; carp: connector_bad_edid(connector, edid, 1); out: kfree(edid); return NULL; } EXPORT_SYMBOL_GPL(drm_do_get_edid); /** * drm_probe_ddc() - probe DDC presence * @adapter: I2C adapter to probe * * Return: True on success, false on failure. */ bool drm_probe_ddc(struct i2c_adapter *adapter) { unsigned char out; return (drm_do_probe_ddc_edid(adapter, &out, 0, 1) == 0); } EXPORT_SYMBOL(drm_probe_ddc); /** * drm_get_edid - get EDID data, if available * @connector: connector we're probing * @adapter: I2C adapter to use for DDC * * Poke the given I2C channel to grab EDID data if possible. If found, * attach it to the connector. * * Return: Pointer to valid EDID or NULL if we couldn't find any. */ struct edid *drm_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter) { struct edid *edid; if (connector->force == DRM_FORCE_OFF) return NULL; if (connector->force == DRM_FORCE_UNSPECIFIED && !drm_probe_ddc(adapter)) return NULL; edid = drm_do_get_edid(connector, drm_do_probe_ddc_edid, adapter); if (edid) drm_get_displayid(connector, edid); return edid; } EXPORT_SYMBOL(drm_get_edid); /** * drm_get_edid_switcheroo - get EDID data for a vga_switcheroo output * @connector: connector we're probing * @adapter: I2C adapter to use for DDC * * Wrapper around drm_get_edid() for laptops with dual GPUs using one set of * outputs. The wrapper adds the requisite vga_switcheroo calls to temporarily * switch DDC to the GPU which is retrieving EDID. * * Return: Pointer to valid EDID or %NULL if we couldn't find any. */ struct edid *drm_get_edid_switcheroo(struct drm_connector *connector, struct i2c_adapter *adapter) { struct pci_dev *pdev = connector->dev->pdev; struct edid *edid; vga_switcheroo_lock_ddc(pdev); edid = drm_get_edid(connector, adapter); vga_switcheroo_unlock_ddc(pdev); return edid; } EXPORT_SYMBOL(drm_get_edid_switcheroo); /** * drm_edid_duplicate - duplicate an EDID and the extensions * @edid: EDID to duplicate * * Return: Pointer to duplicated EDID or NULL on allocation failure. */ struct edid *drm_edid_duplicate(const struct edid *edid) { return kmemdup(edid, (edid->extensions + 1) * EDID_LENGTH, GFP_KERNEL); } EXPORT_SYMBOL(drm_edid_duplicate); /*** EDID parsing ***/ /** * edid_vendor - match a string against EDID's obfuscated vendor field * @edid: EDID to match * @vendor: vendor string * * Returns true if @vendor is in @edid, false otherwise */ static bool edid_vendor(const struct edid *edid, const char *vendor) { char edid_vendor[3]; edid_vendor[0] = ((edid->mfg_id[0] & 0x7c) >> 2) + '@'; edid_vendor[1] = (((edid->mfg_id[0] & 0x3) << 3) | ((edid->mfg_id[1] & 0xe0) >> 5)) + '@'; edid_vendor[2] = (edid->mfg_id[1] & 0x1f) + '@'; return !strncmp(edid_vendor, vendor, 3); } /** * edid_get_quirks - return quirk flags for a given EDID * @edid: EDID to process * * This tells subsequent routines what fixes they need to apply. */ static u32 edid_get_quirks(const struct edid *edid) { const struct edid_quirk *quirk; int i; for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) { quirk = &edid_quirk_list[i]; if (edid_vendor(edid, quirk->vendor) && (EDID_PRODUCT_ID(edid) == quirk->product_id)) return quirk->quirks; } return 0; } #define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay) #define MODE_REFRESH_DIFF(c,t) (abs((c) - (t))) /** * edid_fixup_preferred - set preferred modes based on quirk list * @connector: has mode list to fix up * @quirks: quirks list * * Walk the mode list for @connector, clearing the preferred status * on existing modes and setting it anew for the right mode ala @quirks. */ static void edid_fixup_preferred(struct drm_connector *connector, u32 quirks) { struct drm_display_mode *t, *cur_mode, *preferred_mode; int target_refresh = 0; int cur_vrefresh, preferred_vrefresh; if (list_empty(&connector->probed_modes)) return; if (quirks & EDID_QUIRK_PREFER_LARGE_60) target_refresh = 60; if (quirks & EDID_QUIRK_PREFER_LARGE_75) target_refresh = 75; preferred_mode = list_first_entry(&connector->probed_modes, struct drm_display_mode, head); list_for_each_entry_safe(cur_mode, t, &connector->probed_modes, head) { cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED; if (cur_mode == preferred_mode) continue; /* Largest mode is preferred */ if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode)) preferred_mode = cur_mode; cur_vrefresh = cur_mode->vrefresh ? cur_mode->vrefresh : drm_mode_vrefresh(cur_mode); preferred_vrefresh = preferred_mode->vrefresh ? preferred_mode->vrefresh : drm_mode_vrefresh(preferred_mode); /* At a given size, try to get closest to target refresh */ if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) && MODE_REFRESH_DIFF(cur_vrefresh, target_refresh) < MODE_REFRESH_DIFF(preferred_vrefresh, target_refresh)) { preferred_mode = cur_mode; } } preferred_mode->type |= DRM_MODE_TYPE_PREFERRED; } static bool mode_is_rb(const struct drm_display_mode *mode) { return (mode->htotal - mode->hdisplay == 160) && (mode->hsync_end - mode->hdisplay == 80) && (mode->hsync_end - mode->hsync_start == 32) && (mode->vsync_start - mode->vdisplay == 3); } /* * drm_mode_find_dmt - Create a copy of a mode if present in DMT * @dev: Device to duplicate against * @hsize: Mode width * @vsize: Mode height * @fresh: Mode refresh rate * @rb: Mode reduced-blanking-ness * * Walk the DMT mode list looking for a match for the given parameters. * * Return: A newly allocated copy of the mode, or NULL if not found. */ struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev, int hsize, int vsize, int fresh, bool rb) { int i; for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) { const struct drm_display_mode *ptr = &drm_dmt_modes[i]; if (hsize != ptr->hdisplay) continue; if (vsize != ptr->vdisplay) continue; if (fresh != drm_mode_vrefresh(ptr)) continue; if (rb != mode_is_rb(ptr)) continue; return drm_mode_duplicate(dev, ptr); } return NULL; } EXPORT_SYMBOL(drm_mode_find_dmt); typedef void detailed_cb(struct detailed_timing *timing, void *closure); static void cea_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure) { int i, n = 0; u8 d = ext[0x02]; u8 *det_base = ext + d; n = (127 - d) / 18; for (i = 0; i < n; i++) cb((struct detailed_timing *)(det_base + 18 * i), closure); } static void vtb_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure) { unsigned int i, n = min((int)ext[0x02], 6); u8 *det_base = ext + 5; if (ext[0x01] != 1) return; /* unknown version */ for (i = 0; i < n; i++) cb((struct detailed_timing *)(det_base + 18 * i), closure); } static void drm_for_each_detailed_block(u8 *raw_edid, detailed_cb *cb, void *closure) { int i; struct edid *edid = (struct edid *)raw_edid; if (edid == NULL) return; for (i = 0; i < EDID_DETAILED_TIMINGS; i++) cb(&(edid->detailed_timings[i]), closure); for (i = 1; i <= raw_edid[0x7e]; i++) { u8 *ext = raw_edid + (i * EDID_LENGTH); switch (*ext) { case CEA_EXT: cea_for_each_detailed_block(ext, cb, closure); break; case VTB_EXT: vtb_for_each_detailed_block(ext, cb, closure); break; default: break; } } } static void is_rb(struct detailed_timing *t, void *data) { u8 *r = (u8 *)t; if (r[3] == EDID_DETAIL_MONITOR_RANGE) if (r[15] & 0x10) *(bool *)data = true; } /* EDID 1.4 defines this explicitly. For EDID 1.3, we guess, badly. */ static bool drm_monitor_supports_rb(struct edid *edid) { if (edid->revision >= 4) { bool ret = false; drm_for_each_detailed_block((u8 *)edid, is_rb, &ret); return ret; } return ((edid->input & DRM_EDID_INPUT_DIGITAL) != 0); } static void find_gtf2(struct detailed_timing *t, void *data) { u8 *r = (u8 *)t; if (r[3] == EDID_DETAIL_MONITOR_RANGE && r[10] == 0x02) *(u8 **)data = r; } /* Secondary GTF curve kicks in above some break frequency */ static int drm_gtf2_hbreak(struct edid *edid) { u8 *r = NULL; drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r); return r ? (r[12] * 2) : 0; } static int drm_gtf2_2c(struct edid *edid) { u8 *r = NULL; drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r); return r ? r[13] : 0; } static int drm_gtf2_m(struct edid *edid) { u8 *r = NULL; drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r); return r ? (r[15] << 8) + r[14] : 0; } static int drm_gtf2_k(struct edid *edid) { u8 *r = NULL; drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r); return r ? r[16] : 0; } static int drm_gtf2_2j(struct edid *edid) { u8 *r = NULL; drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r); return r ? r[17] : 0; } /** * standard_timing_level - get std. timing level(CVT/GTF/DMT) * @edid: EDID block to scan */ static int standard_timing_level(struct edid *edid) { if (edid->revision >= 2) { if (edid->revision >= 4 && (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF)) return LEVEL_CVT; if (drm_gtf2_hbreak(edid)) return LEVEL_GTF2; return LEVEL_GTF; } return LEVEL_DMT; } /* * 0 is reserved. The spec says 0x01 fill for unused timings. Some old * monitors fill with ascii space (0x20) instead. */ static int bad_std_timing(u8 a, u8 b) { return (a == 0x00 && b == 0x00) || (a == 0x01 && b == 0x01) || (a == 0x20 && b == 0x20); } /** * drm_mode_std - convert standard mode info (width, height, refresh) into mode * @connector: connector of for the EDID block * @edid: EDID block to scan * @t: standard timing params * * Take the standard timing params (in this case width, aspect, and refresh) * and convert them into a real mode using CVT/GTF/DMT. */ static struct drm_display_mode * drm_mode_std(struct drm_connector *connector, struct edid *edid, struct std_timing *t) { struct drm_device *dev = connector->dev; struct drm_display_mode *m, *mode = NULL; int hsize, vsize; int vrefresh_rate; unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK) >> EDID_TIMING_ASPECT_SHIFT; unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK) >> EDID_TIMING_VFREQ_SHIFT; int timing_level = standard_timing_level(edid); if (bad_std_timing(t->hsize, t->vfreq_aspect)) return NULL; /* According to the EDID spec, the hdisplay = hsize * 8 + 248 */ hsize = t->hsize * 8 + 248; /* vrefresh_rate = vfreq + 60 */ vrefresh_rate = vfreq + 60; /* the vdisplay is calculated based on the aspect ratio */ if (aspect_ratio == 0) { if (edid->revision < 3) vsize = hsize; else vsize = (hsize * 10) / 16; } else if (aspect_ratio == 1) vsize = (hsize * 3) / 4; else if (aspect_ratio == 2) vsize = (hsize * 4) / 5; else vsize = (hsize * 9) / 16; /* HDTV hack, part 1 */ if (vrefresh_rate == 60 && ((hsize == 1360 && vsize == 765) || (hsize == 1368 && vsize == 769))) { hsize = 1366; vsize = 768; } /* * If this connector already has a mode for this size and refresh * rate (because it came from detailed or CVT info), use that * instead. This way we don't have to guess at interlace or * reduced blanking. */ list_for_each_entry(m, &connector->probed_modes, head) if (m->hdisplay == hsize && m->vdisplay == vsize && drm_mode_vrefresh(m) == vrefresh_rate) return NULL; /* HDTV hack, part 2 */ if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) { mode = drm_cvt_mode(dev, 1366, 768, vrefresh_rate, 0, 0, false); if (!mode) return NULL; mode->hdisplay = 1366; mode->hsync_start = mode->hsync_start - 1; mode->hsync_end = mode->hsync_end - 1; return mode; } /* check whether it can be found in default mode table */ if (drm_monitor_supports_rb(edid)) { mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, true); if (mode) return mode; } mode = drm_mode_find_dmt(dev, hsize, vsize, vrefresh_rate, false); if (mode) return mode; /* okay, generate it */ switch (timing_level) { case LEVEL_DMT: break; case LEVEL_GTF: mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0); break; case LEVEL_GTF2: /* * This is potentially wrong if there's ever a monitor with * more than one ranges section, each claiming a different * secondary GTF curve. Please don't do that. */ mode = drm_gtf_mode(dev, hsize, vsize, vrefresh_rate, 0, 0); if (!mode) return NULL; if (drm_mode_hsync(mode) > drm_gtf2_hbreak(edid)) { drm_mode_destroy(dev, mode); mode = drm_gtf_mode_complex(dev, hsize, vsize, vrefresh_rate, 0, 0, drm_gtf2_m(edid), drm_gtf2_2c(edid), drm_gtf2_k(edid), drm_gtf2_2j(edid)); } break; case LEVEL_CVT: mode = drm_cvt_mode(dev, hsize, vsize, vrefresh_rate, 0, 0, false); break; } return mode; } /* * EDID is delightfully ambiguous about how interlaced modes are to be * encoded. Our internal representation is of frame height, but some * HDTV detailed timings are encoded as field height. * * The format list here is from CEA, in frame size. Technically we * should be checking refresh rate too. Whatever. */ static void drm_mode_do_interlace_quirk(struct drm_display_mode *mode, struct detailed_pixel_timing *pt) { int i; static const struct { int w, h; } cea_interlaced[] = { { 1920, 1080 }, { 720, 480 }, { 1440, 480 }, { 2880, 480 }, { 720, 576 }, { 1440, 576 }, { 2880, 576 }, }; if (!(pt->misc & DRM_EDID_PT_INTERLACED)) return; for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) { if ((mode->hdisplay == cea_interlaced[i].w) && (mode->vdisplay == cea_interlaced[i].h / 2)) { mode->vdisplay *= 2; mode->vsync_start *= 2; mode->vsync_end *= 2; mode->vtotal *= 2; mode->vtotal |= 1; } } mode->flags |= DRM_MODE_FLAG_INTERLACE; } /** * drm_mode_detailed - create a new mode from an EDID detailed timing section * @dev: DRM device (needed to create new mode) * @edid: EDID block * @timing: EDID detailed timing info * @quirks: quirks to apply * * An EDID detailed timing block contains enough info for us to create and * return a new struct drm_display_mode. */ static struct drm_display_mode *drm_mode_detailed(struct drm_device *dev, struct edid *edid, struct detailed_timing *timing, u32 quirks) { struct drm_display_mode *mode; struct detailed_pixel_timing *pt = &timing->data.pixel_data; unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo; unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo; unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo; unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo; unsigned hsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 | pt->hsync_offset_lo; unsigned hsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 | pt->hsync_pulse_width_lo; unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) << 2 | pt->vsync_offset_pulse_width_lo >> 4; unsigned vsync_pulse_width = (pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 | (pt->vsync_offset_pulse_width_lo & 0xf); /* ignore tiny modes */ if (hactive < 64 || vactive < 64) return NULL; if (pt->misc & DRM_EDID_PT_STEREO) { DRM_DEBUG_KMS("stereo mode not supported\n"); return NULL; } if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC)) { DRM_DEBUG_KMS("composite sync not supported\n"); } /* it is incorrect if hsync/vsync width is zero */ if (!hsync_pulse_width || !vsync_pulse_width) { DRM_DEBUG_KMS("Incorrect Detailed timing. " "Wrong Hsync/Vsync pulse width\n"); return NULL; } if (quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) { mode = drm_cvt_mode(dev, hactive, vactive, 60, true, false, false); if (!mode) return NULL; goto set_size; } mode = drm_mode_create(dev); if (!mode) return NULL; if (quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH) timing->pixel_clock = cpu_to_le16(1088); mode->clock = le16_to_cpu(timing->pixel_clock) * 10; mode->hdisplay = hactive; mode->hsync_start = mode->hdisplay + hsync_offset; mode->hsync_end = mode->hsync_start + hsync_pulse_width; mode->htotal = mode->hdisplay + hblank; mode->vdisplay = vactive; mode->vsync_start = mode->vdisplay + vsync_offset; mode->vsync_end = mode->vsync_start + vsync_pulse_width; mode->vtotal = mode->vdisplay + vblank; /* Some EDIDs have bogus h/vtotal values */ if (mode->hsync_end > mode->htotal) mode->htotal = mode->hsync_end + 1; if (mode->vsync_end > mode->vtotal) mode->vtotal = mode->vsync_end + 1; drm_mode_do_interlace_quirk(mode, pt); if (quirks & EDID_QUIRK_DETAILED_SYNC_PP) { pt->misc |= DRM_EDID_PT_HSYNC_POSITIVE | DRM_EDID_PT_VSYNC_POSITIVE; } mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ? DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC; mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ? DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC; set_size: mode->width_mm = pt->width_mm_lo | (pt->width_height_mm_hi & 0xf0) << 4; mode->height_mm = pt->height_mm_lo | (pt->width_height_mm_hi & 0xf) << 8; if (quirks & EDID_QUIRK_DETAILED_IN_CM) { mode->width_mm *= 10; mode->height_mm *= 10; } if (quirks & EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE) { mode->width_mm = edid->width_cm * 10; mode->height_mm = edid->height_cm * 10; } mode->type = DRM_MODE_TYPE_DRIVER; mode->vrefresh = drm_mode_vrefresh(mode); drm_mode_set_name(mode); return mode; } static bool mode_in_hsync_range(const struct drm_display_mode *mode, struct edid *edid, u8 *t) { int hsync, hmin, hmax; hmin = t[7]; if (edid->revision >= 4) hmin += ((t[4] & 0x04) ? 255 : 0); hmax = t[8]; if (edid->revision >= 4) hmax += ((t[4] & 0x08) ? 255 : 0); hsync = drm_mode_hsync(mode); return (hsync <= hmax && hsync >= hmin); } static bool mode_in_vsync_range(const struct drm_display_mode *mode, struct edid *edid, u8 *t) { int vsync, vmin, vmax; vmin = t[5]; if (edid->revision >= 4) vmin += ((t[4] & 0x01) ? 255 : 0); vmax = t[6]; if (edid->revision >= 4) vmax += ((t[4] & 0x02) ? 255 : 0); vsync = drm_mode_vrefresh(mode); return (vsync <= vmax && vsync >= vmin); } static u32 range_pixel_clock(struct edid *edid, u8 *t) { /* unspecified */ if (t[9] == 0 || t[9] == 255) return 0; /* 1.4 with CVT support gives us real precision, yay */ if (edid->revision >= 4 && t[10] == 0x04) return (t[9] * 10000) - ((t[12] >> 2) * 250); /* 1.3 is pathetic, so fuzz up a bit */ return t[9] * 10000 + 5001; } static bool mode_in_range(const struct drm_display_mode *mode, struct edid *edid, struct detailed_timing *timing) { u32 max_clock; u8 *t = (u8 *)timing; if (!mode_in_hsync_range(mode, edid, t)) return false; if (!mode_in_vsync_range(mode, edid, t)) return false; if ((max_clock = range_pixel_clock(edid, t))) if (mode->clock > max_clock) return false; /* 1.4 max horizontal check */ if (edid->revision >= 4 && t[10] == 0x04) if (t[13] && mode->hdisplay > 8 * (t[13] + (256 * (t[12]&0x3)))) return false; if (mode_is_rb(mode) && !drm_monitor_supports_rb(edid)) return false; return true; } static bool valid_inferred_mode(const struct drm_connector *connector, const struct drm_display_mode *mode) { const struct drm_display_mode *m; bool ok = false; list_for_each_entry(m, &connector->probed_modes, head) { if (mode->hdisplay == m->hdisplay && mode->vdisplay == m->vdisplay && drm_mode_vrefresh(mode) == drm_mode_vrefresh(m)) return false; /* duplicated */ if (mode->hdisplay <= m->hdisplay && mode->vdisplay <= m->vdisplay) ok = true; } return ok; } static int drm_dmt_modes_for_range(struct drm_connector *connector, struct edid *edid, struct detailed_timing *timing) { int i, modes = 0; struct drm_display_mode *newmode; struct drm_device *dev = connector->dev; for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) { if (mode_in_range(drm_dmt_modes + i, edid, timing) && valid_inferred_mode(connector, drm_dmt_modes + i)) { newmode = drm_mode_duplicate(dev, &drm_dmt_modes[i]); if (newmode) { drm_mode_probed_add(connector, newmode); modes++; } } } return modes; } /* fix up 1366x768 mode from 1368x768; * GFT/CVT can't express 1366 width which isn't dividable by 8 */ void drm_mode_fixup_1366x768(struct drm_display_mode *mode) { if (mode->hdisplay == 1368 && mode->vdisplay == 768) { mode->hdisplay = 1366; mode->hsync_start--; mode->hsync_end--; drm_mode_set_name(mode); } } static int drm_gtf_modes_for_range(struct drm_connector *connector, struct edid *edid, struct detailed_timing *timing) { int i, modes = 0; struct drm_display_mode *newmode; struct drm_device *dev = connector->dev; for (i = 0; i < ARRAY_SIZE(extra_modes); i++) { const struct minimode *m = &extra_modes[i]; newmode = drm_gtf_mode(dev, m->w, m->h, m->r, 0, 0); if (!newmode) return modes; drm_mode_fixup_1366x768(newmode); if (!mode_in_range(newmode, edid, timing) || !valid_inferred_mode(connector, newmode)) { drm_mode_destroy(dev, newmode); continue; } drm_mode_probed_add(connector, newmode); modes++; } return modes; } static int drm_cvt_modes_for_range(struct drm_connector *connector, struct edid *edid, struct detailed_timing *timing) { int i, modes = 0; struct drm_display_mode *newmode; struct drm_device *dev = connector->dev; bool rb = drm_monitor_supports_rb(edid); for (i = 0; i < ARRAY_SIZE(extra_modes); i++) { const struct minimode *m = &extra_modes[i]; newmode = drm_cvt_mode(dev, m->w, m->h, m->r, rb, 0, 0); if (!newmode) return modes; drm_mode_fixup_1366x768(newmode); if (!mode_in_range(newmode, edid, timing) || !valid_inferred_mode(connector, newmode)) { drm_mode_destroy(dev, newmode); continue; } drm_mode_probed_add(connector, newmode); modes++; } return modes; } static void do_inferred_modes(struct detailed_timing *timing, void *c) { struct detailed_mode_closure *closure = c; struct detailed_non_pixel *data = &timing->data.other_data; struct detailed_data_monitor_range *range = &data->data.range; if (data->type != EDID_DETAIL_MONITOR_RANGE) return; closure->modes += drm_dmt_modes_for_range(closure->connector, closure->edid, timing); if (!version_greater(closure->edid, 1, 1)) return; /* GTF not defined yet */ switch (range->flags) { case 0x02: /* secondary gtf, XXX could do more */ case 0x00: /* default gtf */ closure->modes += drm_gtf_modes_for_range(closure->connector, closure->edid, timing); break; case 0x04: /* cvt, only in 1.4+ */ if (!version_greater(closure->edid, 1, 3)) break; closure->modes += drm_cvt_modes_for_range(closure->connector, closure->edid, timing); break; case 0x01: /* just the ranges, no formula */ default: break; } } static int add_inferred_modes(struct drm_connector *connector, struct edid *edid) { struct detailed_mode_closure closure = { .connector = connector, .edid = edid, }; if (version_greater(edid, 1, 0)) drm_for_each_detailed_block((u8 *)edid, do_inferred_modes, &closure); return closure.modes; } static int drm_est3_modes(struct drm_connector *connector, struct detailed_timing *timing) { int i, j, m, modes = 0; struct drm_display_mode *mode; u8 *est = ((u8 *)timing) + 6; for (i = 0; i < 6; i++) { for (j = 7; j >= 0; j--) { m = (i * 8) + (7 - j); if (m >= ARRAY_SIZE(est3_modes)) break; if (est[i] & (1 << j)) { mode = drm_mode_find_dmt(connector->dev, est3_modes[m].w, est3_modes[m].h, est3_modes[m].r, est3_modes[m].rb); if (mode) { drm_mode_probed_add(connector, mode); modes++; } } } } return modes; } static void do_established_modes(struct detailed_timing *timing, void *c) { struct detailed_mode_closure *closure = c; struct detailed_non_pixel *data = &timing->data.other_data; if (data->type == EDID_DETAIL_EST_TIMINGS) closure->modes += drm_est3_modes(closure->connector, timing); } /** * add_established_modes - get est. modes from EDID and add them * @connector: connector to add mode(s) to * @edid: EDID block to scan * * Each EDID block contains a bitmap of the supported "established modes" list * (defined above). Tease them out and add them to the global modes list. */ static int add_established_modes(struct drm_connector *connector, struct edid *edid) { struct drm_device *dev = connector->dev; unsigned long est_bits = edid->established_timings.t1 | (edid->established_timings.t2 << 8) | ((edid->established_timings.mfg_rsvd & 0x80) << 9); int i, modes = 0; struct detailed_mode_closure closure = { .connector = connector, .edid = edid, }; for (i = 0; i <= EDID_EST_TIMINGS; i++) { if (est_bits & (1<data.other_data; struct drm_connector *connector = closure->connector; struct edid *edid = closure->edid; if (data->type == EDID_DETAIL_STD_MODES) { int i; for (i = 0; i < 6; i++) { struct std_timing *std; struct drm_display_mode *newmode; std = &data->data.timings[i]; newmode = drm_mode_std(connector, edid, std); if (newmode) { drm_mode_probed_add(connector, newmode); closure->modes++; } } } } /** * add_standard_modes - get std. modes from EDID and add them * @connector: connector to add mode(s) to * @edid: EDID block to scan * * Standard modes can be calculated using the appropriate standard (DMT, * GTF or CVT. Grab them from @edid and add them to the list. */ static int add_standard_modes(struct drm_connector *connector, struct edid *edid) { int i, modes = 0; struct detailed_mode_closure closure = { .connector = connector, .edid = edid, }; for (i = 0; i < EDID_STD_TIMINGS; i++) { struct drm_display_mode *newmode; newmode = drm_mode_std(connector, edid, &edid->standard_timings[i]); if (newmode) { drm_mode_probed_add(connector, newmode); modes++; } } if (version_greater(edid, 1, 0)) drm_for_each_detailed_block((u8 *)edid, do_standard_modes, &closure); /* XXX should also look for standard codes in VTB blocks */ return modes + closure.modes; } static int drm_cvt_modes(struct drm_connector *connector, struct detailed_timing *timing) { int i, j, modes = 0; struct drm_display_mode *newmode; struct drm_device *dev = connector->dev; struct cvt_timing *cvt; const int rates[] = { 60, 85, 75, 60, 50 }; const u8 empty[3] = { 0, 0, 0 }; for (i = 0; i < 4; i++) { int uninitialized_var(width), height; cvt = &(timing->data.other_data.data.cvt[i]); if (!memcmp(cvt->code, empty, 3)) continue; height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2; switch (cvt->code[1] & 0x0c) { case 0x00: width = height * 4 / 3; break; case 0x04: width = height * 16 / 9; break; case 0x08: width = height * 16 / 10; break; case 0x0c: width = height * 15 / 9; break; } for (j = 1; j < 5; j++) { if (cvt->code[2] & (1 << j)) { newmode = drm_cvt_mode(dev, width, height, rates[j], j == 0, false, false); if (newmode) { drm_mode_probed_add(connector, newmode); modes++; } } } } return modes; } static void do_cvt_mode(struct detailed_timing *timing, void *c) { struct detailed_mode_closure *closure = c; struct detailed_non_pixel *data = &timing->data.other_data; if (data->type == EDID_DETAIL_CVT_3BYTE) closure->modes += drm_cvt_modes(closure->connector, timing); } static int add_cvt_modes(struct drm_connector *connector, struct edid *edid) { struct detailed_mode_closure closure = { .connector = connector, .edid = edid, }; if (version_greater(edid, 1, 2)) drm_for_each_detailed_block((u8 *)edid, do_cvt_mode, &closure); /* XXX should also look for CVT codes in VTB blocks */ return closure.modes; } static void fixup_detailed_cea_mode_clock(struct drm_display_mode *mode); static void do_detailed_mode(struct detailed_timing *timing, void *c) { struct detailed_mode_closure *closure = c; struct drm_display_mode *newmode; if (timing->pixel_clock) { newmode = drm_mode_detailed(closure->connector->dev, closure->edid, timing, closure->quirks); if (!newmode) return; if (closure->preferred) newmode->type |= DRM_MODE_TYPE_PREFERRED; /* * Detailed modes are limited to 10kHz pixel clock resolution, * so fix up anything that looks like CEA/HDMI mode, but the clock * is just slightly off. */ fixup_detailed_cea_mode_clock(newmode); drm_mode_probed_add(closure->connector, newmode); closure->modes++; closure->preferred = false; } } /* * add_detailed_modes - Add modes from detailed timings * @connector: attached connector * @edid: EDID block to scan * @quirks: quirks to apply */ static int add_detailed_modes(struct drm_connector *connector, struct edid *edid, u32 quirks) { struct detailed_mode_closure closure = { .connector = connector, .edid = edid, .preferred = true, .quirks = quirks, }; if (closure.preferred && !version_greater(edid, 1, 3)) closure.preferred = (edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING); drm_for_each_detailed_block((u8 *)edid, do_detailed_mode, &closure); return closure.modes; } #define AUDIO_BLOCK 0x01 #define VIDEO_BLOCK 0x02 #define VENDOR_BLOCK 0x03 #define SPEAKER_BLOCK 0x04 #define USE_EXTENDED_TAG 0x07 #define EXT_VIDEO_CAPABILITY_BLOCK 0x00 #define EXT_VIDEO_DATA_BLOCK_420 0x0E #define EXT_VIDEO_CAP_BLOCK_Y420CMDB 0x0F #define EDID_BASIC_AUDIO (1 << 6) #define EDID_CEA_YCRCB444 (1 << 5) #define EDID_CEA_YCRCB422 (1 << 4) #define EDID_CEA_VCDB_QS (1 << 6) /* * Search EDID for CEA extension block. */ static u8 *drm_find_edid_extension(const struct edid *edid, int ext_id) { u8 *edid_ext = NULL; int i; /* No EDID or EDID extensions */ if (edid == NULL || edid->extensions == 0) return NULL; /* Find CEA extension */ for (i = 0; i < edid->extensions; i++) { edid_ext = (u8 *)edid + EDID_LENGTH * (i + 1); if (edid_ext[0] == ext_id) break; } if (i == edid->extensions) return NULL; return edid_ext; } static u8 *drm_find_displayid_extension(const struct edid *edid) { return drm_find_edid_extension(edid, DISPLAYID_EXT); } static u8 *drm_find_cea_extension(const struct edid *edid) { int ret; int idx = 1; int length = EDID_LENGTH; struct displayid_block *block; u8 *cea; u8 *displayid; /* Look for a top level CEA extension block */ cea = drm_find_edid_extension(edid, CEA_EXT); if (cea) return cea; /* CEA blocks can also be found embedded in a DisplayID block */ displayid = drm_find_displayid_extension(edid); if (!displayid) return NULL; ret = validate_displayid(displayid, length, idx); if (ret) return NULL; idx += sizeof(struct displayid_hdr); for_each_displayid_db(displayid, block, idx, length) { if (block->tag == DATA_BLOCK_CTA) { cea = (u8 *)block; break; } } return cea; } /* * Calculate the alternate clock for the CEA mode * (60Hz vs. 59.94Hz etc.) */ static unsigned int cea_mode_alternate_clock(const struct drm_display_mode *cea_mode) { unsigned int clock = cea_mode->clock; if (cea_mode->vrefresh % 6 != 0) return clock; /* * edid_cea_modes contains the 59.94Hz * variant for 240 and 480 line modes, * and the 60Hz variant otherwise. */ if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480) clock = DIV_ROUND_CLOSEST(clock * 1001, 1000); else clock = DIV_ROUND_CLOSEST(clock * 1000, 1001); return clock; } static bool cea_mode_alternate_timings(u8 vic, struct drm_display_mode *mode) { /* * For certain VICs the spec allows the vertical * front porch to vary by one or two lines. * * cea_modes[] stores the variant with the shortest * vertical front porch. We can adjust the mode to * get the other variants by simply increasing the * vertical front porch length. */ BUILD_BUG_ON(edid_cea_modes[8].vtotal != 262 || edid_cea_modes[9].vtotal != 262 || edid_cea_modes[12].vtotal != 262 || edid_cea_modes[13].vtotal != 262 || edid_cea_modes[23].vtotal != 312 || edid_cea_modes[24].vtotal != 312 || edid_cea_modes[27].vtotal != 312 || edid_cea_modes[28].vtotal != 312); if (((vic == 8 || vic == 9 || vic == 12 || vic == 13) && mode->vtotal < 263) || ((vic == 23 || vic == 24 || vic == 27 || vic == 28) && mode->vtotal < 314)) { mode->vsync_start++; mode->vsync_end++; mode->vtotal++; return true; } return false; } static u8 drm_match_cea_mode_clock_tolerance(const struct drm_display_mode *to_match, unsigned int clock_tolerance) { unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS; u8 vic; if (!to_match->clock) return 0; if (to_match->picture_aspect_ratio) match_flags |= DRM_MODE_MATCH_ASPECT_RATIO; for (vic = 1; vic < ARRAY_SIZE(edid_cea_modes); vic++) { struct drm_display_mode cea_mode = edid_cea_modes[vic]; unsigned int clock1, clock2; /* Check both 60Hz and 59.94Hz */ clock1 = cea_mode.clock; clock2 = cea_mode_alternate_clock(&cea_mode); if (abs(to_match->clock - clock1) > clock_tolerance && abs(to_match->clock - clock2) > clock_tolerance) continue; do { if (drm_mode_match(to_match, &cea_mode, match_flags)) return vic; } while (cea_mode_alternate_timings(vic, &cea_mode)); } return 0; } /** * drm_match_cea_mode - look for a CEA mode matching given mode * @to_match: display mode * * Return: The CEA Video ID (VIC) of the mode or 0 if it isn't a CEA-861 * mode. */ u8 drm_match_cea_mode(const struct drm_display_mode *to_match) { unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS; u8 vic; if (!to_match->clock) return 0; if (to_match->picture_aspect_ratio) match_flags |= DRM_MODE_MATCH_ASPECT_RATIO; for (vic = 1; vic < ARRAY_SIZE(edid_cea_modes); vic++) { struct drm_display_mode cea_mode = edid_cea_modes[vic]; unsigned int clock1, clock2; /* Check both 60Hz and 59.94Hz */ clock1 = cea_mode.clock; clock2 = cea_mode_alternate_clock(&cea_mode); if (KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock1) && KHZ2PICOS(to_match->clock) != KHZ2PICOS(clock2)) continue; do { if (drm_mode_match(to_match, &cea_mode, match_flags)) return vic; } while (cea_mode_alternate_timings(vic, &cea_mode)); } return 0; } EXPORT_SYMBOL(drm_match_cea_mode); static bool drm_valid_cea_vic(u8 vic) { return vic > 0 && vic < ARRAY_SIZE(edid_cea_modes); } /** * drm_get_cea_aspect_ratio - get the picture aspect ratio corresponding to * the input VIC from the CEA mode list * @video_code: ID given to each of the CEA modes * * Returns picture aspect ratio */ enum hdmi_picture_aspect drm_get_cea_aspect_ratio(const u8 video_code) { return edid_cea_modes[video_code].picture_aspect_ratio; } EXPORT_SYMBOL(drm_get_cea_aspect_ratio); /* * Calculate the alternate clock for HDMI modes (those from the HDMI vendor * specific block). * * It's almost like cea_mode_alternate_clock(), we just need to add an * exception for the VIC 4 mode (4096x2160@24Hz): no alternate clock for this * one. */ static unsigned int hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode) { if (hdmi_mode->vdisplay == 4096 && hdmi_mode->hdisplay == 2160) return hdmi_mode->clock; return cea_mode_alternate_clock(hdmi_mode); } static u8 drm_match_hdmi_mode_clock_tolerance(const struct drm_display_mode *to_match, unsigned int clock_tolerance) { unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS; u8 vic; if (!to_match->clock) return 0; for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) { const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic]; unsigned int clock1, clock2; /* Make sure to also match alternate clocks */ clock1 = hdmi_mode->clock; clock2 = hdmi_mode_alternate_clock(hdmi_mode); if (abs(to_match->clock - clock1) > clock_tolerance && abs(to_match->clock - clock2) > clock_tolerance) continue; if (drm_mode_match(to_match, hdmi_mode, match_flags)) return vic; } return 0; } /* * drm_match_hdmi_mode - look for a HDMI mode matching given mode * @to_match: display mode * * An HDMI mode is one defined in the HDMI vendor specific block. * * Returns the HDMI Video ID (VIC) of the mode or 0 if it isn't one. */ static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match) { unsigned int match_flags = DRM_MODE_MATCH_TIMINGS | DRM_MODE_MATCH_FLAGS; u8 vic; if (!to_match->clock) return 0; for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) { const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic]; unsigned int clock1, clock2; /* Make sure to also match alternate clocks */ clock1 = hdmi_mode->clock; clock2 = hdmi_mode_alternate_clock(hdmi_mode); if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) || KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) && drm_mode_match(to_match, hdmi_mode, match_flags)) return vic; } return 0; } static bool drm_valid_hdmi_vic(u8 vic) { return vic > 0 && vic < ARRAY_SIZE(edid_4k_modes); } static int add_alternate_cea_modes(struct drm_connector *connector, struct edid *edid) { struct drm_device *dev = connector->dev; struct drm_display_mode *mode, *tmp; LIST_HEAD(list); int modes = 0; /* Don't add CEA modes if the CEA extension block is missing */ if (!drm_find_cea_extension(edid)) return 0; /* * Go through all probed modes and create a new mode * with the alternate clock for certain CEA modes. */ list_for_each_entry(mode, &connector->probed_modes, head) { const struct drm_display_mode *cea_mode = NULL; struct drm_display_mode *newmode; u8 vic = drm_match_cea_mode(mode); unsigned int clock1, clock2; if (drm_valid_cea_vic(vic)) { cea_mode = &edid_cea_modes[vic]; clock2 = cea_mode_alternate_clock(cea_mode); } else { vic = drm_match_hdmi_mode(mode); if (drm_valid_hdmi_vic(vic)) { cea_mode = &edid_4k_modes[vic]; clock2 = hdmi_mode_alternate_clock(cea_mode); } } if (!cea_mode) continue; clock1 = cea_mode->clock; if (clock1 == clock2) continue; if (mode->clock != clock1 && mode->clock != clock2) continue; newmode = drm_mode_duplicate(dev, cea_mode); if (!newmode) continue; /* Carry over the stereo flags */ newmode->flags |= mode->flags & DRM_MODE_FLAG_3D_MASK; /* * The current mode could be either variant. Make * sure to pick the "other" clock for the new mode. */ if (mode->clock != clock1) newmode->clock = clock1; else newmode->clock = clock2; list_add_tail(&newmode->head, &list); } list_for_each_entry_safe(mode, tmp, &list, head) { list_del(&mode->head); drm_mode_probed_add(connector, mode); modes++; } return modes; } static u8 svd_to_vic(u8 svd) { /* 0-6 bit vic, 7th bit native mode indicator */ if ((svd >= 1 && svd <= 64) || (svd >= 129 && svd <= 192)) return svd & 127; return svd; } static struct drm_display_mode * drm_display_mode_from_vic_index(struct drm_connector *connector, const u8 *video_db, u8 video_len, u8 video_index) { struct drm_device *dev = connector->dev; struct drm_display_mode *newmode; u8 vic; if (video_db == NULL || video_index >= video_len) return NULL; /* CEA modes are numbered 1..127 */ vic = svd_to_vic(video_db[video_index]); if (!drm_valid_cea_vic(vic)) return NULL; newmode = drm_mode_duplicate(dev, &edid_cea_modes[vic]); if (!newmode) return NULL; newmode->vrefresh = 0; return newmode; } /* * do_y420vdb_modes - Parse YCBCR 420 only modes * @connector: connector corresponding to the HDMI sink * @svds: start of the data block of CEA YCBCR 420 VDB * @len: length of the CEA YCBCR 420 VDB * * Parse the CEA-861-F YCBCR 420 Video Data Block (Y420VDB) * which contains modes which can be supported in YCBCR 420 * output format only. */ static int do_y420vdb_modes(struct drm_connector *connector, const u8 *svds, u8 svds_len) { int modes = 0, i; struct drm_device *dev = connector->dev; struct drm_display_info *info = &connector->display_info; struct drm_hdmi_info *hdmi = &info->hdmi; for (i = 0; i < svds_len; i++) { u8 vic = svd_to_vic(svds[i]); struct drm_display_mode *newmode; if (!drm_valid_cea_vic(vic)) continue; newmode = drm_mode_duplicate(dev, &edid_cea_modes[vic]); if (!newmode) break; bitmap_set(hdmi->y420_vdb_modes, vic, 1); drm_mode_probed_add(connector, newmode); modes++; } if (modes > 0) info->color_formats |= DRM_COLOR_FORMAT_YCRCB420; return modes; } /* * drm_add_cmdb_modes - Add a YCBCR 420 mode into bitmap * @connector: connector corresponding to the HDMI sink * @vic: CEA vic for the video mode to be added in the map * * Makes an entry for a videomode in the YCBCR 420 bitmap */ static void drm_add_cmdb_modes(struct drm_connector *connector, u8 svd) { u8 vic = svd_to_vic(svd); struct drm_hdmi_info *hdmi = &connector->display_info.hdmi; if (!drm_valid_cea_vic(vic)) return; bitmap_set(hdmi->y420_cmdb_modes, vic, 1); } static int do_cea_modes(struct drm_connector *connector, const u8 *db, u8 len) { int i, modes = 0; struct drm_hdmi_info *hdmi = &connector->display_info.hdmi; for (i = 0; i < len; i++) { struct drm_display_mode *mode; mode = drm_display_mode_from_vic_index(connector, db, len, i); if (mode) { /* * YCBCR420 capability block contains a bitmap which * gives the index of CEA modes from CEA VDB, which * can support YCBCR 420 sampling output also (apart * from RGB/YCBCR444 etc). * For example, if the bit 0 in bitmap is set, * first mode in VDB can support YCBCR420 output too. * Add YCBCR420 modes only if sink is HDMI 2.0 capable. */ if (i < 64 && hdmi->y420_cmdb_map & (1ULL << i)) drm_add_cmdb_modes(connector, db[i]); drm_mode_probed_add(connector, mode); modes++; } } return modes; } struct stereo_mandatory_mode { int width, height, vrefresh; unsigned int flags; }; static const struct stereo_mandatory_mode stereo_mandatory_modes[] = { { 1920, 1080, 24, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM }, { 1920, 1080, 24, DRM_MODE_FLAG_3D_FRAME_PACKING }, { 1920, 1080, 50, DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF }, { 1920, 1080, 60, DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF }, { 1280, 720, 50, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM }, { 1280, 720, 50, DRM_MODE_FLAG_3D_FRAME_PACKING }, { 1280, 720, 60, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM }, { 1280, 720, 60, DRM_MODE_FLAG_3D_FRAME_PACKING } }; static bool stereo_match_mandatory(const struct drm_display_mode *mode, const struct stereo_mandatory_mode *stereo_mode) { unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE; return mode->hdisplay == stereo_mode->width && mode->vdisplay == stereo_mode->height && interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) && drm_mode_vrefresh(mode) == stereo_mode->vrefresh; } static int add_hdmi_mandatory_stereo_modes(struct drm_connector *connector) { struct drm_device *dev = connector->dev; const struct drm_display_mode *mode; struct list_head stereo_modes; int modes = 0, i; INIT_LIST_HEAD(&stereo_modes); list_for_each_entry(mode, &connector->probed_modes, head) { for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++) { const struct stereo_mandatory_mode *mandatory; struct drm_display_mode *new_mode; if (!stereo_match_mandatory(mode, &stereo_mandatory_modes[i])) continue; mandatory = &stereo_mandatory_modes[i]; new_mode = drm_mode_duplicate(dev, mode); if (!new_mode) continue; new_mode->flags |= mandatory->flags; list_add_tail(&new_mode->head, &stereo_modes); modes++; } } list_splice_tail(&stereo_modes, &connector->probed_modes); return modes; } static int add_hdmi_mode(struct drm_connector *connector, u8 vic) { struct drm_device *dev = connector->dev; struct drm_display_mode *newmode; if (!drm_valid_hdmi_vic(vic)) { DRM_ERROR("Unknown HDMI VIC: %d\n", vic); return 0; } newmode = drm_mode_duplicate(dev, &edid_4k_modes[vic]); if (!newmode) return 0; drm_mode_probed_add(connector, newmode); return 1; } static int add_3d_struct_modes(struct drm_connector *connector, u16 structure, const u8 *video_db, u8 video_len, u8 video_index) { struct drm_display_mode *newmode; int modes = 0; if (structure & (1 << 0)) { newmode = drm_display_mode_from_vic_index(connector, video_db, video_len, video_index); if (newmode) { newmode->flags |= DRM_MODE_FLAG_3D_FRAME_PACKING; drm_mode_probed_add(connector, newmode); modes++; } } if (structure & (1 << 6)) { newmode = drm_display_mode_from_vic_index(connector, video_db, video_len, video_index); if (newmode) { newmode->flags |= DRM_MODE_FLAG_3D_TOP_AND_BOTTOM; drm_mode_probed_add(connector, newmode); modes++; } } if (structure & (1 << 8)) { newmode = drm_display_mode_from_vic_index(connector, video_db, video_len, video_index); if (newmode) { newmode->flags |= DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF; drm_mode_probed_add(connector, newmode); modes++; } } return modes; } /* * do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block * @connector: connector corresponding to the HDMI sink * @db: start of the CEA vendor specific block * @len: length of the CEA block payload, ie. one can access up to db[len] * * Parses the HDMI VSDB looking for modes to add to @connector. This function * also adds the stereo 3d modes when applicable. */ static int do_hdmi_vsdb_modes(struct drm_connector *connector, const u8 *db, u8 len, const u8 *video_db, u8 video_len) { struct drm_display_info *info = &connector->display_info; int modes = 0, offset = 0, i, multi_present = 0, multi_len; u8 vic_len, hdmi_3d_len = 0; u16 mask; u16 structure_all; if (len < 8) goto out; /* no HDMI_Video_Present */ if (!(db[8] & (1 << 5))) goto out; /* Latency_Fields_Present */ if (db[8] & (1 << 7)) offset += 2; /* I_Latency_Fields_Present */ if (db[8] & (1 << 6)) offset += 2; /* the declared length is not long enough for the 2 first bytes * of additional video format capabilities */ if (len < (8 + offset + 2)) goto out; /* 3D_Present */ offset++; if (db[8 + offset] & (1 << 7)) { modes += add_hdmi_mandatory_stereo_modes(connector); /* 3D_Multi_present */ multi_present = (db[8 + offset] & 0x60) >> 5; } offset++; vic_len = db[8 + offset] >> 5; hdmi_3d_len = db[8 + offset] & 0x1f; for (i = 0; i < vic_len && len >= (9 + offset + i); i++) { u8 vic; vic = db[9 + offset + i]; modes += add_hdmi_mode(connector, vic); } offset += 1 + vic_len; if (multi_present == 1) multi_len = 2; else if (multi_present == 2) multi_len = 4; else multi_len = 0; if (len < (8 + offset + hdmi_3d_len - 1)) goto out; if (hdmi_3d_len < multi_len) goto out; if (multi_present == 1 || multi_present == 2) { /* 3D_Structure_ALL */ structure_all = (db[8 + offset] << 8) | db[9 + offset]; /* check if 3D_MASK is present */ if (multi_present == 2) mask = (db[10 + offset] << 8) | db[11 + offset]; else mask = 0xffff; for (i = 0; i < 16; i++) { if (mask & (1 << i)) modes += add_3d_struct_modes(connector, structure_all, video_db, video_len, i); } } offset += multi_len; for (i = 0; i < (hdmi_3d_len - multi_len); i++) { int vic_index; struct drm_display_mode *newmode = NULL; unsigned int newflag = 0; bool detail_present; detail_present = ((db[8 + offset + i] & 0x0f) > 7); if (detail_present && (i + 1 == hdmi_3d_len - multi_len)) break; /* 2D_VIC_order_X */ vic_index = db[8 + offset + i] >> 4; /* 3D_Structure_X */ switch (db[8 + offset + i] & 0x0f) { case 0: newflag = DRM_MODE_FLAG_3D_FRAME_PACKING; break; case 6: newflag = DRM_MODE_FLAG_3D_TOP_AND_BOTTOM; break; case 8: /* 3D_Detail_X */ if ((db[9 + offset + i] >> 4) == 1) newflag = DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF; break; } if (newflag != 0) { newmode = drm_display_mode_from_vic_index(connector, video_db, video_len, vic_index); if (newmode) { newmode->flags |= newflag; drm_mode_probed_add(connector, newmode); modes++; } } if (detail_present) i++; } out: if (modes > 0) info->has_hdmi_infoframe = true; return modes; } static int cea_db_payload_len(const u8 *db) { return db[0] & 0x1f; } static int cea_db_extended_tag(const u8 *db) { return db[1]; } static int cea_db_tag(const u8 *db) { return db[0] >> 5; } static int cea_revision(const u8 *cea) { return cea[1]; } static int cea_db_offsets(const u8 *cea, int *start, int *end) { /* DisplayID CTA extension blocks and top-level CEA EDID * block header definitions differ in the following bytes: * 1) Byte 2 of the header specifies length differently, * 2) Byte 3 is only present in the CEA top level block. * * The different definitions for byte 2 follow. * * DisplayID CTA extension block defines byte 2 as: * Number of payload bytes * * CEA EDID block defines byte 2 as: * Byte number (decimal) within this block where the 18-byte * DTDs begin. If no non-DTD data is present in this extension * block, the value should be set to 04h (the byte after next). * If set to 00h, there are no DTDs present in this block and * no non-DTD data. */ if (cea[0] == DATA_BLOCK_CTA) { *start = 3; *end = *start + cea[2]; } else if (cea[0] == CEA_EXT) { /* Data block offset in CEA extension block */ *start = 4; *end = cea[2]; if (*end == 0) *end = 127; if (*end < 4 || *end > 127) return -ERANGE; } else { return -ENOTSUPP; } return 0; } static bool cea_db_is_hdmi_vsdb(const u8 *db) { int hdmi_id; if (cea_db_tag(db) != VENDOR_BLOCK) return false; if (cea_db_payload_len(db) < 5) return false; hdmi_id = db[1] | (db[2] << 8) | (db[3] << 16); return hdmi_id == HDMI_IEEE_OUI; } static bool cea_db_is_hdmi_forum_vsdb(const u8 *db) { unsigned int oui; if (cea_db_tag(db) != VENDOR_BLOCK) return false; if (cea_db_payload_len(db) < 7) return false; oui = db[3] << 16 | db[2] << 8 | db[1]; return oui == HDMI_FORUM_IEEE_OUI; } static bool cea_db_is_y420cmdb(const u8 *db) { if (cea_db_tag(db) != USE_EXTENDED_TAG) return false; if (!cea_db_payload_len(db)) return false; if (cea_db_extended_tag(db) != EXT_VIDEO_CAP_BLOCK_Y420CMDB) return false; return true; } static bool cea_db_is_y420vdb(const u8 *db) { if (cea_db_tag(db) != USE_EXTENDED_TAG) return false; if (!cea_db_payload_len(db)) return false; if (cea_db_extended_tag(db) != EXT_VIDEO_DATA_BLOCK_420) return false; return true; } #define for_each_cea_db(cea, i, start, end) \ for ((i) = (start); (i) < (end) && (i) + cea_db_payload_len(&(cea)[(i)]) < (end); (i) += cea_db_payload_len(&(cea)[(i)]) + 1) static void drm_parse_y420cmdb_bitmap(struct drm_connector *connector, const u8 *db) { struct drm_display_info *info = &connector->display_info; struct drm_hdmi_info *hdmi = &info->hdmi; u8 map_len = cea_db_payload_len(db) - 1; u8 count; u64 map = 0; if (map_len == 0) { /* All CEA modes support ycbcr420 sampling also.*/ hdmi->y420_cmdb_map = U64_MAX; info->color_formats |= DRM_COLOR_FORMAT_YCRCB420; return; } /* * This map indicates which of the existing CEA block modes * from VDB can support YCBCR420 output too. So if bit=0 is * set, first mode from VDB can support YCBCR420 output too. * We will parse and keep this map, before parsing VDB itself * to avoid going through the same block again and again. * * Spec is not clear about max possible size of this block. * Clamping max bitmap block size at 8 bytes. Every byte can * address 8 CEA modes, in this way this map can address * 8*8 = first 64 SVDs. */ if (WARN_ON_ONCE(map_len > 8)) map_len = 8; for (count = 0; count < map_len; count++) map |= (u64)db[2 + count] << (8 * count); if (map) info->color_formats |= DRM_COLOR_FORMAT_YCRCB420; hdmi->y420_cmdb_map = map; } static int add_cea_modes(struct drm_connector *connector, struct edid *edid) { const u8 *cea = drm_find_cea_extension(edid); const u8 *db, *hdmi = NULL, *video = NULL; u8 dbl, hdmi_len, video_len = 0; int modes = 0; if (cea && cea_revision(cea) >= 3) { int i, start, end; if (cea_db_offsets(cea, &start, &end)) return 0; for_each_cea_db(cea, i, start, end) { db = &cea[i]; dbl = cea_db_payload_len(db); if (cea_db_tag(db) == VIDEO_BLOCK) { video = db + 1; video_len = dbl; modes += do_cea_modes(connector, video, dbl); } else if (cea_db_is_hdmi_vsdb(db)) { hdmi = db; hdmi_len = dbl; } else if (cea_db_is_y420vdb(db)) { const u8 *vdb420 = &db[2]; /* Add 4:2:0(only) modes present in EDID */ modes += do_y420vdb_modes(connector, vdb420, dbl - 1); } } } /* * We parse the HDMI VSDB after having added the cea modes as we will * be patching their flags when the sink supports stereo 3D. */ if (hdmi) modes += do_hdmi_vsdb_modes(connector, hdmi, hdmi_len, video, video_len); return modes; } static void fixup_detailed_cea_mode_clock(struct drm_display_mode *mode) { const struct drm_display_mode *cea_mode; int clock1, clock2, clock; u8 vic; const char *type; /* * allow 5kHz clock difference either way to account for * the 10kHz clock resolution limit of detailed timings. */ vic = drm_match_cea_mode_clock_tolerance(mode, 5); if (drm_valid_cea_vic(vic)) { type = "CEA"; cea_mode = &edid_cea_modes[vic]; clock1 = cea_mode->clock; clock2 = cea_mode_alternate_clock(cea_mode); } else { vic = drm_match_hdmi_mode_clock_tolerance(mode, 5); if (drm_valid_hdmi_vic(vic)) { type = "HDMI"; cea_mode = &edid_4k_modes[vic]; clock1 = cea_mode->clock; clock2 = hdmi_mode_alternate_clock(cea_mode); } else { return; } } /* pick whichever is closest */ if (abs(mode->clock - clock1) < abs(mode->clock - clock2)) clock = clock1; else clock = clock2; if (mode->clock == clock) return; DRM_DEBUG("detailed mode matches %s VIC %d, adjusting clock %d -> %d\n", type, vic, mode->clock, clock); mode->clock = clock; } static void drm_parse_hdmi_vsdb_audio(struct drm_connector *connector, const u8 *db) { u8 len = cea_db_payload_len(db); if (len >= 6 && (db[6] & (1 << 7))) connector->eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_SUPPORTS_AI; if (len >= 8) { connector->latency_present[0] = db[8] >> 7; connector->latency_present[1] = (db[8] >> 6) & 1; } if (len >= 9) connector->video_latency[0] = db[9]; if (len >= 10) connector->audio_latency[0] = db[10]; if (len >= 11) connector->video_latency[1] = db[11]; if (len >= 12) connector->audio_latency[1] = db[12]; DRM_DEBUG_KMS("HDMI: latency present %d %d, " "video latency %d %d, " "audio latency %d %d\n", connector->latency_present[0], connector->latency_present[1], connector->video_latency[0], connector->video_latency[1], connector->audio_latency[0], connector->audio_latency[1]); } static void monitor_name(struct detailed_timing *t, void *data) { if (t->data.other_data.type == EDID_DETAIL_MONITOR_NAME) *(u8 **)data = t->data.other_data.data.str.str; } static int get_monitor_name(struct edid *edid, char name[13]) { char *edid_name = NULL; int mnl; if (!edid || !name) return 0; drm_for_each_detailed_block((u8 *)edid, monitor_name, &edid_name); for (mnl = 0; edid_name && mnl < 13; mnl++) { if (edid_name[mnl] == 0x0a) break; name[mnl] = edid_name[mnl]; } return mnl; } /** * drm_edid_get_monitor_name - fetch the monitor name from the edid * @edid: monitor EDID information * @name: pointer to a character array to hold the name of the monitor * @bufsize: The size of the name buffer (should be at least 14 chars.) * */ void drm_edid_get_monitor_name(struct edid *edid, char *name, int bufsize) { int name_length; char buf[13]; if (bufsize <= 0) return; name_length = min(get_monitor_name(edid, buf), bufsize - 1); memcpy(name, buf, name_length); name[name_length] = '\0'; } EXPORT_SYMBOL(drm_edid_get_monitor_name); static void clear_eld(struct drm_connector *connector) { memset(connector->eld, 0, sizeof(connector->eld)); connector->latency_present[0] = false; connector->latency_present[1] = false; connector->video_latency[0] = 0; connector->audio_latency[0] = 0; connector->video_latency[1] = 0; connector->audio_latency[1] = 0; } /* * drm_edid_to_eld - build ELD from EDID * @connector: connector corresponding to the HDMI/DP sink * @edid: EDID to parse * * Fill the ELD (EDID-Like Data) buffer for passing to the audio driver. The * HDCP and Port_ID ELD fields are left for the graphics driver to fill in. */ static void drm_edid_to_eld(struct drm_connector *connector, struct edid *edid) { uint8_t *eld = connector->eld; u8 *cea; u8 *db; int total_sad_count = 0; int mnl; int dbl; clear_eld(connector); if (!edid) return; cea = drm_find_cea_extension(edid); if (!cea) { DRM_DEBUG_KMS("ELD: no CEA Extension found\n"); return; } mnl = get_monitor_name(edid, &eld[DRM_ELD_MONITOR_NAME_STRING]); DRM_DEBUG_KMS("ELD monitor %s\n", &eld[DRM_ELD_MONITOR_NAME_STRING]); eld[DRM_ELD_CEA_EDID_VER_MNL] = cea[1] << DRM_ELD_CEA_EDID_VER_SHIFT; eld[DRM_ELD_CEA_EDID_VER_MNL] |= mnl; eld[DRM_ELD_VER] = DRM_ELD_VER_CEA861D; eld[DRM_ELD_MANUFACTURER_NAME0] = edid->mfg_id[0]; eld[DRM_ELD_MANUFACTURER_NAME1] = edid->mfg_id[1]; eld[DRM_ELD_PRODUCT_CODE0] = edid->prod_code[0]; eld[DRM_ELD_PRODUCT_CODE1] = edid->prod_code[1]; if (cea_revision(cea) >= 3) { int i, start, end; if (cea_db_offsets(cea, &start, &end)) { start = 0; end = 0; } for_each_cea_db(cea, i, start, end) { db = &cea[i]; dbl = cea_db_payload_len(db); switch (cea_db_tag(db)) { int sad_count; case AUDIO_BLOCK: /* Audio Data Block, contains SADs */ sad_count = min(dbl / 3, 15 - total_sad_count); if (sad_count >= 1) memcpy(&eld[DRM_ELD_CEA_SAD(mnl, total_sad_count)], &db[1], sad_count * 3); total_sad_count += sad_count; break; case SPEAKER_BLOCK: /* Speaker Allocation Data Block */ if (dbl >= 1) eld[DRM_ELD_SPEAKER] = db[1]; break; case VENDOR_BLOCK: /* HDMI Vendor-Specific Data Block */ if (cea_db_is_hdmi_vsdb(db)) drm_parse_hdmi_vsdb_audio(connector, db); break; default: break; } } } eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= total_sad_count << DRM_ELD_SAD_COUNT_SHIFT; if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort || connector->connector_type == DRM_MODE_CONNECTOR_eDP) eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_DP; else eld[DRM_ELD_SAD_COUNT_CONN_TYPE] |= DRM_ELD_CONN_TYPE_HDMI; eld[DRM_ELD_BASELINE_ELD_LEN] = DIV_ROUND_UP(drm_eld_calc_baseline_block_size(eld), 4); DRM_DEBUG_KMS("ELD size %d, SAD count %d\n", drm_eld_size(eld), total_sad_count); } /** * drm_edid_to_sad - extracts SADs from EDID * @edid: EDID to parse * @sads: pointer that will be set to the extracted SADs * * Looks for CEA EDID block and extracts SADs (Short Audio Descriptors) from it. * * Note: The returned pointer needs to be freed using kfree(). * * Return: The number of found SADs or negative number on error. */ int drm_edid_to_sad(struct edid *edid, struct cea_sad **sads) { int count = 0; int i, start, end, dbl; u8 *cea; cea = drm_find_cea_extension(edid); if (!cea) { DRM_DEBUG_KMS("SAD: no CEA Extension found\n"); return -ENOENT; } if (cea_revision(cea) < 3) { DRM_DEBUG_KMS("SAD: wrong CEA revision\n"); return -ENOTSUPP; } if (cea_db_offsets(cea, &start, &end)) { DRM_DEBUG_KMS("SAD: invalid data block offsets\n"); return -EPROTO; } for_each_cea_db(cea, i, start, end) { u8 *db = &cea[i]; if (cea_db_tag(db) == AUDIO_BLOCK) { int j; dbl = cea_db_payload_len(db); count = dbl / 3; /* SAD is 3B */ *sads = kcalloc(count, sizeof(**sads), GFP_KERNEL); if (!*sads) return -ENOMEM; for (j = 0; j < count; j++) { u8 *sad = &db[1 + j * 3]; (*sads)[j].format = (sad[0] & 0x78) >> 3; (*sads)[j].channels = sad[0] & 0x7; (*sads)[j].freq = sad[1] & 0x7F; (*sads)[j].byte2 = sad[2]; } break; } } return count; } EXPORT_SYMBOL(drm_edid_to_sad); /** * drm_edid_to_speaker_allocation - extracts Speaker Allocation Data Blocks from EDID * @edid: EDID to parse * @sadb: pointer to the speaker block * * Looks for CEA EDID block and extracts the Speaker Allocation Data Block from it. * * Note: The returned pointer needs to be freed using kfree(). * * Return: The number of found Speaker Allocation Blocks or negative number on * error. */ int drm_edid_to_speaker_allocation(struct edid *edid, u8 **sadb) { int count = 0; int i, start, end, dbl; const u8 *cea; cea = drm_find_cea_extension(edid); if (!cea) { DRM_DEBUG_KMS("SAD: no CEA Extension found\n"); return -ENOENT; } if (cea_revision(cea) < 3) { DRM_DEBUG_KMS("SAD: wrong CEA revision\n"); return -ENOTSUPP; } if (cea_db_offsets(cea, &start, &end)) { DRM_DEBUG_KMS("SAD: invalid data block offsets\n"); return -EPROTO; } for_each_cea_db(cea, i, start, end) { const u8 *db = &cea[i]; if (cea_db_tag(db) == SPEAKER_BLOCK) { dbl = cea_db_payload_len(db); /* Speaker Allocation Data Block */ if (dbl == 3) { *sadb = kmemdup(&db[1], dbl, GFP_KERNEL); if (!*sadb) return -ENOMEM; count = dbl; break; } } } return count; } EXPORT_SYMBOL(drm_edid_to_speaker_allocation); /** * drm_av_sync_delay - compute the HDMI/DP sink audio-video sync delay * @connector: connector associated with the HDMI/DP sink * @mode: the display mode * * Return: The HDMI/DP sink's audio-video sync delay in milliseconds or 0 if * the sink doesn't support audio or video. */ int drm_av_sync_delay(struct drm_connector *connector, const struct drm_display_mode *mode) { int i = !!(mode->flags & DRM_MODE_FLAG_INTERLACE); int a, v; if (!connector->latency_present[0]) return 0; if (!connector->latency_present[1]) i = 0; a = connector->audio_latency[i]; v = connector->video_latency[i]; /* * HDMI/DP sink doesn't support audio or video? */ if (a == 255 || v == 255) return 0; /* * Convert raw EDID values to millisecond. * Treat unknown latency as 0ms. */ if (a) a = min(2 * (a - 1), 500); if (v) v = min(2 * (v - 1), 500); return max(v - a, 0); } EXPORT_SYMBOL(drm_av_sync_delay); /** * drm_detect_hdmi_monitor - detect whether monitor is HDMI * @edid: monitor EDID information * * Parse the CEA extension according to CEA-861-B. * * Return: True if the monitor is HDMI, false if not or unknown. */ bool drm_detect_hdmi_monitor(struct edid *edid) { u8 *edid_ext; int i; int start_offset, end_offset; edid_ext = drm_find_cea_extension(edid); if (!edid_ext) return false; if (cea_db_offsets(edid_ext, &start_offset, &end_offset)) return false; /* * Because HDMI identifier is in Vendor Specific Block, * search it from all data blocks of CEA extension. */ for_each_cea_db(edid_ext, i, start_offset, end_offset) { if (cea_db_is_hdmi_vsdb(&edid_ext[i])) return true; } return false; } EXPORT_SYMBOL(drm_detect_hdmi_monitor); /** * drm_detect_monitor_audio - check monitor audio capability * @edid: EDID block to scan * * Monitor should have CEA extension block. * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic * audio' only. If there is any audio extension block and supported * audio format, assume at least 'basic audio' support, even if 'basic * audio' is not defined in EDID. * * Return: True if the monitor supports audio, false otherwise. */ bool drm_detect_monitor_audio(struct edid *edid) { u8 *edid_ext; int i, j; bool has_audio = false; int start_offset, end_offset; edid_ext = drm_find_cea_extension(edid); if (!edid_ext) goto end; has_audio = ((edid_ext[3] & EDID_BASIC_AUDIO) != 0); if (has_audio) { DRM_DEBUG_KMS("Monitor has basic audio support\n"); goto end; } if (cea_db_offsets(edid_ext, &start_offset, &end_offset)) goto end; for_each_cea_db(edid_ext, i, start_offset, end_offset) { if (cea_db_tag(&edid_ext[i]) == AUDIO_BLOCK) { has_audio = true; for (j = 1; j < cea_db_payload_len(&edid_ext[i]) + 1; j += 3) DRM_DEBUG_KMS("CEA audio format %d\n", (edid_ext[i + j] >> 3) & 0xf); goto end; } } end: return has_audio; } EXPORT_SYMBOL(drm_detect_monitor_audio); /** * drm_rgb_quant_range_selectable - is RGB quantization range selectable? * @edid: EDID block to scan * * Check whether the monitor reports the RGB quantization range selection * as supported. The AVI infoframe can then be used to inform the monitor * which quantization range (full or limited) is used. * * Return: True if the RGB quantization range is selectable, false otherwise. */ bool drm_rgb_quant_range_selectable(struct edid *edid) { u8 *edid_ext; int i, start, end; edid_ext = drm_find_cea_extension(edid); if (!edid_ext) return false; if (cea_db_offsets(edid_ext, &start, &end)) return false; for_each_cea_db(edid_ext, i, start, end) { if (cea_db_tag(&edid_ext[i]) == USE_EXTENDED_TAG && cea_db_payload_len(&edid_ext[i]) == 2 && cea_db_extended_tag(&edid_ext[i]) == EXT_VIDEO_CAPABILITY_BLOCK) { DRM_DEBUG_KMS("CEA VCDB 0x%02x\n", edid_ext[i + 2]); return edid_ext[i + 2] & EDID_CEA_VCDB_QS; } } return false; } EXPORT_SYMBOL(drm_rgb_quant_range_selectable); /** * drm_default_rgb_quant_range - default RGB quantization range * @mode: display mode * * Determine the default RGB quantization range for the mode, * as specified in CEA-861. * * Return: The default RGB quantization range for the mode */ enum hdmi_quantization_range drm_default_rgb_quant_range(const struct drm_display_mode *mode) { /* All CEA modes other than VIC 1 use limited quantization range. */ return drm_match_cea_mode(mode) > 1 ? HDMI_QUANTIZATION_RANGE_LIMITED : HDMI_QUANTIZATION_RANGE_FULL; } EXPORT_SYMBOL(drm_default_rgb_quant_range); static void drm_parse_ycbcr420_deep_color_info(struct drm_connector *connector, const u8 *db) { u8 dc_mask; struct drm_hdmi_info *hdmi = &connector->display_info.hdmi; dc_mask = db[7] & DRM_EDID_YCBCR420_DC_MASK; hdmi->y420_dc_modes = dc_mask; } static void drm_parse_hdmi_forum_vsdb(struct drm_connector *connector, const u8 *hf_vsdb) { struct drm_display_info *display = &connector->display_info; struct drm_hdmi_info *hdmi = &display->hdmi; display->has_hdmi_infoframe = true; if (hf_vsdb[6] & 0x80) { hdmi->scdc.supported = true; if (hf_vsdb[6] & 0x40) hdmi->scdc.read_request = true; } /* * All HDMI 2.0 monitors must support scrambling at rates > 340 MHz. * And as per the spec, three factors confirm this: * * Availability of a HF-VSDB block in EDID (check) * * Non zero Max_TMDS_Char_Rate filed in HF-VSDB (let's check) * * SCDC support available (let's check) * Lets check it out. */ if (hf_vsdb[5]) { /* max clock is 5000 KHz times block value */ u32 max_tmds_clock = hf_vsdb[5] * 5000; struct drm_scdc *scdc = &hdmi->scdc; if (max_tmds_clock > 340000) { display->max_tmds_clock = max_tmds_clock; DRM_DEBUG_KMS("HF-VSDB: max TMDS clock %d kHz\n", display->max_tmds_clock); } if (scdc->supported) { scdc->scrambling.supported = true; /* Few sinks support scrambling for cloks < 340M */ if ((hf_vsdb[6] & 0x8)) scdc->scrambling.low_rates = true; } } drm_parse_ycbcr420_deep_color_info(connector, hf_vsdb); } static void drm_parse_hdmi_deep_color_info(struct drm_connector *connector, const u8 *hdmi) { struct drm_display_info *info = &connector->display_info; unsigned int dc_bpc = 0; /* HDMI supports at least 8 bpc */ info->bpc = 8; if (cea_db_payload_len(hdmi) < 6) return; if (hdmi[6] & DRM_EDID_HDMI_DC_30) { dc_bpc = 10; info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_30; DRM_DEBUG("%s: HDMI sink does deep color 30.\n", connector->name); } if (hdmi[6] & DRM_EDID_HDMI_DC_36) { dc_bpc = 12; info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_36; DRM_DEBUG("%s: HDMI sink does deep color 36.\n", connector->name); } if (hdmi[6] & DRM_EDID_HDMI_DC_48) { dc_bpc = 16; info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_48; DRM_DEBUG("%s: HDMI sink does deep color 48.\n", connector->name); } if (dc_bpc == 0) { DRM_DEBUG("%s: No deep color support on this HDMI sink.\n", connector->name); return; } DRM_DEBUG("%s: Assigning HDMI sink color depth as %d bpc.\n", connector->name, dc_bpc); info->bpc = dc_bpc; /* * Deep color support mandates RGB444 support for all video * modes and forbids YCRCB422 support for all video modes per * HDMI 1.3 spec. */ info->color_formats = DRM_COLOR_FORMAT_RGB444; /* YCRCB444 is optional according to spec. */ if (hdmi[6] & DRM_EDID_HDMI_DC_Y444) { info->color_formats |= DRM_COLOR_FORMAT_YCRCB444; DRM_DEBUG("%s: HDMI sink does YCRCB444 in deep color.\n", connector->name); } /* * Spec says that if any deep color mode is supported at all, * then deep color 36 bit must be supported. */ if (!(hdmi[6] & DRM_EDID_HDMI_DC_36)) { DRM_DEBUG("%s: HDMI sink should do DC_36, but does not!\n", connector->name); } } static void drm_parse_hdmi_vsdb_video(struct drm_connector *connector, const u8 *db) { struct drm_display_info *info = &connector->display_info; u8 len = cea_db_payload_len(db); if (len >= 6) info->dvi_dual = db[6] & 1; if (len >= 7) info->max_tmds_clock = db[7] * 5000; DRM_DEBUG_KMS("HDMI: DVI dual %d, " "max TMDS clock %d kHz\n", info->dvi_dual, info->max_tmds_clock); drm_parse_hdmi_deep_color_info(connector, db); } static void drm_parse_cea_ext(struct drm_connector *connector, const struct edid *edid) { struct drm_display_info *info = &connector->display_info; const u8 *edid_ext; int i, start, end; edid_ext = drm_find_cea_extension(edid); if (!edid_ext) return; info->cea_rev = edid_ext[1]; /* The existence of a CEA block should imply RGB support */ info->color_formats = DRM_COLOR_FORMAT_RGB444; if (edid_ext[3] & EDID_CEA_YCRCB444) info->color_formats |= DRM_COLOR_FORMAT_YCRCB444; if (edid_ext[3] & EDID_CEA_YCRCB422) info->color_formats |= DRM_COLOR_FORMAT_YCRCB422; if (cea_db_offsets(edid_ext, &start, &end)) return; for_each_cea_db(edid_ext, i, start, end) { const u8 *db = &edid_ext[i]; if (cea_db_is_hdmi_vsdb(db)) drm_parse_hdmi_vsdb_video(connector, db); if (cea_db_is_hdmi_forum_vsdb(db)) drm_parse_hdmi_forum_vsdb(connector, db); if (cea_db_is_y420cmdb(db)) drm_parse_y420cmdb_bitmap(connector, db); } } /* A connector has no EDID information, so we've got no EDID to compute quirks from. Reset * all of the values which would have been set from EDID */ void drm_reset_display_info(struct drm_connector *connector) { struct drm_display_info *info = &connector->display_info; info->width_mm = 0; info->height_mm = 0; info->bpc = 0; info->color_formats = 0; info->cea_rev = 0; info->max_tmds_clock = 0; info->dvi_dual = false; info->has_hdmi_infoframe = false; memset(&info->hdmi, 0, sizeof(info->hdmi)); info->non_desktop = 0; } u32 drm_add_display_info(struct drm_connector *connector, const struct edid *edid) { struct drm_display_info *info = &connector->display_info; u32 quirks = edid_get_quirks(edid); drm_reset_display_info(connector); info->width_mm = edid->width_cm * 10; info->height_mm = edid->height_cm * 10; info->non_desktop = !!(quirks & EDID_QUIRK_NON_DESKTOP); DRM_DEBUG_KMS("non_desktop set to %d\n", info->non_desktop); if (edid->revision < 3) return quirks; if (!(edid->input & DRM_EDID_INPUT_DIGITAL)) return quirks; drm_parse_cea_ext(connector, edid); /* * Digital sink with "DFP 1.x compliant TMDS" according to EDID 1.3? * * For such displays, the DFP spec 1.0, section 3.10 "EDID support" * tells us to assume 8 bpc color depth if the EDID doesn't have * extensions which tell otherwise. */ if ((info->bpc == 0) && (edid->revision < 4) && (edid->input & DRM_EDID_DIGITAL_TYPE_DVI)) { info->bpc = 8; DRM_DEBUG("%s: Assigning DFP sink color depth as %d bpc.\n", connector->name, info->bpc); } /* Only defined for 1.4 with digital displays */ if (edid->revision < 4) return quirks; switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) { case DRM_EDID_DIGITAL_DEPTH_6: info->bpc = 6; break; case DRM_EDID_DIGITAL_DEPTH_8: info->bpc = 8; break; case DRM_EDID_DIGITAL_DEPTH_10: info->bpc = 10; break; case DRM_EDID_DIGITAL_DEPTH_12: info->bpc = 12; break; case DRM_EDID_DIGITAL_DEPTH_14: info->bpc = 14; break; case DRM_EDID_DIGITAL_DEPTH_16: info->bpc = 16; break; case DRM_EDID_DIGITAL_DEPTH_UNDEF: default: info->bpc = 0; break; } DRM_DEBUG("%s: Assigning EDID-1.4 digital sink color depth as %d bpc.\n", connector->name, info->bpc); info->color_formats |= DRM_COLOR_FORMAT_RGB444; if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444) info->color_formats |= DRM_COLOR_FORMAT_YCRCB444; if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422) info->color_formats |= DRM_COLOR_FORMAT_YCRCB422; return quirks; } static int validate_displayid(u8 *displayid, int length, int idx) { int i; u8 csum = 0; struct displayid_hdr *base; base = (struct displayid_hdr *)&displayid[idx]; DRM_DEBUG_KMS("base revision 0x%x, length %d, %d %d\n", base->rev, base->bytes, base->prod_id, base->ext_count); if (base->bytes + 5 > length - idx) return -EINVAL; for (i = idx; i <= base->bytes + 5; i++) { csum += displayid[i]; } if (csum) { DRM_NOTE("DisplayID checksum invalid, remainder is %d\n", csum); return -EINVAL; } return 0; } static struct drm_display_mode *drm_mode_displayid_detailed(struct drm_device *dev, struct displayid_detailed_timings_1 *timings) { struct drm_display_mode *mode; unsigned pixel_clock = (timings->pixel_clock[0] | (timings->pixel_clock[1] << 8) | (timings->pixel_clock[2] << 16)) + 1; unsigned hactive = (timings->hactive[0] | timings->hactive[1] << 8) + 1; unsigned hblank = (timings->hblank[0] | timings->hblank[1] << 8) + 1; unsigned hsync = (timings->hsync[0] | (timings->hsync[1] & 0x7f) << 8) + 1; unsigned hsync_width = (timings->hsw[0] | timings->hsw[1] << 8) + 1; unsigned vactive = (timings->vactive[0] | timings->vactive[1] << 8) + 1; unsigned vblank = (timings->vblank[0] | timings->vblank[1] << 8) + 1; unsigned vsync = (timings->vsync[0] | (timings->vsync[1] & 0x7f) << 8) + 1; unsigned vsync_width = (timings->vsw[0] | timings->vsw[1] << 8) + 1; bool hsync_positive = (timings->hsync[1] >> 7) & 0x1; bool vsync_positive = (timings->vsync[1] >> 7) & 0x1; mode = drm_mode_create(dev); if (!mode) return NULL; mode->clock = pixel_clock * 10; mode->hdisplay = hactive; mode->hsync_start = mode->hdisplay + hsync; mode->hsync_end = mode->hsync_start + hsync_width; mode->htotal = mode->hdisplay + hblank; mode->vdisplay = vactive; mode->vsync_start = mode->vdisplay + vsync; mode->vsync_end = mode->vsync_start + vsync_width; mode->vtotal = mode->vdisplay + vblank; mode->flags = 0; mode->flags |= hsync_positive ? DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC; mode->flags |= vsync_positive ? DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC; mode->type = DRM_MODE_TYPE_DRIVER; if (timings->flags & 0x80) mode->type |= DRM_MODE_TYPE_PREFERRED; mode->vrefresh = drm_mode_vrefresh(mode); drm_mode_set_name(mode); return mode; } static int add_displayid_detailed_1_modes(struct drm_connector *connector, struct displayid_block *block) { struct displayid_detailed_timing_block *det = (struct displayid_detailed_timing_block *)block; int i; int num_timings; struct drm_display_mode *newmode; int num_modes = 0; /* blocks must be multiple of 20 bytes length */ if (block->num_bytes % 20) return 0; num_timings = block->num_bytes / 20; for (i = 0; i < num_timings; i++) { struct displayid_detailed_timings_1 *timings = &det->timings[i]; newmode = drm_mode_displayid_detailed(connector->dev, timings); if (!newmode) continue; drm_mode_probed_add(connector, newmode); num_modes++; } return num_modes; } static int add_displayid_detailed_modes(struct drm_connector *connector, struct edid *edid) { u8 *displayid; int ret; int idx = 1; int length = EDID_LENGTH; struct displayid_block *block; int num_modes = 0; displayid = drm_find_displayid_extension(edid); if (!displayid) return 0; ret = validate_displayid(displayid, length, idx); if (ret) return 0; idx += sizeof(struct displayid_hdr); while (block = (struct displayid_block *)&displayid[idx], idx + sizeof(struct displayid_block) <= length && idx + sizeof(struct displayid_block) + block->num_bytes <= length && block->num_bytes > 0) { idx += block->num_bytes + sizeof(struct displayid_block); switch (block->tag) { case DATA_BLOCK_TYPE_1_DETAILED_TIMING: num_modes += add_displayid_detailed_1_modes(connector, block); break; } } return num_modes; } /** * drm_add_edid_modes - add modes from EDID data, if available * @connector: connector we're probing * @edid: EDID data * * Add the specified modes to the connector's mode list. Also fills out the * &drm_display_info structure and ELD in @connector with any information which * can be derived from the edid. * * Return: The number of modes added or 0 if we couldn't find any. */ int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid) { int num_modes = 0; u32 quirks; if (edid == NULL) { clear_eld(connector); return 0; } if (!drm_edid_is_valid(edid)) { clear_eld(connector); dev_warn(connector->dev->dev, "%s: EDID invalid.\n", connector->name); return 0; } drm_edid_to_eld(connector, edid); /* * CEA-861-F adds ycbcr capability map block, for HDMI 2.0 sinks. * To avoid multiple parsing of same block, lets parse that map * from sink info, before parsing CEA modes. */ quirks = drm_add_display_info(connector, edid); /* * EDID spec says modes should be preferred in this order: * - preferred detailed mode * - other detailed modes from base block * - detailed modes from extension blocks * - CVT 3-byte code modes * - standard timing codes * - established timing codes * - modes inferred from GTF or CVT range information * * We get this pretty much right. * * XXX order for additional mode types in extension blocks? */ num_modes += add_detailed_modes(connector, edid, quirks); num_modes += add_cvt_modes(connector, edid); num_modes += add_standard_modes(connector, edid); num_modes += add_established_modes(connector, edid); num_modes += add_cea_modes(connector, edid); num_modes += add_alternate_cea_modes(connector, edid); num_modes += add_displayid_detailed_modes(connector, edid); if (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF) num_modes += add_inferred_modes(connector, edid); if (quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75)) edid_fixup_preferred(connector, quirks); if (quirks & EDID_QUIRK_FORCE_6BPC) connector->display_info.bpc = 6; if (quirks & EDID_QUIRK_FORCE_8BPC) connector->display_info.bpc = 8; if (quirks & EDID_QUIRK_FORCE_10BPC) connector->display_info.bpc = 10; if (quirks & EDID_QUIRK_FORCE_12BPC) connector->display_info.bpc = 12; return num_modes; } EXPORT_SYMBOL(drm_add_edid_modes); /** * drm_add_modes_noedid - add modes for the connectors without EDID * @connector: connector we're probing * @hdisplay: the horizontal display limit * @vdisplay: the vertical display limit * * Add the specified modes to the connector's mode list. Only when the * hdisplay/vdisplay is not beyond the given limit, it will be added. * * Return: The number of modes added or 0 if we couldn't find any. */ int drm_add_modes_noedid(struct drm_connector *connector, int hdisplay, int vdisplay) { int i, count, num_modes = 0; struct drm_display_mode *mode; struct drm_device *dev = connector->dev; count = ARRAY_SIZE(drm_dmt_modes); if (hdisplay < 0) hdisplay = 0; if (vdisplay < 0) vdisplay = 0; for (i = 0; i < count; i++) { const struct drm_display_mode *ptr = &drm_dmt_modes[i]; if (hdisplay && vdisplay) { /* * Only when two are valid, they will be used to check * whether the mode should be added to the mode list of * the connector. */ if (ptr->hdisplay > hdisplay || ptr->vdisplay > vdisplay) continue; } if (drm_mode_vrefresh(ptr) > 61) continue; mode = drm_mode_duplicate(dev, ptr); if (mode) { drm_mode_probed_add(connector, mode); num_modes++; } } return num_modes; } EXPORT_SYMBOL(drm_add_modes_noedid); /** * drm_set_preferred_mode - Sets the preferred mode of a connector * @connector: connector whose mode list should be processed * @hpref: horizontal resolution of preferred mode * @vpref: vertical resolution of preferred mode * * Marks a mode as preferred if it matches the resolution specified by @hpref * and @vpref. */ void drm_set_preferred_mode(struct drm_connector *connector, int hpref, int vpref) { struct drm_display_mode *mode; list_for_each_entry(mode, &connector->probed_modes, head) { if (mode->hdisplay == hpref && mode->vdisplay == vpref) mode->type |= DRM_MODE_TYPE_PREFERRED; } } EXPORT_SYMBOL(drm_set_preferred_mode); /** * drm_hdmi_avi_infoframe_from_display_mode() - fill an HDMI AVI infoframe with * data from a DRM display mode * @frame: HDMI AVI infoframe * @mode: DRM display mode * @is_hdmi2_sink: Sink is HDMI 2.0 compliant * * Return: 0 on success or a negative error code on failure. */ int drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame, const struct drm_display_mode *mode, bool is_hdmi2_sink) { enum hdmi_picture_aspect picture_aspect; int err; if (!frame || !mode) return -EINVAL; err = hdmi_avi_infoframe_init(frame); if (err < 0) return err; if (mode->flags & DRM_MODE_FLAG_DBLCLK) frame->pixel_repeat = 1; frame->video_code = drm_match_cea_mode(mode); /* * HDMI 1.4 VIC range: 1 <= VIC <= 64 (CEA-861-D) but * HDMI 2.0 VIC range: 1 <= VIC <= 107 (CEA-861-F). So we * have to make sure we dont break HDMI 1.4 sinks. */ if (!is_hdmi2_sink && frame->video_code > 64) frame->video_code = 0; /* * HDMI spec says if a mode is found in HDMI 1.4b 4K modes * we should send its VIC in vendor infoframes, else send the * VIC in AVI infoframes. Lets check if this mode is present in * HDMI 1.4b 4K modes */ if (frame->video_code) { u8 vendor_if_vic = drm_match_hdmi_mode(mode); bool is_s3d = mode->flags & DRM_MODE_FLAG_3D_MASK; if (drm_valid_hdmi_vic(vendor_if_vic) && !is_s3d) frame->video_code = 0; } frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE; /* * As some drivers don't support atomic, we can't use connector state. * So just initialize the frame with default values, just the same way * as it's done with other properties here. */ frame->content_type = HDMI_CONTENT_TYPE_GRAPHICS; frame->itc = 0; /* * Populate picture aspect ratio from either * user input (if specified) or from the CEA mode list. */ picture_aspect = mode->picture_aspect_ratio; if (picture_aspect == HDMI_PICTURE_ASPECT_NONE) picture_aspect = drm_get_cea_aspect_ratio(frame->video_code); /* * The infoframe can't convey anything but none, 4:3 * and 16:9, so if the user has asked for anything else * we can only satisfy it by specifying the right VIC. */ if (picture_aspect > HDMI_PICTURE_ASPECT_16_9) { if (picture_aspect != drm_get_cea_aspect_ratio(frame->video_code)) return -EINVAL; picture_aspect = HDMI_PICTURE_ASPECT_NONE; } frame->picture_aspect = picture_aspect; frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE; frame->scan_mode = HDMI_SCAN_MODE_UNDERSCAN; return 0; } EXPORT_SYMBOL(drm_hdmi_avi_infoframe_from_display_mode); /** * drm_hdmi_avi_infoframe_quant_range() - fill the HDMI AVI infoframe * quantization range information * @frame: HDMI AVI infoframe * @mode: DRM display mode * @rgb_quant_range: RGB quantization range (Q) * @rgb_quant_range_selectable: Sink support selectable RGB quantization range (QS) * @is_hdmi2_sink: HDMI 2.0 sink, which has different default recommendations * * Note that @is_hdmi2_sink can be derived by looking at the * &drm_scdc.supported flag stored in &drm_hdmi_info.scdc, * &drm_display_info.hdmi, which can be found in &drm_connector.display_info. */ void drm_hdmi_avi_infoframe_quant_range(struct hdmi_avi_infoframe *frame, const struct drm_display_mode *mode, enum hdmi_quantization_range rgb_quant_range, bool rgb_quant_range_selectable, bool is_hdmi2_sink) { /* * CEA-861: * "A Source shall not send a non-zero Q value that does not correspond * to the default RGB Quantization Range for the transmitted Picture * unless the Sink indicates support for the Q bit in a Video * Capabilities Data Block." * * HDMI 2.0 recommends sending non-zero Q when it does match the * default RGB quantization range for the mode, even when QS=0. */ if (rgb_quant_range_selectable || rgb_quant_range == drm_default_rgb_quant_range(mode)) frame->quantization_range = rgb_quant_range; else frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT; /* * CEA-861-F: * "When transmitting any RGB colorimetry, the Source should set the * YQ-field to match the RGB Quantization Range being transmitted * (e.g., when Limited Range RGB, set YQ=0 or when Full Range RGB, * set YQ=1) and the Sink shall ignore the YQ-field." * * Unfortunate certain sinks (eg. VIZ Model 67/E261VA) get confused * by non-zero YQ when receiving RGB. There doesn't seem to be any * good way to tell which version of CEA-861 the sink supports, so * we limit non-zero YQ to HDMI 2.0 sinks only as HDMI 2.0 is based * on on CEA-861-F. */ if (!is_hdmi2_sink || rgb_quant_range == HDMI_QUANTIZATION_RANGE_LIMITED) frame->ycc_quantization_range = HDMI_YCC_QUANTIZATION_RANGE_LIMITED; else frame->ycc_quantization_range = HDMI_YCC_QUANTIZATION_RANGE_FULL; } EXPORT_SYMBOL(drm_hdmi_avi_infoframe_quant_range); static enum hdmi_3d_structure s3d_structure_from_display_mode(const struct drm_display_mode *mode) { u32 layout = mode->flags & DRM_MODE_FLAG_3D_MASK; switch (layout) { case DRM_MODE_FLAG_3D_FRAME_PACKING: return HDMI_3D_STRUCTURE_FRAME_PACKING; case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE: return HDMI_3D_STRUCTURE_FIELD_ALTERNATIVE; case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE: return HDMI_3D_STRUCTURE_LINE_ALTERNATIVE; case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL: return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_FULL; case DRM_MODE_FLAG_3D_L_DEPTH: return HDMI_3D_STRUCTURE_L_DEPTH; case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH: return HDMI_3D_STRUCTURE_L_DEPTH_GFX_GFX_DEPTH; case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM: return HDMI_3D_STRUCTURE_TOP_AND_BOTTOM; case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF: return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF; default: return HDMI_3D_STRUCTURE_INVALID; } } /** * drm_hdmi_vendor_infoframe_from_display_mode() - fill an HDMI infoframe with * data from a DRM display mode * @frame: HDMI vendor infoframe * @connector: the connector * @mode: DRM display mode * * Note that there's is a need to send HDMI vendor infoframes only when using a * 4k or stereoscopic 3D mode. So when giving any other mode as input this * function will return -EINVAL, error that can be safely ignored. * * Return: 0 on success or a negative error code on failure. */ int drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame, struct drm_connector *connector, const struct drm_display_mode *mode) { /* * FIXME: sil-sii8620 doesn't have a connector around when * we need one, so we have to be prepared for a NULL connector. */ bool has_hdmi_infoframe = connector ? connector->display_info.has_hdmi_infoframe : false; int err; u32 s3d_flags; u8 vic; if (!frame || !mode) return -EINVAL; if (!has_hdmi_infoframe) return -EINVAL; vic = drm_match_hdmi_mode(mode); s3d_flags = mode->flags & DRM_MODE_FLAG_3D_MASK; /* * Even if it's not absolutely necessary to send the infoframe * (ie.vic==0 and s3d_struct==0) we will still send it if we * know that the sink can handle it. This is based on a * suggestion in HDMI 2.0 Appendix F. Apparently some sinks * have trouble realizing that they shuld switch from 3D to 2D * mode if the source simply stops sending the infoframe when * it wants to switch from 3D to 2D. */ if (vic && s3d_flags) return -EINVAL; err = hdmi_vendor_infoframe_init(frame); if (err < 0) return err; frame->vic = vic; frame->s3d_struct = s3d_structure_from_display_mode(mode); return 0; } EXPORT_SYMBOL(drm_hdmi_vendor_infoframe_from_display_mode); static int drm_parse_tiled_block(struct drm_connector *connector, struct displayid_block *block) { struct displayid_tiled_block *tile = (struct displayid_tiled_block *)block; u16 w, h; u8 tile_v_loc, tile_h_loc; u8 num_v_tile, num_h_tile; struct drm_tile_group *tg; w = tile->tile_size[0] | tile->tile_size[1] << 8; h = tile->tile_size[2] | tile->tile_size[3] << 8; num_v_tile = (tile->topo[0] & 0xf) | (tile->topo[2] & 0x30); num_h_tile = (tile->topo[0] >> 4) | ((tile->topo[2] >> 2) & 0x30); tile_v_loc = (tile->topo[1] & 0xf) | ((tile->topo[2] & 0x3) << 4); tile_h_loc = (tile->topo[1] >> 4) | (((tile->topo[2] >> 2) & 0x3) << 4); connector->has_tile = true; if (tile->tile_cap & 0x80) connector->tile_is_single_monitor = true; connector->num_h_tile = num_h_tile + 1; connector->num_v_tile = num_v_tile + 1; connector->tile_h_loc = tile_h_loc; connector->tile_v_loc = tile_v_loc; connector->tile_h_size = w + 1; connector->tile_v_size = h + 1; DRM_DEBUG_KMS("tile cap 0x%x\n", tile->tile_cap); DRM_DEBUG_KMS("tile_size %d x %d\n", w + 1, h + 1); DRM_DEBUG_KMS("topo num tiles %dx%d, location %dx%d\n", num_h_tile + 1, num_v_tile + 1, tile_h_loc, tile_v_loc); DRM_DEBUG_KMS("vend %c%c%c\n", tile->topology_id[0], tile->topology_id[1], tile->topology_id[2]); tg = drm_mode_get_tile_group(connector->dev, tile->topology_id); if (!tg) { tg = drm_mode_create_tile_group(connector->dev, tile->topology_id); } if (!tg) return -ENOMEM; if (connector->tile_group != tg) { /* if we haven't got a pointer, take the reference, drop ref to old tile group */ if (connector->tile_group) { drm_mode_put_tile_group(connector->dev, connector->tile_group); } connector->tile_group = tg; } else /* if same tile group, then release the ref we just took. */ drm_mode_put_tile_group(connector->dev, tg); return 0; } static int drm_parse_display_id(struct drm_connector *connector, u8 *displayid, int length, bool is_edid_extension) { /* if this is an EDID extension the first byte will be 0x70 */ int idx = 0; struct displayid_block *block; int ret; if (is_edid_extension) idx = 1; ret = validate_displayid(displayid, length, idx); if (ret) return ret; idx += sizeof(struct displayid_hdr); while (block = (struct displayid_block *)&displayid[idx], idx + sizeof(struct displayid_block) <= length && idx + sizeof(struct displayid_block) + block->num_bytes <= length && block->num_bytes > 0) { idx += block->num_bytes + sizeof(struct displayid_block); DRM_DEBUG_KMS("block id 0x%x, rev %d, len %d\n", block->tag, block->rev, block->num_bytes); switch (block->tag) { case DATA_BLOCK_TILED_DISPLAY: ret = drm_parse_tiled_block(connector, block); if (ret) return ret; break; case DATA_BLOCK_TYPE_1_DETAILED_TIMING: /* handled in mode gathering code. */ break; case DATA_BLOCK_CTA: /* handled in the cea parser code. */ break; default: DRM_DEBUG_KMS("found DisplayID tag 0x%x, unhandled\n", block->tag); break; } } return 0; } static void drm_get_displayid(struct drm_connector *connector, struct edid *edid) { void *displayid = NULL; int ret; connector->has_tile = false; displayid = drm_find_displayid_extension(edid); if (!displayid) { /* drop reference to any tile group we had */ goto out_drop_ref; } ret = drm_parse_display_id(connector, displayid, EDID_LENGTH, true); if (ret < 0) goto out_drop_ref; if (!connector->has_tile) goto out_drop_ref; return; out_drop_ref: if (connector->tile_group) { drm_mode_put_tile_group(connector->dev, connector->tile_group); connector->tile_group = NULL; } return; }