/* * Copyright (C) 2015 Broadcom * Copyright (c) 2014 The Linux Foundation. All rights reserved. * Copyright (C) 2013 Red Hat * Author: Rob Clark * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published by * the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program. If not, see . */ /** * DOC: VC4 Falcon HDMI module * * The HDMI core has a state machine and a PHY. On BCM2835, most of * the unit operates off of the HSM clock from CPRMAN. It also * internally uses the PLLH_PIX clock for the PHY. * * HDMI infoframes are kept within a small packet ram, where each * packet can be individually enabled for including in a frame. * * HDMI audio is implemented entirely within the HDMI IP block. A * register in the HDMI encoder takes SPDIF frames from the DMA engine * and transfers them over an internal MAI (multi-channel audio * interconnect) bus to the encoder side for insertion into the video * blank regions. * * The driver's HDMI encoder does not yet support power management. * The HDMI encoder's power domain and the HSM/pixel clocks are kept * continuously running, and only the HDMI logic and packet ram are * powered off/on at disable/enable time. * * The driver does not yet support CEC control, though the HDMI * encoder block has CEC support. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "media/cec.h" #include "vc4_drv.h" #include "vc4_regs.h" #define HSM_CLOCK_FREQ 163682864 #define CEC_CLOCK_FREQ 40000 #define CEC_CLOCK_DIV (HSM_CLOCK_FREQ / CEC_CLOCK_FREQ) /* HDMI audio information */ struct vc4_hdmi_audio { struct snd_soc_card card; struct snd_soc_dai_link link; int samplerate; int channels; struct snd_dmaengine_dai_dma_data dma_data; struct snd_pcm_substream *substream; }; /* General HDMI hardware state. */ struct vc4_hdmi { struct platform_device *pdev; struct drm_encoder *encoder; struct drm_connector *connector; struct vc4_hdmi_audio audio; struct i2c_adapter *ddc; void __iomem *hdmicore_regs; void __iomem *hd_regs; int hpd_gpio; bool hpd_active_low; struct cec_adapter *cec_adap; struct cec_msg cec_rx_msg; bool cec_tx_ok; bool cec_irq_was_rx; struct clk *pixel_clock; struct clk *hsm_clock; }; #define HDMI_READ(offset) readl(vc4->hdmi->hdmicore_regs + offset) #define HDMI_WRITE(offset, val) writel(val, vc4->hdmi->hdmicore_regs + offset) #define HD_READ(offset) readl(vc4->hdmi->hd_regs + offset) #define HD_WRITE(offset, val) writel(val, vc4->hdmi->hd_regs + offset) /* VC4 HDMI encoder KMS struct */ struct vc4_hdmi_encoder { struct vc4_encoder base; bool hdmi_monitor; bool limited_rgb_range; bool rgb_range_selectable; }; static inline struct vc4_hdmi_encoder * to_vc4_hdmi_encoder(struct drm_encoder *encoder) { return container_of(encoder, struct vc4_hdmi_encoder, base.base); } /* VC4 HDMI connector KMS struct */ struct vc4_hdmi_connector { struct drm_connector base; /* Since the connector is attached to just the one encoder, * this is the reference to it so we can do the best_encoder() * hook. */ struct drm_encoder *encoder; }; static inline struct vc4_hdmi_connector * to_vc4_hdmi_connector(struct drm_connector *connector) { return container_of(connector, struct vc4_hdmi_connector, base); } #define HDMI_REG(reg) { reg, #reg } static const struct { u32 reg; const char *name; } hdmi_regs[] = { HDMI_REG(VC4_HDMI_CORE_REV), HDMI_REG(VC4_HDMI_SW_RESET_CONTROL), HDMI_REG(VC4_HDMI_HOTPLUG_INT), HDMI_REG(VC4_HDMI_HOTPLUG), HDMI_REG(VC4_HDMI_MAI_CHANNEL_MAP), HDMI_REG(VC4_HDMI_MAI_CONFIG), HDMI_REG(VC4_HDMI_MAI_FORMAT), HDMI_REG(VC4_HDMI_AUDIO_PACKET_CONFIG), HDMI_REG(VC4_HDMI_RAM_PACKET_CONFIG), HDMI_REG(VC4_HDMI_HORZA), HDMI_REG(VC4_HDMI_HORZB), HDMI_REG(VC4_HDMI_FIFO_CTL), HDMI_REG(VC4_HDMI_SCHEDULER_CONTROL), HDMI_REG(VC4_HDMI_VERTA0), HDMI_REG(VC4_HDMI_VERTA1), HDMI_REG(VC4_HDMI_VERTB0), HDMI_REG(VC4_HDMI_VERTB1), HDMI_REG(VC4_HDMI_TX_PHY_RESET_CTL), HDMI_REG(VC4_HDMI_TX_PHY_CTL0), HDMI_REG(VC4_HDMI_CEC_CNTRL_1), HDMI_REG(VC4_HDMI_CEC_CNTRL_2), HDMI_REG(VC4_HDMI_CEC_CNTRL_3), HDMI_REG(VC4_HDMI_CEC_CNTRL_4), HDMI_REG(VC4_HDMI_CEC_CNTRL_5), HDMI_REG(VC4_HDMI_CPU_STATUS), HDMI_REG(VC4_HDMI_CPU_MASK_STATUS), HDMI_REG(VC4_HDMI_CEC_RX_DATA_1), HDMI_REG(VC4_HDMI_CEC_RX_DATA_2), HDMI_REG(VC4_HDMI_CEC_RX_DATA_3), HDMI_REG(VC4_HDMI_CEC_RX_DATA_4), HDMI_REG(VC4_HDMI_CEC_TX_DATA_1), HDMI_REG(VC4_HDMI_CEC_TX_DATA_2), HDMI_REG(VC4_HDMI_CEC_TX_DATA_3), HDMI_REG(VC4_HDMI_CEC_TX_DATA_4), }; static const struct { u32 reg; const char *name; } hd_regs[] = { HDMI_REG(VC4_HD_M_CTL), HDMI_REG(VC4_HD_MAI_CTL), HDMI_REG(VC4_HD_MAI_THR), HDMI_REG(VC4_HD_MAI_FMT), HDMI_REG(VC4_HD_MAI_SMP), HDMI_REG(VC4_HD_VID_CTL), HDMI_REG(VC4_HD_CSC_CTL), HDMI_REG(VC4_HD_FRAME_COUNT), }; #ifdef CONFIG_DEBUG_FS int vc4_hdmi_debugfs_regs(struct seq_file *m, void *unused) { struct drm_info_node *node = (struct drm_info_node *)m->private; struct drm_device *dev = node->minor->dev; struct vc4_dev *vc4 = to_vc4_dev(dev); int i; for (i = 0; i < ARRAY_SIZE(hdmi_regs); i++) { seq_printf(m, "%s (0x%04x): 0x%08x\n", hdmi_regs[i].name, hdmi_regs[i].reg, HDMI_READ(hdmi_regs[i].reg)); } for (i = 0; i < ARRAY_SIZE(hd_regs); i++) { seq_printf(m, "%s (0x%04x): 0x%08x\n", hd_regs[i].name, hd_regs[i].reg, HD_READ(hd_regs[i].reg)); } return 0; } #endif /* CONFIG_DEBUG_FS */ static void vc4_hdmi_dump_regs(struct drm_device *dev) { struct vc4_dev *vc4 = to_vc4_dev(dev); int i; for (i = 0; i < ARRAY_SIZE(hdmi_regs); i++) { DRM_INFO("0x%04x (%s): 0x%08x\n", hdmi_regs[i].reg, hdmi_regs[i].name, HDMI_READ(hdmi_regs[i].reg)); } for (i = 0; i < ARRAY_SIZE(hd_regs); i++) { DRM_INFO("0x%04x (%s): 0x%08x\n", hd_regs[i].reg, hd_regs[i].name, HD_READ(hd_regs[i].reg)); } } static enum drm_connector_status vc4_hdmi_connector_detect(struct drm_connector *connector, bool force) { struct drm_device *dev = connector->dev; struct vc4_dev *vc4 = to_vc4_dev(dev); if (vc4->hdmi->hpd_gpio) { if (gpio_get_value_cansleep(vc4->hdmi->hpd_gpio) ^ vc4->hdmi->hpd_active_low) return connector_status_connected; cec_phys_addr_invalidate(vc4->hdmi->cec_adap); return connector_status_disconnected; } if (drm_probe_ddc(vc4->hdmi->ddc)) return connector_status_connected; if (HDMI_READ(VC4_HDMI_HOTPLUG) & VC4_HDMI_HOTPLUG_CONNECTED) return connector_status_connected; cec_phys_addr_invalidate(vc4->hdmi->cec_adap); return connector_status_disconnected; } static void vc4_hdmi_connector_destroy(struct drm_connector *connector) { drm_connector_unregister(connector); drm_connector_cleanup(connector); } static int vc4_hdmi_connector_get_modes(struct drm_connector *connector) { struct vc4_hdmi_connector *vc4_connector = to_vc4_hdmi_connector(connector); struct drm_encoder *encoder = vc4_connector->encoder; struct vc4_hdmi_encoder *vc4_encoder = to_vc4_hdmi_encoder(encoder); struct drm_device *dev = connector->dev; struct vc4_dev *vc4 = to_vc4_dev(dev); int ret = 0; struct edid *edid; edid = drm_get_edid(connector, vc4->hdmi->ddc); cec_s_phys_addr_from_edid(vc4->hdmi->cec_adap, edid); if (!edid) return -ENODEV; vc4_encoder->hdmi_monitor = drm_detect_hdmi_monitor(edid); if (edid && edid->input & DRM_EDID_INPUT_DIGITAL) { vc4_encoder->rgb_range_selectable = drm_rgb_quant_range_selectable(edid); } drm_connector_update_edid_property(connector, edid); ret = drm_add_edid_modes(connector, edid); kfree(edid); return ret; } static const struct drm_connector_funcs vc4_hdmi_connector_funcs = { .detect = vc4_hdmi_connector_detect, .fill_modes = drm_helper_probe_single_connector_modes, .destroy = vc4_hdmi_connector_destroy, .reset = drm_atomic_helper_connector_reset, .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state, .atomic_destroy_state = drm_atomic_helper_connector_destroy_state, }; static const struct drm_connector_helper_funcs vc4_hdmi_connector_helper_funcs = { .get_modes = vc4_hdmi_connector_get_modes, }; static struct drm_connector *vc4_hdmi_connector_init(struct drm_device *dev, struct drm_encoder *encoder) { struct drm_connector *connector; struct vc4_hdmi_connector *hdmi_connector; hdmi_connector = devm_kzalloc(dev->dev, sizeof(*hdmi_connector), GFP_KERNEL); if (!hdmi_connector) return ERR_PTR(-ENOMEM); connector = &hdmi_connector->base; hdmi_connector->encoder = encoder; drm_connector_init(dev, connector, &vc4_hdmi_connector_funcs, DRM_MODE_CONNECTOR_HDMIA); drm_connector_helper_add(connector, &vc4_hdmi_connector_helper_funcs); connector->polled = (DRM_CONNECTOR_POLL_CONNECT | DRM_CONNECTOR_POLL_DISCONNECT); connector->interlace_allowed = 1; connector->doublescan_allowed = 0; drm_connector_attach_encoder(connector, encoder); return connector; } static void vc4_hdmi_encoder_destroy(struct drm_encoder *encoder) { drm_encoder_cleanup(encoder); } static const struct drm_encoder_funcs vc4_hdmi_encoder_funcs = { .destroy = vc4_hdmi_encoder_destroy, }; static int vc4_hdmi_stop_packet(struct drm_encoder *encoder, enum hdmi_infoframe_type type) { struct drm_device *dev = encoder->dev; struct vc4_dev *vc4 = to_vc4_dev(dev); u32 packet_id = type - 0x80; HDMI_WRITE(VC4_HDMI_RAM_PACKET_CONFIG, HDMI_READ(VC4_HDMI_RAM_PACKET_CONFIG) & ~BIT(packet_id)); return wait_for(!(HDMI_READ(VC4_HDMI_RAM_PACKET_STATUS) & BIT(packet_id)), 100); } static void vc4_hdmi_write_infoframe(struct drm_encoder *encoder, union hdmi_infoframe *frame) { struct drm_device *dev = encoder->dev; struct vc4_dev *vc4 = to_vc4_dev(dev); u32 packet_id = frame->any.type - 0x80; u32 packet_reg = VC4_HDMI_RAM_PACKET(packet_id); uint8_t buffer[VC4_HDMI_PACKET_STRIDE]; ssize_t len, i; int ret; WARN_ONCE(!(HDMI_READ(VC4_HDMI_RAM_PACKET_CONFIG) & VC4_HDMI_RAM_PACKET_ENABLE), "Packet RAM has to be on to store the packet."); len = hdmi_infoframe_pack(frame, buffer, sizeof(buffer)); if (len < 0) return; ret = vc4_hdmi_stop_packet(encoder, frame->any.type); if (ret) { DRM_ERROR("Failed to wait for infoframe to go idle: %d\n", ret); return; } for (i = 0; i < len; i += 7) { HDMI_WRITE(packet_reg, buffer[i + 0] << 0 | buffer[i + 1] << 8 | buffer[i + 2] << 16); packet_reg += 4; HDMI_WRITE(packet_reg, buffer[i + 3] << 0 | buffer[i + 4] << 8 | buffer[i + 5] << 16 | buffer[i + 6] << 24); packet_reg += 4; } HDMI_WRITE(VC4_HDMI_RAM_PACKET_CONFIG, HDMI_READ(VC4_HDMI_RAM_PACKET_CONFIG) | BIT(packet_id)); ret = wait_for((HDMI_READ(VC4_HDMI_RAM_PACKET_STATUS) & BIT(packet_id)), 100); if (ret) DRM_ERROR("Failed to wait for infoframe to start: %d\n", ret); } static void vc4_hdmi_set_avi_infoframe(struct drm_encoder *encoder) { struct vc4_hdmi_encoder *vc4_encoder = to_vc4_hdmi_encoder(encoder); struct drm_crtc *crtc = encoder->crtc; const struct drm_display_mode *mode = &crtc->state->adjusted_mode; union hdmi_infoframe frame; int ret; ret = drm_hdmi_avi_infoframe_from_display_mode(&frame.avi, mode, false); if (ret < 0) { DRM_ERROR("couldn't fill AVI infoframe\n"); return; } drm_hdmi_avi_infoframe_quant_range(&frame.avi, mode, vc4_encoder->limited_rgb_range ? HDMI_QUANTIZATION_RANGE_LIMITED : HDMI_QUANTIZATION_RANGE_FULL, vc4_encoder->rgb_range_selectable, false); vc4_hdmi_write_infoframe(encoder, &frame); } static void vc4_hdmi_set_spd_infoframe(struct drm_encoder *encoder) { union hdmi_infoframe frame; int ret; ret = hdmi_spd_infoframe_init(&frame.spd, "Broadcom", "Videocore"); if (ret < 0) { DRM_ERROR("couldn't fill SPD infoframe\n"); return; } frame.spd.sdi = HDMI_SPD_SDI_PC; vc4_hdmi_write_infoframe(encoder, &frame); } static void vc4_hdmi_set_audio_infoframe(struct drm_encoder *encoder) { struct drm_device *drm = encoder->dev; struct vc4_dev *vc4 = drm->dev_private; struct vc4_hdmi *hdmi = vc4->hdmi; union hdmi_infoframe frame; int ret; ret = hdmi_audio_infoframe_init(&frame.audio); frame.audio.coding_type = HDMI_AUDIO_CODING_TYPE_STREAM; frame.audio.sample_frequency = HDMI_AUDIO_SAMPLE_FREQUENCY_STREAM; frame.audio.sample_size = HDMI_AUDIO_SAMPLE_SIZE_STREAM; frame.audio.channels = hdmi->audio.channels; vc4_hdmi_write_infoframe(encoder, &frame); } static void vc4_hdmi_set_infoframes(struct drm_encoder *encoder) { vc4_hdmi_set_avi_infoframe(encoder); vc4_hdmi_set_spd_infoframe(encoder); } static void vc4_hdmi_encoder_disable(struct drm_encoder *encoder) { struct drm_device *dev = encoder->dev; struct vc4_dev *vc4 = to_vc4_dev(dev); struct vc4_hdmi *hdmi = vc4->hdmi; int ret; HDMI_WRITE(VC4_HDMI_RAM_PACKET_CONFIG, 0); HDMI_WRITE(VC4_HDMI_TX_PHY_RESET_CTL, 0xf << 16); HD_WRITE(VC4_HD_VID_CTL, HD_READ(VC4_HD_VID_CTL) & ~VC4_HD_VID_CTL_ENABLE); clk_disable_unprepare(hdmi->pixel_clock); ret = pm_runtime_put(&hdmi->pdev->dev); if (ret < 0) DRM_ERROR("Failed to release power domain: %d\n", ret); } static void vc4_hdmi_encoder_enable(struct drm_encoder *encoder) { struct drm_display_mode *mode = &encoder->crtc->state->adjusted_mode; struct vc4_hdmi_encoder *vc4_encoder = to_vc4_hdmi_encoder(encoder); struct drm_device *dev = encoder->dev; struct vc4_dev *vc4 = to_vc4_dev(dev); struct vc4_hdmi *hdmi = vc4->hdmi; bool debug_dump_regs = false; bool hsync_pos = mode->flags & DRM_MODE_FLAG_PHSYNC; bool vsync_pos = mode->flags & DRM_MODE_FLAG_PVSYNC; bool interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE; u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1; u32 verta = (VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start, VC4_HDMI_VERTA_VSP) | VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay, VC4_HDMI_VERTA_VFP) | VC4_SET_FIELD(mode->crtc_vdisplay, VC4_HDMI_VERTA_VAL)); u32 vertb = (VC4_SET_FIELD(0, VC4_HDMI_VERTB_VSPO) | VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end, VC4_HDMI_VERTB_VBP)); u32 vertb_even = (VC4_SET_FIELD(0, VC4_HDMI_VERTB_VSPO) | VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end - interlaced, VC4_HDMI_VERTB_VBP)); u32 csc_ctl; int ret; ret = pm_runtime_get_sync(&hdmi->pdev->dev); if (ret < 0) { DRM_ERROR("Failed to retain power domain: %d\n", ret); return; } ret = clk_set_rate(hdmi->pixel_clock, mode->clock * 1000 * ((mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1)); if (ret) { DRM_ERROR("Failed to set pixel clock rate: %d\n", ret); return; } ret = clk_prepare_enable(hdmi->pixel_clock); if (ret) { DRM_ERROR("Failed to turn on pixel clock: %d\n", ret); return; } HDMI_WRITE(VC4_HDMI_SW_RESET_CONTROL, VC4_HDMI_SW_RESET_HDMI | VC4_HDMI_SW_RESET_FORMAT_DETECT); HDMI_WRITE(VC4_HDMI_SW_RESET_CONTROL, 0); /* PHY should be in reset, like * vc4_hdmi_encoder_disable() does. */ HDMI_WRITE(VC4_HDMI_TX_PHY_RESET_CTL, 0xf << 16); HDMI_WRITE(VC4_HDMI_TX_PHY_RESET_CTL, 0); if (debug_dump_regs) { DRM_INFO("HDMI regs before:\n"); vc4_hdmi_dump_regs(dev); } HD_WRITE(VC4_HD_VID_CTL, 0); HDMI_WRITE(VC4_HDMI_SCHEDULER_CONTROL, HDMI_READ(VC4_HDMI_SCHEDULER_CONTROL) | VC4_HDMI_SCHEDULER_CONTROL_MANUAL_FORMAT | VC4_HDMI_SCHEDULER_CONTROL_IGNORE_VSYNC_PREDICTS); HDMI_WRITE(VC4_HDMI_HORZA, (vsync_pos ? VC4_HDMI_HORZA_VPOS : 0) | (hsync_pos ? VC4_HDMI_HORZA_HPOS : 0) | VC4_SET_FIELD(mode->hdisplay * pixel_rep, VC4_HDMI_HORZA_HAP)); HDMI_WRITE(VC4_HDMI_HORZB, VC4_SET_FIELD((mode->htotal - mode->hsync_end) * pixel_rep, VC4_HDMI_HORZB_HBP) | VC4_SET_FIELD((mode->hsync_end - mode->hsync_start) * pixel_rep, VC4_HDMI_HORZB_HSP) | VC4_SET_FIELD((mode->hsync_start - mode->hdisplay) * pixel_rep, VC4_HDMI_HORZB_HFP)); HDMI_WRITE(VC4_HDMI_VERTA0, verta); HDMI_WRITE(VC4_HDMI_VERTA1, verta); HDMI_WRITE(VC4_HDMI_VERTB0, vertb_even); HDMI_WRITE(VC4_HDMI_VERTB1, vertb); HD_WRITE(VC4_HD_VID_CTL, (vsync_pos ? 0 : VC4_HD_VID_CTL_VSYNC_LOW) | (hsync_pos ? 0 : VC4_HD_VID_CTL_HSYNC_LOW)); csc_ctl = VC4_SET_FIELD(VC4_HD_CSC_CTL_ORDER_BGR, VC4_HD_CSC_CTL_ORDER); if (vc4_encoder->hdmi_monitor && drm_default_rgb_quant_range(mode) == HDMI_QUANTIZATION_RANGE_LIMITED) { /* CEA VICs other than #1 requre limited range RGB * output unless overridden by an AVI infoframe. * Apply a colorspace conversion to squash 0-255 down * to 16-235. The matrix here is: * * [ 0 0 0.8594 16] * [ 0 0.8594 0 16] * [ 0.8594 0 0 16] * [ 0 0 0 1] */ csc_ctl |= VC4_HD_CSC_CTL_ENABLE; csc_ctl |= VC4_HD_CSC_CTL_RGB2YCC; csc_ctl |= VC4_SET_FIELD(VC4_HD_CSC_CTL_MODE_CUSTOM, VC4_HD_CSC_CTL_MODE); HD_WRITE(VC4_HD_CSC_12_11, (0x000 << 16) | 0x000); HD_WRITE(VC4_HD_CSC_14_13, (0x100 << 16) | 0x6e0); HD_WRITE(VC4_HD_CSC_22_21, (0x6e0 << 16) | 0x000); HD_WRITE(VC4_HD_CSC_24_23, (0x100 << 16) | 0x000); HD_WRITE(VC4_HD_CSC_32_31, (0x000 << 16) | 0x6e0); HD_WRITE(VC4_HD_CSC_34_33, (0x100 << 16) | 0x000); vc4_encoder->limited_rgb_range = true; } else { vc4_encoder->limited_rgb_range = false; } /* The RGB order applies even when CSC is disabled. */ HD_WRITE(VC4_HD_CSC_CTL, csc_ctl); HDMI_WRITE(VC4_HDMI_FIFO_CTL, VC4_HDMI_FIFO_CTL_MASTER_SLAVE_N); if (debug_dump_regs) { DRM_INFO("HDMI regs after:\n"); vc4_hdmi_dump_regs(dev); } HD_WRITE(VC4_HD_VID_CTL, HD_READ(VC4_HD_VID_CTL) | VC4_HD_VID_CTL_ENABLE | VC4_HD_VID_CTL_UNDERFLOW_ENABLE | VC4_HD_VID_CTL_FRAME_COUNTER_RESET); if (vc4_encoder->hdmi_monitor) { HDMI_WRITE(VC4_HDMI_SCHEDULER_CONTROL, HDMI_READ(VC4_HDMI_SCHEDULER_CONTROL) | VC4_HDMI_SCHEDULER_CONTROL_MODE_HDMI); ret = wait_for(HDMI_READ(VC4_HDMI_SCHEDULER_CONTROL) & VC4_HDMI_SCHEDULER_CONTROL_HDMI_ACTIVE, 1000); WARN_ONCE(ret, "Timeout waiting for " "VC4_HDMI_SCHEDULER_CONTROL_HDMI_ACTIVE\n"); } else { HDMI_WRITE(VC4_HDMI_RAM_PACKET_CONFIG, HDMI_READ(VC4_HDMI_RAM_PACKET_CONFIG) & ~(VC4_HDMI_RAM_PACKET_ENABLE)); HDMI_WRITE(VC4_HDMI_SCHEDULER_CONTROL, HDMI_READ(VC4_HDMI_SCHEDULER_CONTROL) & ~VC4_HDMI_SCHEDULER_CONTROL_MODE_HDMI); ret = wait_for(!(HDMI_READ(VC4_HDMI_SCHEDULER_CONTROL) & VC4_HDMI_SCHEDULER_CONTROL_HDMI_ACTIVE), 1000); WARN_ONCE(ret, "Timeout waiting for " "!VC4_HDMI_SCHEDULER_CONTROL_HDMI_ACTIVE\n"); } if (vc4_encoder->hdmi_monitor) { u32 drift; WARN_ON(!(HDMI_READ(VC4_HDMI_SCHEDULER_CONTROL) & VC4_HDMI_SCHEDULER_CONTROL_HDMI_ACTIVE)); HDMI_WRITE(VC4_HDMI_SCHEDULER_CONTROL, HDMI_READ(VC4_HDMI_SCHEDULER_CONTROL) | VC4_HDMI_SCHEDULER_CONTROL_VERT_ALWAYS_KEEPOUT); HDMI_WRITE(VC4_HDMI_RAM_PACKET_CONFIG, VC4_HDMI_RAM_PACKET_ENABLE); vc4_hdmi_set_infoframes(encoder); drift = HDMI_READ(VC4_HDMI_FIFO_CTL); drift &= VC4_HDMI_FIFO_VALID_WRITE_MASK; HDMI_WRITE(VC4_HDMI_FIFO_CTL, drift & ~VC4_HDMI_FIFO_CTL_RECENTER); HDMI_WRITE(VC4_HDMI_FIFO_CTL, drift | VC4_HDMI_FIFO_CTL_RECENTER); usleep_range(1000, 1100); HDMI_WRITE(VC4_HDMI_FIFO_CTL, drift & ~VC4_HDMI_FIFO_CTL_RECENTER); HDMI_WRITE(VC4_HDMI_FIFO_CTL, drift | VC4_HDMI_FIFO_CTL_RECENTER); ret = wait_for(HDMI_READ(VC4_HDMI_FIFO_CTL) & VC4_HDMI_FIFO_CTL_RECENTER_DONE, 1); WARN_ONCE(ret, "Timeout waiting for " "VC4_HDMI_FIFO_CTL_RECENTER_DONE"); } } static enum drm_mode_status vc4_hdmi_encoder_mode_valid(struct drm_encoder *crtc, const struct drm_display_mode *mode) { /* * As stated in RPi's vc4 firmware "HDMI state machine (HSM) clock must * be faster than pixel clock, infinitesimally faster, tested in * simulation. Otherwise, exact value is unimportant for HDMI * operation." This conflicts with bcm2835's vc4 documentation, which * states HSM's clock has to be at least 108% of the pixel clock. * * Real life tests reveal that vc4's firmware statement holds up, and * users are able to use pixel clocks closer to HSM's, namely for * 1920x1200@60Hz. So it was decided to have leave a 1% margin between * both clocks. Which, for RPi0-3 implies a maximum pixel clock of * 162MHz. * * Additionally, the AXI clock needs to be at least 25% of * pixel clock, but HSM ends up being the limiting factor. */ if (mode->clock > HSM_CLOCK_FREQ / (1000 * 101 / 100)) return MODE_CLOCK_HIGH; return MODE_OK; } static const struct drm_encoder_helper_funcs vc4_hdmi_encoder_helper_funcs = { .mode_valid = vc4_hdmi_encoder_mode_valid, .disable = vc4_hdmi_encoder_disable, .enable = vc4_hdmi_encoder_enable, }; /* HDMI audio codec callbacks */ static void vc4_hdmi_audio_set_mai_clock(struct vc4_hdmi *hdmi) { struct drm_device *drm = hdmi->encoder->dev; struct vc4_dev *vc4 = to_vc4_dev(drm); u32 hsm_clock = clk_get_rate(hdmi->hsm_clock); unsigned long n, m; rational_best_approximation(hsm_clock, hdmi->audio.samplerate, VC4_HD_MAI_SMP_N_MASK >> VC4_HD_MAI_SMP_N_SHIFT, (VC4_HD_MAI_SMP_M_MASK >> VC4_HD_MAI_SMP_M_SHIFT) + 1, &n, &m); HD_WRITE(VC4_HD_MAI_SMP, VC4_SET_FIELD(n, VC4_HD_MAI_SMP_N) | VC4_SET_FIELD(m - 1, VC4_HD_MAI_SMP_M)); } static void vc4_hdmi_set_n_cts(struct vc4_hdmi *hdmi) { struct drm_encoder *encoder = hdmi->encoder; struct drm_crtc *crtc = encoder->crtc; struct drm_device *drm = encoder->dev; struct vc4_dev *vc4 = to_vc4_dev(drm); const struct drm_display_mode *mode = &crtc->state->adjusted_mode; u32 samplerate = hdmi->audio.samplerate; u32 n, cts; u64 tmp; n = 128 * samplerate / 1000; tmp = (u64)(mode->clock * 1000) * n; do_div(tmp, 128 * samplerate); cts = tmp; HDMI_WRITE(VC4_HDMI_CRP_CFG, VC4_HDMI_CRP_CFG_EXTERNAL_CTS_EN | VC4_SET_FIELD(n, VC4_HDMI_CRP_CFG_N)); /* * We could get slightly more accurate clocks in some cases by * providing a CTS_1 value. The two CTS values are alternated * between based on the period fields */ HDMI_WRITE(VC4_HDMI_CTS_0, cts); HDMI_WRITE(VC4_HDMI_CTS_1, cts); } static inline struct vc4_hdmi *dai_to_hdmi(struct snd_soc_dai *dai) { struct snd_soc_card *card = snd_soc_dai_get_drvdata(dai); return snd_soc_card_get_drvdata(card); } static int vc4_hdmi_audio_startup(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct vc4_hdmi *hdmi = dai_to_hdmi(dai); struct drm_encoder *encoder = hdmi->encoder; struct vc4_dev *vc4 = to_vc4_dev(encoder->dev); int ret; if (hdmi->audio.substream && hdmi->audio.substream != substream) return -EINVAL; hdmi->audio.substream = substream; /* * If the HDMI encoder hasn't probed, or the encoder is * currently in DVI mode, treat the codec dai as missing. */ if (!encoder->crtc || !(HDMI_READ(VC4_HDMI_RAM_PACKET_CONFIG) & VC4_HDMI_RAM_PACKET_ENABLE)) return -ENODEV; ret = snd_pcm_hw_constraint_eld(substream->runtime, hdmi->connector->eld); if (ret) return ret; return 0; } static int vc4_hdmi_audio_set_fmt(struct snd_soc_dai *dai, unsigned int fmt) { return 0; } static void vc4_hdmi_audio_reset(struct vc4_hdmi *hdmi) { struct drm_encoder *encoder = hdmi->encoder; struct drm_device *drm = encoder->dev; struct device *dev = &hdmi->pdev->dev; struct vc4_dev *vc4 = to_vc4_dev(drm); int ret; ret = vc4_hdmi_stop_packet(encoder, HDMI_INFOFRAME_TYPE_AUDIO); if (ret) dev_err(dev, "Failed to stop audio infoframe: %d\n", ret); HD_WRITE(VC4_HD_MAI_CTL, VC4_HD_MAI_CTL_RESET); HD_WRITE(VC4_HD_MAI_CTL, VC4_HD_MAI_CTL_ERRORF); HD_WRITE(VC4_HD_MAI_CTL, VC4_HD_MAI_CTL_FLUSH); } static void vc4_hdmi_audio_shutdown(struct snd_pcm_substream *substream, struct snd_soc_dai *dai) { struct vc4_hdmi *hdmi = dai_to_hdmi(dai); if (substream != hdmi->audio.substream) return; vc4_hdmi_audio_reset(hdmi); hdmi->audio.substream = NULL; } /* HDMI audio codec callbacks */ static int vc4_hdmi_audio_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { struct vc4_hdmi *hdmi = dai_to_hdmi(dai); struct drm_encoder *encoder = hdmi->encoder; struct drm_device *drm = encoder->dev; struct device *dev = &hdmi->pdev->dev; struct vc4_dev *vc4 = to_vc4_dev(drm); u32 audio_packet_config, channel_mask; u32 channel_map, i; if (substream != hdmi->audio.substream) return -EINVAL; dev_dbg(dev, "%s: %u Hz, %d bit, %d channels\n", __func__, params_rate(params), params_width(params), params_channels(params)); hdmi->audio.channels = params_channels(params); hdmi->audio.samplerate = params_rate(params); HD_WRITE(VC4_HD_MAI_CTL, VC4_HD_MAI_CTL_RESET | VC4_HD_MAI_CTL_FLUSH | VC4_HD_MAI_CTL_DLATE | VC4_HD_MAI_CTL_ERRORE | VC4_HD_MAI_CTL_ERRORF); vc4_hdmi_audio_set_mai_clock(hdmi); audio_packet_config = VC4_HDMI_AUDIO_PACKET_ZERO_DATA_ON_SAMPLE_FLAT | VC4_HDMI_AUDIO_PACKET_ZERO_DATA_ON_INACTIVE_CHANNELS | VC4_SET_FIELD(0xf, VC4_HDMI_AUDIO_PACKET_B_FRAME_IDENTIFIER); channel_mask = GENMASK(hdmi->audio.channels - 1, 0); audio_packet_config |= VC4_SET_FIELD(channel_mask, VC4_HDMI_AUDIO_PACKET_CEA_MASK); /* Set the MAI threshold. This logic mimics the firmware's. */ if (hdmi->audio.samplerate > 96000) { HD_WRITE(VC4_HD_MAI_THR, VC4_SET_FIELD(0x12, VC4_HD_MAI_THR_DREQHIGH) | VC4_SET_FIELD(0x12, VC4_HD_MAI_THR_DREQLOW)); } else if (hdmi->audio.samplerate > 48000) { HD_WRITE(VC4_HD_MAI_THR, VC4_SET_FIELD(0x14, VC4_HD_MAI_THR_DREQHIGH) | VC4_SET_FIELD(0x12, VC4_HD_MAI_THR_DREQLOW)); } else { HD_WRITE(VC4_HD_MAI_THR, VC4_SET_FIELD(0x10, VC4_HD_MAI_THR_PANICHIGH) | VC4_SET_FIELD(0x10, VC4_HD_MAI_THR_PANICLOW) | VC4_SET_FIELD(0x10, VC4_HD_MAI_THR_DREQHIGH) | VC4_SET_FIELD(0x10, VC4_HD_MAI_THR_DREQLOW)); } HDMI_WRITE(VC4_HDMI_MAI_CONFIG, VC4_HDMI_MAI_CONFIG_BIT_REVERSE | VC4_SET_FIELD(channel_mask, VC4_HDMI_MAI_CHANNEL_MASK)); channel_map = 0; for (i = 0; i < 8; i++) { if (channel_mask & BIT(i)) channel_map |= i << (3 * i); } HDMI_WRITE(VC4_HDMI_MAI_CHANNEL_MAP, channel_map); HDMI_WRITE(VC4_HDMI_AUDIO_PACKET_CONFIG, audio_packet_config); vc4_hdmi_set_n_cts(hdmi); return 0; } static int vc4_hdmi_audio_trigger(struct snd_pcm_substream *substream, int cmd, struct snd_soc_dai *dai) { struct vc4_hdmi *hdmi = dai_to_hdmi(dai); struct drm_encoder *encoder = hdmi->encoder; struct drm_device *drm = encoder->dev; struct vc4_dev *vc4 = to_vc4_dev(drm); switch (cmd) { case SNDRV_PCM_TRIGGER_START: vc4_hdmi_set_audio_infoframe(encoder); HDMI_WRITE(VC4_HDMI_TX_PHY_CTL0, HDMI_READ(VC4_HDMI_TX_PHY_CTL0) & ~VC4_HDMI_TX_PHY_RNG_PWRDN); HD_WRITE(VC4_HD_MAI_CTL, VC4_SET_FIELD(hdmi->audio.channels, VC4_HD_MAI_CTL_CHNUM) | VC4_HD_MAI_CTL_ENABLE); break; case SNDRV_PCM_TRIGGER_STOP: HD_WRITE(VC4_HD_MAI_CTL, VC4_HD_MAI_CTL_DLATE | VC4_HD_MAI_CTL_ERRORE | VC4_HD_MAI_CTL_ERRORF); HDMI_WRITE(VC4_HDMI_TX_PHY_CTL0, HDMI_READ(VC4_HDMI_TX_PHY_CTL0) | VC4_HDMI_TX_PHY_RNG_PWRDN); break; default: break; } return 0; } static inline struct vc4_hdmi * snd_component_to_hdmi(struct snd_soc_component *component) { struct snd_soc_card *card = snd_soc_component_get_drvdata(component); return snd_soc_card_get_drvdata(card); } static int vc4_hdmi_audio_eld_ctl_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); struct vc4_hdmi *hdmi = snd_component_to_hdmi(component); uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES; uinfo->count = sizeof(hdmi->connector->eld); return 0; } static int vc4_hdmi_audio_eld_ctl_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_soc_component *component = snd_kcontrol_chip(kcontrol); struct vc4_hdmi *hdmi = snd_component_to_hdmi(component); memcpy(ucontrol->value.bytes.data, hdmi->connector->eld, sizeof(hdmi->connector->eld)); return 0; } static const struct snd_kcontrol_new vc4_hdmi_audio_controls[] = { { .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE, .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = "ELD", .info = vc4_hdmi_audio_eld_ctl_info, .get = vc4_hdmi_audio_eld_ctl_get, }, }; static const struct snd_soc_dapm_widget vc4_hdmi_audio_widgets[] = { SND_SOC_DAPM_OUTPUT("TX"), }; static const struct snd_soc_dapm_route vc4_hdmi_audio_routes[] = { { "TX", NULL, "Playback" }, }; static const struct snd_soc_component_driver vc4_hdmi_audio_component_drv = { .controls = vc4_hdmi_audio_controls, .num_controls = ARRAY_SIZE(vc4_hdmi_audio_controls), .dapm_widgets = vc4_hdmi_audio_widgets, .num_dapm_widgets = ARRAY_SIZE(vc4_hdmi_audio_widgets), .dapm_routes = vc4_hdmi_audio_routes, .num_dapm_routes = ARRAY_SIZE(vc4_hdmi_audio_routes), .idle_bias_on = 1, .use_pmdown_time = 1, .endianness = 1, .non_legacy_dai_naming = 1, }; static const struct snd_soc_dai_ops vc4_hdmi_audio_dai_ops = { .startup = vc4_hdmi_audio_startup, .shutdown = vc4_hdmi_audio_shutdown, .hw_params = vc4_hdmi_audio_hw_params, .set_fmt = vc4_hdmi_audio_set_fmt, .trigger = vc4_hdmi_audio_trigger, }; static struct snd_soc_dai_driver vc4_hdmi_audio_codec_dai_drv = { .name = "vc4-hdmi-hifi", .playback = { .stream_name = "Playback", .channels_min = 2, .channels_max = 8, .rates = SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000 | SNDRV_PCM_RATE_176400 | SNDRV_PCM_RATE_192000, .formats = SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE, }, }; static const struct snd_soc_component_driver vc4_hdmi_audio_cpu_dai_comp = { .name = "vc4-hdmi-cpu-dai-component", }; static int vc4_hdmi_audio_cpu_dai_probe(struct snd_soc_dai *dai) { struct vc4_hdmi *hdmi = dai_to_hdmi(dai); snd_soc_dai_init_dma_data(dai, &hdmi->audio.dma_data, NULL); return 0; } static struct snd_soc_dai_driver vc4_hdmi_audio_cpu_dai_drv = { .name = "vc4-hdmi-cpu-dai", .probe = vc4_hdmi_audio_cpu_dai_probe, .playback = { .stream_name = "Playback", .channels_min = 1, .channels_max = 8, .rates = SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000 | SNDRV_PCM_RATE_176400 | SNDRV_PCM_RATE_192000, .formats = SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE, }, .ops = &vc4_hdmi_audio_dai_ops, }; static const struct snd_dmaengine_pcm_config pcm_conf = { .chan_names[SNDRV_PCM_STREAM_PLAYBACK] = "audio-rx", .prepare_slave_config = snd_dmaengine_pcm_prepare_slave_config, }; static int vc4_hdmi_audio_init(struct vc4_hdmi *hdmi) { struct snd_soc_dai_link *dai_link = &hdmi->audio.link; struct snd_soc_card *card = &hdmi->audio.card; struct device *dev = &hdmi->pdev->dev; const __be32 *addr; int ret; if (!of_find_property(dev->of_node, "dmas", NULL)) { dev_warn(dev, "'dmas' DT property is missing, no HDMI audio\n"); return 0; } /* * Get the physical address of VC4_HD_MAI_DATA. We need to retrieve * the bus address specified in the DT, because the physical address * (the one returned by platform_get_resource()) is not appropriate * for DMA transfers. * This VC/MMU should probably be exposed to avoid this kind of hacks. */ addr = of_get_address(dev->of_node, 1, NULL, NULL); hdmi->audio.dma_data.addr = be32_to_cpup(addr) + VC4_HD_MAI_DATA; hdmi->audio.dma_data.addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; hdmi->audio.dma_data.maxburst = 2; ret = devm_snd_dmaengine_pcm_register(dev, &pcm_conf, 0); if (ret) { dev_err(dev, "Could not register PCM component: %d\n", ret); return ret; } ret = devm_snd_soc_register_component(dev, &vc4_hdmi_audio_cpu_dai_comp, &vc4_hdmi_audio_cpu_dai_drv, 1); if (ret) { dev_err(dev, "Could not register CPU DAI: %d\n", ret); return ret; } /* register component and codec dai */ ret = devm_snd_soc_register_component(dev, &vc4_hdmi_audio_component_drv, &vc4_hdmi_audio_codec_dai_drv, 1); if (ret) { dev_err(dev, "Could not register component: %d\n", ret); return ret; } dai_link->name = "MAI"; dai_link->stream_name = "MAI PCM"; dai_link->codec_dai_name = vc4_hdmi_audio_codec_dai_drv.name; dai_link->cpu_dai_name = dev_name(dev); dai_link->codec_name = dev_name(dev); dai_link->platform_name = dev_name(dev); card->dai_link = dai_link; card->num_links = 1; card->name = "vc4-hdmi"; card->dev = dev; card->owner = THIS_MODULE; /* * Be careful, snd_soc_register_card() calls dev_set_drvdata() and * stores a pointer to the snd card object in dev->driver_data. This * means we cannot use it for something else. The hdmi back-pointer is * now stored in card->drvdata and should be retrieved with * snd_soc_card_get_drvdata() if needed. */ snd_soc_card_set_drvdata(card, hdmi); ret = devm_snd_soc_register_card(dev, card); if (ret) dev_err(dev, "Could not register sound card: %d\n", ret); return ret; } #ifdef CONFIG_DRM_VC4_HDMI_CEC static irqreturn_t vc4_cec_irq_handler_thread(int irq, void *priv) { struct vc4_dev *vc4 = priv; struct vc4_hdmi *hdmi = vc4->hdmi; if (hdmi->cec_irq_was_rx) { if (hdmi->cec_rx_msg.len) cec_received_msg(hdmi->cec_adap, &hdmi->cec_rx_msg); } else if (hdmi->cec_tx_ok) { cec_transmit_done(hdmi->cec_adap, CEC_TX_STATUS_OK, 0, 0, 0, 0); } else { /* * This CEC implementation makes 1 retry, so if we * get a NACK, then that means it made 2 attempts. */ cec_transmit_done(hdmi->cec_adap, CEC_TX_STATUS_NACK, 0, 2, 0, 0); } return IRQ_HANDLED; } static void vc4_cec_read_msg(struct vc4_dev *vc4, u32 cntrl1) { struct cec_msg *msg = &vc4->hdmi->cec_rx_msg; unsigned int i; msg->len = 1 + ((cntrl1 & VC4_HDMI_CEC_REC_WRD_CNT_MASK) >> VC4_HDMI_CEC_REC_WRD_CNT_SHIFT); for (i = 0; i < msg->len; i += 4) { u32 val = HDMI_READ(VC4_HDMI_CEC_RX_DATA_1 + i); msg->msg[i] = val & 0xff; msg->msg[i + 1] = (val >> 8) & 0xff; msg->msg[i + 2] = (val >> 16) & 0xff; msg->msg[i + 3] = (val >> 24) & 0xff; } } static irqreturn_t vc4_cec_irq_handler(int irq, void *priv) { struct vc4_dev *vc4 = priv; struct vc4_hdmi *hdmi = vc4->hdmi; u32 stat = HDMI_READ(VC4_HDMI_CPU_STATUS); u32 cntrl1, cntrl5; if (!(stat & VC4_HDMI_CPU_CEC)) return IRQ_NONE; hdmi->cec_rx_msg.len = 0; cntrl1 = HDMI_READ(VC4_HDMI_CEC_CNTRL_1); cntrl5 = HDMI_READ(VC4_HDMI_CEC_CNTRL_5); hdmi->cec_irq_was_rx = cntrl5 & VC4_HDMI_CEC_RX_CEC_INT; if (hdmi->cec_irq_was_rx) { vc4_cec_read_msg(vc4, cntrl1); cntrl1 |= VC4_HDMI_CEC_CLEAR_RECEIVE_OFF; HDMI_WRITE(VC4_HDMI_CEC_CNTRL_1, cntrl1); cntrl1 &= ~VC4_HDMI_CEC_CLEAR_RECEIVE_OFF; } else { hdmi->cec_tx_ok = cntrl1 & VC4_HDMI_CEC_TX_STATUS_GOOD; cntrl1 &= ~VC4_HDMI_CEC_START_XMIT_BEGIN; } HDMI_WRITE(VC4_HDMI_CEC_CNTRL_1, cntrl1); HDMI_WRITE(VC4_HDMI_CPU_CLEAR, VC4_HDMI_CPU_CEC); return IRQ_WAKE_THREAD; } static int vc4_hdmi_cec_adap_enable(struct cec_adapter *adap, bool enable) { struct vc4_dev *vc4 = cec_get_drvdata(adap); /* clock period in microseconds */ const u32 usecs = 1000000 / CEC_CLOCK_FREQ; u32 val = HDMI_READ(VC4_HDMI_CEC_CNTRL_5); val &= ~(VC4_HDMI_CEC_TX_SW_RESET | VC4_HDMI_CEC_RX_SW_RESET | VC4_HDMI_CEC_CNT_TO_4700_US_MASK | VC4_HDMI_CEC_CNT_TO_4500_US_MASK); val |= ((4700 / usecs) << VC4_HDMI_CEC_CNT_TO_4700_US_SHIFT) | ((4500 / usecs) << VC4_HDMI_CEC_CNT_TO_4500_US_SHIFT); if (enable) { HDMI_WRITE(VC4_HDMI_CEC_CNTRL_5, val | VC4_HDMI_CEC_TX_SW_RESET | VC4_HDMI_CEC_RX_SW_RESET); HDMI_WRITE(VC4_HDMI_CEC_CNTRL_5, val); HDMI_WRITE(VC4_HDMI_CEC_CNTRL_2, ((1500 / usecs) << VC4_HDMI_CEC_CNT_TO_1500_US_SHIFT) | ((1300 / usecs) << VC4_HDMI_CEC_CNT_TO_1300_US_SHIFT) | ((800 / usecs) << VC4_HDMI_CEC_CNT_TO_800_US_SHIFT) | ((600 / usecs) << VC4_HDMI_CEC_CNT_TO_600_US_SHIFT) | ((400 / usecs) << VC4_HDMI_CEC_CNT_TO_400_US_SHIFT)); HDMI_WRITE(VC4_HDMI_CEC_CNTRL_3, ((2750 / usecs) << VC4_HDMI_CEC_CNT_TO_2750_US_SHIFT) | ((2400 / usecs) << VC4_HDMI_CEC_CNT_TO_2400_US_SHIFT) | ((2050 / usecs) << VC4_HDMI_CEC_CNT_TO_2050_US_SHIFT) | ((1700 / usecs) << VC4_HDMI_CEC_CNT_TO_1700_US_SHIFT)); HDMI_WRITE(VC4_HDMI_CEC_CNTRL_4, ((4300 / usecs) << VC4_HDMI_CEC_CNT_TO_4300_US_SHIFT) | ((3900 / usecs) << VC4_HDMI_CEC_CNT_TO_3900_US_SHIFT) | ((3600 / usecs) << VC4_HDMI_CEC_CNT_TO_3600_US_SHIFT) | ((3500 / usecs) << VC4_HDMI_CEC_CNT_TO_3500_US_SHIFT)); HDMI_WRITE(VC4_HDMI_CPU_MASK_CLEAR, VC4_HDMI_CPU_CEC); } else { HDMI_WRITE(VC4_HDMI_CPU_MASK_SET, VC4_HDMI_CPU_CEC); HDMI_WRITE(VC4_HDMI_CEC_CNTRL_5, val | VC4_HDMI_CEC_TX_SW_RESET | VC4_HDMI_CEC_RX_SW_RESET); } return 0; } static int vc4_hdmi_cec_adap_log_addr(struct cec_adapter *adap, u8 log_addr) { struct vc4_dev *vc4 = cec_get_drvdata(adap); HDMI_WRITE(VC4_HDMI_CEC_CNTRL_1, (HDMI_READ(VC4_HDMI_CEC_CNTRL_1) & ~VC4_HDMI_CEC_ADDR_MASK) | (log_addr & 0xf) << VC4_HDMI_CEC_ADDR_SHIFT); return 0; } static int vc4_hdmi_cec_adap_transmit(struct cec_adapter *adap, u8 attempts, u32 signal_free_time, struct cec_msg *msg) { struct vc4_dev *vc4 = cec_get_drvdata(adap); u32 val; unsigned int i; for (i = 0; i < msg->len; i += 4) HDMI_WRITE(VC4_HDMI_CEC_TX_DATA_1 + i, (msg->msg[i]) | (msg->msg[i + 1] << 8) | (msg->msg[i + 2] << 16) | (msg->msg[i + 3] << 24)); val = HDMI_READ(VC4_HDMI_CEC_CNTRL_1); val &= ~VC4_HDMI_CEC_START_XMIT_BEGIN; HDMI_WRITE(VC4_HDMI_CEC_CNTRL_1, val); val &= ~VC4_HDMI_CEC_MESSAGE_LENGTH_MASK; val |= (msg->len - 1) << VC4_HDMI_CEC_MESSAGE_LENGTH_SHIFT; val |= VC4_HDMI_CEC_START_XMIT_BEGIN; HDMI_WRITE(VC4_HDMI_CEC_CNTRL_1, val); return 0; } static const struct cec_adap_ops vc4_hdmi_cec_adap_ops = { .adap_enable = vc4_hdmi_cec_adap_enable, .adap_log_addr = vc4_hdmi_cec_adap_log_addr, .adap_transmit = vc4_hdmi_cec_adap_transmit, }; #endif static int vc4_hdmi_bind(struct device *dev, struct device *master, void *data) { struct platform_device *pdev = to_platform_device(dev); struct drm_device *drm = dev_get_drvdata(master); struct vc4_dev *vc4 = drm->dev_private; struct vc4_hdmi *hdmi; struct vc4_hdmi_encoder *vc4_hdmi_encoder; struct device_node *ddc_node; u32 value; int ret; hdmi = devm_kzalloc(dev, sizeof(*hdmi), GFP_KERNEL); if (!hdmi) return -ENOMEM; vc4_hdmi_encoder = devm_kzalloc(dev, sizeof(*vc4_hdmi_encoder), GFP_KERNEL); if (!vc4_hdmi_encoder) return -ENOMEM; vc4_hdmi_encoder->base.type = VC4_ENCODER_TYPE_HDMI; hdmi->encoder = &vc4_hdmi_encoder->base.base; hdmi->pdev = pdev; hdmi->hdmicore_regs = vc4_ioremap_regs(pdev, 0); if (IS_ERR(hdmi->hdmicore_regs)) return PTR_ERR(hdmi->hdmicore_regs); hdmi->hd_regs = vc4_ioremap_regs(pdev, 1); if (IS_ERR(hdmi->hd_regs)) return PTR_ERR(hdmi->hd_regs); hdmi->pixel_clock = devm_clk_get(dev, "pixel"); if (IS_ERR(hdmi->pixel_clock)) { DRM_ERROR("Failed to get pixel clock\n"); return PTR_ERR(hdmi->pixel_clock); } hdmi->hsm_clock = devm_clk_get(dev, "hdmi"); if (IS_ERR(hdmi->hsm_clock)) { DRM_ERROR("Failed to get HDMI state machine clock\n"); return PTR_ERR(hdmi->hsm_clock); } ddc_node = of_parse_phandle(dev->of_node, "ddc", 0); if (!ddc_node) { DRM_ERROR("Failed to find ddc node in device tree\n"); return -ENODEV; } hdmi->ddc = of_find_i2c_adapter_by_node(ddc_node); of_node_put(ddc_node); if (!hdmi->ddc) { DRM_DEBUG("Failed to get ddc i2c adapter by node\n"); return -EPROBE_DEFER; } /* This is the rate that is set by the firmware. The number * needs to be a bit higher than the pixel clock rate * (generally 148.5Mhz). */ ret = clk_set_rate(hdmi->hsm_clock, HSM_CLOCK_FREQ); if (ret) { DRM_ERROR("Failed to set HSM clock rate: %d\n", ret); goto err_put_i2c; } ret = clk_prepare_enable(hdmi->hsm_clock); if (ret) { DRM_ERROR("Failed to turn on HDMI state machine clock: %d\n", ret); goto err_put_i2c; } /* Only use the GPIO HPD pin if present in the DT, otherwise * we'll use the HDMI core's register. */ if (of_find_property(dev->of_node, "hpd-gpios", &value)) { enum of_gpio_flags hpd_gpio_flags; hdmi->hpd_gpio = of_get_named_gpio_flags(dev->of_node, "hpd-gpios", 0, &hpd_gpio_flags); if (hdmi->hpd_gpio < 0) { ret = hdmi->hpd_gpio; goto err_unprepare_hsm; } hdmi->hpd_active_low = hpd_gpio_flags & OF_GPIO_ACTIVE_LOW; } vc4->hdmi = hdmi; /* HDMI core must be enabled. */ if (!(HD_READ(VC4_HD_M_CTL) & VC4_HD_M_ENABLE)) { HD_WRITE(VC4_HD_M_CTL, VC4_HD_M_SW_RST); udelay(1); HD_WRITE(VC4_HD_M_CTL, 0); HD_WRITE(VC4_HD_M_CTL, VC4_HD_M_ENABLE); } pm_runtime_enable(dev); drm_encoder_init(drm, hdmi->encoder, &vc4_hdmi_encoder_funcs, DRM_MODE_ENCODER_TMDS, NULL); drm_encoder_helper_add(hdmi->encoder, &vc4_hdmi_encoder_helper_funcs); hdmi->connector = vc4_hdmi_connector_init(drm, hdmi->encoder); if (IS_ERR(hdmi->connector)) { ret = PTR_ERR(hdmi->connector); goto err_destroy_encoder; } #ifdef CONFIG_DRM_VC4_HDMI_CEC hdmi->cec_adap = cec_allocate_adapter(&vc4_hdmi_cec_adap_ops, vc4, "vc4", CEC_CAP_TRANSMIT | CEC_CAP_LOG_ADDRS | CEC_CAP_PASSTHROUGH | CEC_CAP_RC, 1); ret = PTR_ERR_OR_ZERO(hdmi->cec_adap); if (ret < 0) goto err_destroy_conn; HDMI_WRITE(VC4_HDMI_CPU_MASK_SET, 0xffffffff); value = HDMI_READ(VC4_HDMI_CEC_CNTRL_1); value &= ~VC4_HDMI_CEC_DIV_CLK_CNT_MASK; /* * Set the logical address to Unregistered and set the clock * divider: the hsm_clock rate and this divider setting will * give a 40 kHz CEC clock. */ value |= VC4_HDMI_CEC_ADDR_MASK | (4091 << VC4_HDMI_CEC_DIV_CLK_CNT_SHIFT); HDMI_WRITE(VC4_HDMI_CEC_CNTRL_1, value); ret = devm_request_threaded_irq(dev, platform_get_irq(pdev, 0), vc4_cec_irq_handler, vc4_cec_irq_handler_thread, 0, "vc4 hdmi cec", vc4); if (ret) goto err_delete_cec_adap; ret = cec_register_adapter(hdmi->cec_adap, dev); if (ret < 0) goto err_delete_cec_adap; #endif ret = vc4_hdmi_audio_init(hdmi); if (ret) goto err_destroy_encoder; return 0; #ifdef CONFIG_DRM_VC4_HDMI_CEC err_delete_cec_adap: cec_delete_adapter(hdmi->cec_adap); err_destroy_conn: vc4_hdmi_connector_destroy(hdmi->connector); #endif err_destroy_encoder: vc4_hdmi_encoder_destroy(hdmi->encoder); err_unprepare_hsm: clk_disable_unprepare(hdmi->hsm_clock); pm_runtime_disable(dev); err_put_i2c: put_device(&hdmi->ddc->dev); return ret; } static void vc4_hdmi_unbind(struct device *dev, struct device *master, void *data) { struct drm_device *drm = dev_get_drvdata(master); struct vc4_dev *vc4 = drm->dev_private; struct vc4_hdmi *hdmi = vc4->hdmi; cec_unregister_adapter(hdmi->cec_adap); vc4_hdmi_connector_destroy(hdmi->connector); vc4_hdmi_encoder_destroy(hdmi->encoder); clk_disable_unprepare(hdmi->hsm_clock); pm_runtime_disable(dev); put_device(&hdmi->ddc->dev); vc4->hdmi = NULL; } static const struct component_ops vc4_hdmi_ops = { .bind = vc4_hdmi_bind, .unbind = vc4_hdmi_unbind, }; static int vc4_hdmi_dev_probe(struct platform_device *pdev) { return component_add(&pdev->dev, &vc4_hdmi_ops); } static int vc4_hdmi_dev_remove(struct platform_device *pdev) { component_del(&pdev->dev, &vc4_hdmi_ops); return 0; } static const struct of_device_id vc4_hdmi_dt_match[] = { { .compatible = "brcm,bcm2835-hdmi" }, {} }; struct platform_driver vc4_hdmi_driver = { .probe = vc4_hdmi_dev_probe, .remove = vc4_hdmi_dev_remove, .driver = { .name = "vc4_hdmi", .of_match_table = vc4_hdmi_dt_match, }, };