/* * Linux Socket Filter - Kernel level socket filtering * * Based on the design of the Berkeley Packet Filter. The new * internal format has been designed by PLUMgrid: * * Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com * * Authors: * * Jay Schulist * Alexei Starovoitov * Daniel Borkmann * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * Andi Kleen - Fix a few bad bugs and races. * Kris Katterjohn - Added many additional checks in bpf_check_classic() */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /** * sk_filter_trim_cap - run a packet through a socket filter * @sk: sock associated with &sk_buff * @skb: buffer to filter * @cap: limit on how short the eBPF program may trim the packet * * Run the eBPF program and then cut skb->data to correct size returned by * the program. If pkt_len is 0 we toss packet. If skb->len is smaller * than pkt_len we keep whole skb->data. This is the socket level * wrapper to BPF_PROG_RUN. It returns 0 if the packet should * be accepted or -EPERM if the packet should be tossed. * */ int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap) { int err; struct sk_filter *filter; /* * If the skb was allocated from pfmemalloc reserves, only * allow SOCK_MEMALLOC sockets to use it as this socket is * helping free memory */ if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) { NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP); return -ENOMEM; } err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb); if (err) return err; err = security_sock_rcv_skb(sk, skb); if (err) return err; rcu_read_lock(); filter = rcu_dereference(sk->sk_filter); if (filter) { struct sock *save_sk = skb->sk; unsigned int pkt_len; skb->sk = sk; pkt_len = bpf_prog_run_save_cb(filter->prog, skb); skb->sk = save_sk; err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM; } rcu_read_unlock(); return err; } EXPORT_SYMBOL(sk_filter_trim_cap); BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb) { return skb_get_poff(skb); } BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x) { struct nlattr *nla; if (skb_is_nonlinear(skb)) return 0; if (skb->len < sizeof(struct nlattr)) return 0; if (a > skb->len - sizeof(struct nlattr)) return 0; nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x); if (nla) return (void *) nla - (void *) skb->data; return 0; } BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x) { struct nlattr *nla; if (skb_is_nonlinear(skb)) return 0; if (skb->len < sizeof(struct nlattr)) return 0; if (a > skb->len - sizeof(struct nlattr)) return 0; nla = (struct nlattr *) &skb->data[a]; if (nla->nla_len > skb->len - a) return 0; nla = nla_find_nested(nla, x); if (nla) return (void *) nla - (void *) skb->data; return 0; } BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *, data, int, headlen, int, offset) { u8 tmp, *ptr; const int len = sizeof(tmp); if (offset >= 0) { if (headlen - offset >= len) return *(u8 *)(data + offset); if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp))) return tmp; } else { ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len); if (likely(ptr)) return *(u8 *)ptr; } return -EFAULT; } BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb, int, offset) { return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len, offset); } BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *, data, int, headlen, int, offset) { u16 tmp, *ptr; const int len = sizeof(tmp); if (offset >= 0) { if (headlen - offset >= len) return get_unaligned_be16(data + offset); if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp))) return be16_to_cpu(tmp); } else { ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len); if (likely(ptr)) return get_unaligned_be16(ptr); } return -EFAULT; } BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb, int, offset) { return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len, offset); } BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *, data, int, headlen, int, offset) { u32 tmp, *ptr; const int len = sizeof(tmp); if (likely(offset >= 0)) { if (headlen - offset >= len) return get_unaligned_be32(data + offset); if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp))) return be32_to_cpu(tmp); } else { ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len); if (likely(ptr)) return get_unaligned_be32(ptr); } return -EFAULT; } BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb, int, offset) { return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len, offset); } BPF_CALL_0(bpf_get_raw_cpu_id) { return raw_smp_processor_id(); } static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = { .func = bpf_get_raw_cpu_id, .gpl_only = false, .ret_type = RET_INTEGER, }; static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg, struct bpf_insn *insn_buf) { struct bpf_insn *insn = insn_buf; switch (skb_field) { case SKF_AD_MARK: BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4); *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg, offsetof(struct sk_buff, mark)); break; case SKF_AD_PKTTYPE: *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET()); *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX); #ifdef __BIG_ENDIAN_BITFIELD *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5); #endif break; case SKF_AD_QUEUE: BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2); *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg, offsetof(struct sk_buff, queue_mapping)); break; case SKF_AD_VLAN_TAG: case SKF_AD_VLAN_TAG_PRESENT: BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2); BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000); /* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */ *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg, offsetof(struct sk_buff, vlan_tci)); if (skb_field == SKF_AD_VLAN_TAG) { *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, ~VLAN_TAG_PRESENT); } else { /* dst_reg >>= 12 */ *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 12); /* dst_reg &= 1 */ *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1); } break; } return insn - insn_buf; } static bool convert_bpf_extensions(struct sock_filter *fp, struct bpf_insn **insnp) { struct bpf_insn *insn = *insnp; u32 cnt; switch (fp->k) { case SKF_AD_OFF + SKF_AD_PROTOCOL: BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2); /* A = *(u16 *) (CTX + offsetof(protocol)) */ *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX, offsetof(struct sk_buff, protocol)); /* A = ntohs(A) [emitting a nop or swap16] */ *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16); break; case SKF_AD_OFF + SKF_AD_PKTTYPE: cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn); insn += cnt - 1; break; case SKF_AD_OFF + SKF_AD_IFINDEX: case SKF_AD_OFF + SKF_AD_HATYPE: BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4); BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, type) != 2); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev), BPF_REG_TMP, BPF_REG_CTX, offsetof(struct sk_buff, dev)); /* if (tmp != 0) goto pc + 1 */ *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1); *insn++ = BPF_EXIT_INSN(); if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX) *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP, offsetof(struct net_device, ifindex)); else *insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP, offsetof(struct net_device, type)); break; case SKF_AD_OFF + SKF_AD_MARK: cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn); insn += cnt - 1; break; case SKF_AD_OFF + SKF_AD_RXHASH: BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4); *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, offsetof(struct sk_buff, hash)); break; case SKF_AD_OFF + SKF_AD_QUEUE: cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn); insn += cnt - 1; break; case SKF_AD_OFF + SKF_AD_VLAN_TAG: cnt = convert_skb_access(SKF_AD_VLAN_TAG, BPF_REG_A, BPF_REG_CTX, insn); insn += cnt - 1; break; case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT: cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT, BPF_REG_A, BPF_REG_CTX, insn); insn += cnt - 1; break; case SKF_AD_OFF + SKF_AD_VLAN_TPID: BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2); /* A = *(u16 *) (CTX + offsetof(vlan_proto)) */ *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX, offsetof(struct sk_buff, vlan_proto)); /* A = ntohs(A) [emitting a nop or swap16] */ *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16); break; case SKF_AD_OFF + SKF_AD_PAY_OFFSET: case SKF_AD_OFF + SKF_AD_NLATTR: case SKF_AD_OFF + SKF_AD_NLATTR_NEST: case SKF_AD_OFF + SKF_AD_CPU: case SKF_AD_OFF + SKF_AD_RANDOM: /* arg1 = CTX */ *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX); /* arg2 = A */ *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A); /* arg3 = X */ *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X); /* Emit call(arg1=CTX, arg2=A, arg3=X) */ switch (fp->k) { case SKF_AD_OFF + SKF_AD_PAY_OFFSET: *insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset); break; case SKF_AD_OFF + SKF_AD_NLATTR: *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr); break; case SKF_AD_OFF + SKF_AD_NLATTR_NEST: *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest); break; case SKF_AD_OFF + SKF_AD_CPU: *insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id); break; case SKF_AD_OFF + SKF_AD_RANDOM: *insn = BPF_EMIT_CALL(bpf_user_rnd_u32); bpf_user_rnd_init_once(); break; } break; case SKF_AD_OFF + SKF_AD_ALU_XOR_X: /* A ^= X */ *insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X); break; default: /* This is just a dummy call to avoid letting the compiler * evict __bpf_call_base() as an optimization. Placed here * where no-one bothers. */ BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0); return false; } *insnp = insn; return true; } static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp) { const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS); int size = bpf_size_to_bytes(BPF_SIZE(fp->code)); bool endian = BPF_SIZE(fp->code) == BPF_H || BPF_SIZE(fp->code) == BPF_W; bool indirect = BPF_MODE(fp->code) == BPF_IND; const int ip_align = NET_IP_ALIGN; struct bpf_insn *insn = *insnp; int offset = fp->k; if (!indirect && ((unaligned_ok && offset >= 0) || (!unaligned_ok && offset >= 0 && offset + ip_align >= 0 && offset + ip_align % size == 0))) { bool ldx_off_ok = offset <= S16_MAX; *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H); *insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset); *insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP, size, 2 + endian + (!ldx_off_ok * 2)); if (ldx_off_ok) { *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A, BPF_REG_D, offset); } else { *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D); *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset); *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A, BPF_REG_TMP, 0); } if (endian) *insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8); *insn++ = BPF_JMP_A(8); } *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX); *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D); *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H); if (!indirect) { *insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset); } else { *insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X); if (fp->k) *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset); } switch (BPF_SIZE(fp->code)) { case BPF_B: *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8); break; case BPF_H: *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16); break; case BPF_W: *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32); break; default: return false; } *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2); *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A); *insn = BPF_EXIT_INSN(); *insnp = insn; return true; } /** * bpf_convert_filter - convert filter program * @prog: the user passed filter program * @len: the length of the user passed filter program * @new_prog: allocated 'struct bpf_prog' or NULL * @new_len: pointer to store length of converted program * @seen_ld_abs: bool whether we've seen ld_abs/ind * * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn' * style extended BPF (eBPF). * Conversion workflow: * * 1) First pass for calculating the new program length: * bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs) * * 2) 2nd pass to remap in two passes: 1st pass finds new * jump offsets, 2nd pass remapping: * bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs) */ static int bpf_convert_filter(struct sock_filter *prog, int len, struct bpf_prog *new_prog, int *new_len, bool *seen_ld_abs) { int new_flen = 0, pass = 0, target, i, stack_off; struct bpf_insn *new_insn, *first_insn = NULL; struct sock_filter *fp; int *addrs = NULL; u8 bpf_src; BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK); BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG); if (len <= 0 || len > BPF_MAXINSNS) return -EINVAL; if (new_prog) { first_insn = new_prog->insnsi; addrs = kcalloc(len, sizeof(*addrs), GFP_KERNEL | __GFP_NOWARN); if (!addrs) return -ENOMEM; } do_pass: new_insn = first_insn; fp = prog; /* Classic BPF related prologue emission. */ if (new_prog) { /* Classic BPF expects A and X to be reset first. These need * to be guaranteed to be the first two instructions. */ *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A); *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X); /* All programs must keep CTX in callee saved BPF_REG_CTX. * In eBPF case it's done by the compiler, here we need to * do this ourself. Initial CTX is present in BPF_REG_ARG1. */ *new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1); if (*seen_ld_abs) { /* For packet access in classic BPF, cache skb->data * in callee-saved BPF R8 and skb->len - skb->data_len * (headlen) in BPF R9. Since classic BPF is read-only * on CTX, we only need to cache it once. */ *new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data), BPF_REG_D, BPF_REG_CTX, offsetof(struct sk_buff, data)); *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX, offsetof(struct sk_buff, len)); *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX, offsetof(struct sk_buff, data_len)); *new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP); } } else { new_insn += 3; } for (i = 0; i < len; fp++, i++) { struct bpf_insn tmp_insns[32] = { }; struct bpf_insn *insn = tmp_insns; if (addrs) addrs[i] = new_insn - first_insn; switch (fp->code) { /* All arithmetic insns and skb loads map as-is. */ case BPF_ALU | BPF_ADD | BPF_X: case BPF_ALU | BPF_ADD | BPF_K: case BPF_ALU | BPF_SUB | BPF_X: case BPF_ALU | BPF_SUB | BPF_K: case BPF_ALU | BPF_AND | BPF_X: case BPF_ALU | BPF_AND | BPF_K: case BPF_ALU | BPF_OR | BPF_X: case BPF_ALU | BPF_OR | BPF_K: case BPF_ALU | BPF_LSH | BPF_X: case BPF_ALU | BPF_LSH | BPF_K: case BPF_ALU | BPF_RSH | BPF_X: case BPF_ALU | BPF_RSH | BPF_K: case BPF_ALU | BPF_XOR | BPF_X: case BPF_ALU | BPF_XOR | BPF_K: case BPF_ALU | BPF_MUL | BPF_X: case BPF_ALU | BPF_MUL | BPF_K: case BPF_ALU | BPF_DIV | BPF_X: case BPF_ALU | BPF_DIV | BPF_K: case BPF_ALU | BPF_MOD | BPF_X: case BPF_ALU | BPF_MOD | BPF_K: case BPF_ALU | BPF_NEG: case BPF_LD | BPF_ABS | BPF_W: case BPF_LD | BPF_ABS | BPF_H: case BPF_LD | BPF_ABS | BPF_B: case BPF_LD | BPF_IND | BPF_W: case BPF_LD | BPF_IND | BPF_H: case BPF_LD | BPF_IND | BPF_B: /* Check for overloaded BPF extension and * directly convert it if found, otherwise * just move on with mapping. */ if (BPF_CLASS(fp->code) == BPF_LD && BPF_MODE(fp->code) == BPF_ABS && convert_bpf_extensions(fp, &insn)) break; if (BPF_CLASS(fp->code) == BPF_LD && convert_bpf_ld_abs(fp, &insn)) { *seen_ld_abs = true; break; } if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) || fp->code == (BPF_ALU | BPF_MOD | BPF_X)) { *insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X); /* Error with exception code on div/mod by 0. * For cBPF programs, this was always return 0. */ *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2); *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A); *insn++ = BPF_EXIT_INSN(); } *insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k); break; /* Jump transformation cannot use BPF block macros * everywhere as offset calculation and target updates * require a bit more work than the rest, i.e. jump * opcodes map as-is, but offsets need adjustment. */ #define BPF_EMIT_JMP \ do { \ const s32 off_min = S16_MIN, off_max = S16_MAX; \ s32 off; \ \ if (target >= len || target < 0) \ goto err; \ off = addrs ? addrs[target] - addrs[i] - 1 : 0; \ /* Adjust pc relative offset for 2nd or 3rd insn. */ \ off -= insn - tmp_insns; \ /* Reject anything not fitting into insn->off. */ \ if (off < off_min || off > off_max) \ goto err; \ insn->off = off; \ } while (0) case BPF_JMP | BPF_JA: target = i + fp->k + 1; insn->code = fp->code; BPF_EMIT_JMP; break; case BPF_JMP | BPF_JEQ | BPF_K: case BPF_JMP | BPF_JEQ | BPF_X: case BPF_JMP | BPF_JSET | BPF_K: case BPF_JMP | BPF_JSET | BPF_X: case BPF_JMP | BPF_JGT | BPF_K: case BPF_JMP | BPF_JGT | BPF_X: case BPF_JMP | BPF_JGE | BPF_K: case BPF_JMP | BPF_JGE | BPF_X: if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) { /* BPF immediates are signed, zero extend * immediate into tmp register and use it * in compare insn. */ *insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k); insn->dst_reg = BPF_REG_A; insn->src_reg = BPF_REG_TMP; bpf_src = BPF_X; } else { insn->dst_reg = BPF_REG_A; insn->imm = fp->k; bpf_src = BPF_SRC(fp->code); insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0; } /* Common case where 'jump_false' is next insn. */ if (fp->jf == 0) { insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src; target = i + fp->jt + 1; BPF_EMIT_JMP; break; } /* Convert some jumps when 'jump_true' is next insn. */ if (fp->jt == 0) { switch (BPF_OP(fp->code)) { case BPF_JEQ: insn->code = BPF_JMP | BPF_JNE | bpf_src; break; case BPF_JGT: insn->code = BPF_JMP | BPF_JLE | bpf_src; break; case BPF_JGE: insn->code = BPF_JMP | BPF_JLT | bpf_src; break; default: goto jmp_rest; } target = i + fp->jf + 1; BPF_EMIT_JMP; break; } jmp_rest: /* Other jumps are mapped into two insns: Jxx and JA. */ target = i + fp->jt + 1; insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src; BPF_EMIT_JMP; insn++; insn->code = BPF_JMP | BPF_JA; target = i + fp->jf + 1; BPF_EMIT_JMP; break; /* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */ case BPF_LDX | BPF_MSH | BPF_B: { struct sock_filter tmp = { .code = BPF_LD | BPF_ABS | BPF_B, .k = fp->k, }; *seen_ld_abs = true; /* X = A */ *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A); /* A = BPF_R0 = *(u8 *) (skb->data + K) */ convert_bpf_ld_abs(&tmp, &insn); insn++; /* A &= 0xf */ *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf); /* A <<= 2 */ *insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2); /* tmp = X */ *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X); /* X = A */ *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A); /* A = tmp */ *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP); break; } /* RET_K is remaped into 2 insns. RET_A case doesn't need an * extra mov as BPF_REG_0 is already mapped into BPF_REG_A. */ case BPF_RET | BPF_A: case BPF_RET | BPF_K: if (BPF_RVAL(fp->code) == BPF_K) *insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0, 0, fp->k); *insn = BPF_EXIT_INSN(); break; /* Store to stack. */ case BPF_ST: case BPF_STX: stack_off = fp->k * 4 + 4; *insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) == BPF_ST ? BPF_REG_A : BPF_REG_X, -stack_off); /* check_load_and_stores() verifies that classic BPF can * load from stack only after write, so tracking * stack_depth for ST|STX insns is enough */ if (new_prog && new_prog->aux->stack_depth < stack_off) new_prog->aux->stack_depth = stack_off; break; /* Load from stack. */ case BPF_LD | BPF_MEM: case BPF_LDX | BPF_MEM: stack_off = fp->k * 4 + 4; *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ? BPF_REG_A : BPF_REG_X, BPF_REG_FP, -stack_off); break; /* A = K or X = K */ case BPF_LD | BPF_IMM: case BPF_LDX | BPF_IMM: *insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ? BPF_REG_A : BPF_REG_X, fp->k); break; /* X = A */ case BPF_MISC | BPF_TAX: *insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A); break; /* A = X */ case BPF_MISC | BPF_TXA: *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X); break; /* A = skb->len or X = skb->len */ case BPF_LD | BPF_W | BPF_LEN: case BPF_LDX | BPF_W | BPF_LEN: *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ? BPF_REG_A : BPF_REG_X, BPF_REG_CTX, offsetof(struct sk_buff, len)); break; /* Access seccomp_data fields. */ case BPF_LDX | BPF_ABS | BPF_W: /* A = *(u32 *) (ctx + K) */ *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k); break; /* Unknown instruction. */ default: goto err; } insn++; if (new_prog) memcpy(new_insn, tmp_insns, sizeof(*insn) * (insn - tmp_insns)); new_insn += insn - tmp_insns; } if (!new_prog) { /* Only calculating new length. */ *new_len = new_insn - first_insn; if (*seen_ld_abs) *new_len += 4; /* Prologue bits. */ return 0; } pass++; if (new_flen != new_insn - first_insn) { new_flen = new_insn - first_insn; if (pass > 2) goto err; goto do_pass; } kfree(addrs); BUG_ON(*new_len != new_flen); return 0; err: kfree(addrs); return -EINVAL; } /* Security: * * As we dont want to clear mem[] array for each packet going through * __bpf_prog_run(), we check that filter loaded by user never try to read * a cell if not previously written, and we check all branches to be sure * a malicious user doesn't try to abuse us. */ static int check_load_and_stores(const struct sock_filter *filter, int flen) { u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */ int pc, ret = 0; BUILD_BUG_ON(BPF_MEMWORDS > 16); masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL); if (!masks) return -ENOMEM; memset(masks, 0xff, flen * sizeof(*masks)); for (pc = 0; pc < flen; pc++) { memvalid &= masks[pc]; switch (filter[pc].code) { case BPF_ST: case BPF_STX: memvalid |= (1 << filter[pc].k); break; case BPF_LD | BPF_MEM: case BPF_LDX | BPF_MEM: if (!(memvalid & (1 << filter[pc].k))) { ret = -EINVAL; goto error; } break; case BPF_JMP | BPF_JA: /* A jump must set masks on target */ masks[pc + 1 + filter[pc].k] &= memvalid; memvalid = ~0; break; case BPF_JMP | BPF_JEQ | BPF_K: case BPF_JMP | BPF_JEQ | BPF_X: case BPF_JMP | BPF_JGE | BPF_K: case BPF_JMP | BPF_JGE | BPF_X: case BPF_JMP | BPF_JGT | BPF_K: case BPF_JMP | BPF_JGT | BPF_X: case BPF_JMP | BPF_JSET | BPF_K: case BPF_JMP | BPF_JSET | BPF_X: /* A jump must set masks on targets */ masks[pc + 1 + filter[pc].jt] &= memvalid; masks[pc + 1 + filter[pc].jf] &= memvalid; memvalid = ~0; break; } } error: kfree(masks); return ret; } static bool chk_code_allowed(u16 code_to_probe) { static const bool codes[] = { /* 32 bit ALU operations */ [BPF_ALU | BPF_ADD | BPF_K] = true, [BPF_ALU | BPF_ADD | BPF_X] = true, [BPF_ALU | BPF_SUB | BPF_K] = true, [BPF_ALU | BPF_SUB | BPF_X] = true, [BPF_ALU | BPF_MUL | BPF_K] = true, [BPF_ALU | BPF_MUL | BPF_X] = true, [BPF_ALU | BPF_DIV | BPF_K] = true, [BPF_ALU | BPF_DIV | BPF_X] = true, [BPF_ALU | BPF_MOD | BPF_K] = true, [BPF_ALU | BPF_MOD | BPF_X] = true, [BPF_ALU | BPF_AND | BPF_K] = true, [BPF_ALU | BPF_AND | BPF_X] = true, [BPF_ALU | BPF_OR | BPF_K] = true, [BPF_ALU | BPF_OR | BPF_X] = true, [BPF_ALU | BPF_XOR | BPF_K] = true, [BPF_ALU | BPF_XOR | BPF_X] = true, [BPF_ALU | BPF_LSH | BPF_K] = true, [BPF_ALU | BPF_LSH | BPF_X] = true, [BPF_ALU | BPF_RSH | BPF_K] = true, [BPF_ALU | BPF_RSH | BPF_X] = true, [BPF_ALU | BPF_NEG] = true, /* Load instructions */ [BPF_LD | BPF_W | BPF_ABS] = true, [BPF_LD | BPF_H | BPF_ABS] = true, [BPF_LD | BPF_B | BPF_ABS] = true, [BPF_LD | BPF_W | BPF_LEN] = true, [BPF_LD | BPF_W | BPF_IND] = true, [BPF_LD | BPF_H | BPF_IND] = true, [BPF_LD | BPF_B | BPF_IND] = true, [BPF_LD | BPF_IMM] = true, [BPF_LD | BPF_MEM] = true, [BPF_LDX | BPF_W | BPF_LEN] = true, [BPF_LDX | BPF_B | BPF_MSH] = true, [BPF_LDX | BPF_IMM] = true, [BPF_LDX | BPF_MEM] = true, /* Store instructions */ [BPF_ST] = true, [BPF_STX] = true, /* Misc instructions */ [BPF_MISC | BPF_TAX] = true, [BPF_MISC | BPF_TXA] = true, /* Return instructions */ [BPF_RET | BPF_K] = true, [BPF_RET | BPF_A] = true, /* Jump instructions */ [BPF_JMP | BPF_JA] = true, [BPF_JMP | BPF_JEQ | BPF_K] = true, [BPF_JMP | BPF_JEQ | BPF_X] = true, [BPF_JMP | BPF_JGE | BPF_K] = true, [BPF_JMP | BPF_JGE | BPF_X] = true, [BPF_JMP | BPF_JGT | BPF_K] = true, [BPF_JMP | BPF_JGT | BPF_X] = true, [BPF_JMP | BPF_JSET | BPF_K] = true, [BPF_JMP | BPF_JSET | BPF_X] = true, }; if (code_to_probe >= ARRAY_SIZE(codes)) return false; return codes[code_to_probe]; } static bool bpf_check_basics_ok(const struct sock_filter *filter, unsigned int flen) { if (filter == NULL) return false; if (flen == 0 || flen > BPF_MAXINSNS) return false; return true; } /** * bpf_check_classic - verify socket filter code * @filter: filter to verify * @flen: length of filter * * Check the user's filter code. If we let some ugly * filter code slip through kaboom! The filter must contain * no references or jumps that are out of range, no illegal * instructions, and must end with a RET instruction. * * All jumps are forward as they are not signed. * * Returns 0 if the rule set is legal or -EINVAL if not. */ static int bpf_check_classic(const struct sock_filter *filter, unsigned int flen) { bool anc_found; int pc; /* Check the filter code now */ for (pc = 0; pc < flen; pc++) { const struct sock_filter *ftest = &filter[pc]; /* May we actually operate on this code? */ if (!chk_code_allowed(ftest->code)) return -EINVAL; /* Some instructions need special checks */ switch (ftest->code) { case BPF_ALU | BPF_DIV | BPF_K: case BPF_ALU | BPF_MOD | BPF_K: /* Check for division by zero */ if (ftest->k == 0) return -EINVAL; break; case BPF_ALU | BPF_LSH | BPF_K: case BPF_ALU | BPF_RSH | BPF_K: if (ftest->k >= 32) return -EINVAL; break; case BPF_LD | BPF_MEM: case BPF_LDX | BPF_MEM: case BPF_ST: case BPF_STX: /* Check for invalid memory addresses */ if (ftest->k >= BPF_MEMWORDS) return -EINVAL; break; case BPF_JMP | BPF_JA: /* Note, the large ftest->k might cause loops. * Compare this with conditional jumps below, * where offsets are limited. --ANK (981016) */ if (ftest->k >= (unsigned int)(flen - pc - 1)) return -EINVAL; break; case BPF_JMP | BPF_JEQ | BPF_K: case BPF_JMP | BPF_JEQ | BPF_X: case BPF_JMP | BPF_JGE | BPF_K: case BPF_JMP | BPF_JGE | BPF_X: case BPF_JMP | BPF_JGT | BPF_K: case BPF_JMP | BPF_JGT | BPF_X: case BPF_JMP | BPF_JSET | BPF_K: case BPF_JMP | BPF_JSET | BPF_X: /* Both conditionals must be safe */ if (pc + ftest->jt + 1 >= flen || pc + ftest->jf + 1 >= flen) return -EINVAL; break; case BPF_LD | BPF_W | BPF_ABS: case BPF_LD | BPF_H | BPF_ABS: case BPF_LD | BPF_B | BPF_ABS: anc_found = false; if (bpf_anc_helper(ftest) & BPF_ANC) anc_found = true; /* Ancillary operation unknown or unsupported */ if (anc_found == false && ftest->k >= SKF_AD_OFF) return -EINVAL; } } /* Last instruction must be a RET code */ switch (filter[flen - 1].code) { case BPF_RET | BPF_K: case BPF_RET | BPF_A: return check_load_and_stores(filter, flen); } return -EINVAL; } static int bpf_prog_store_orig_filter(struct bpf_prog *fp, const struct sock_fprog *fprog) { unsigned int fsize = bpf_classic_proglen(fprog); struct sock_fprog_kern *fkprog; fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL); if (!fp->orig_prog) return -ENOMEM; fkprog = fp->orig_prog; fkprog->len = fprog->len; fkprog->filter = kmemdup(fp->insns, fsize, GFP_KERNEL | __GFP_NOWARN); if (!fkprog->filter) { kfree(fp->orig_prog); return -ENOMEM; } return 0; } static void bpf_release_orig_filter(struct bpf_prog *fp) { struct sock_fprog_kern *fprog = fp->orig_prog; if (fprog) { kfree(fprog->filter); kfree(fprog); } } static void __bpf_prog_release(struct bpf_prog *prog) { if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) { bpf_prog_put(prog); } else { bpf_release_orig_filter(prog); bpf_prog_free(prog); } } static void __sk_filter_release(struct sk_filter *fp) { __bpf_prog_release(fp->prog); kfree(fp); } /** * sk_filter_release_rcu - Release a socket filter by rcu_head * @rcu: rcu_head that contains the sk_filter to free */ static void sk_filter_release_rcu(struct rcu_head *rcu) { struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu); __sk_filter_release(fp); } /** * sk_filter_release - release a socket filter * @fp: filter to remove * * Remove a filter from a socket and release its resources. */ static void sk_filter_release(struct sk_filter *fp) { if (refcount_dec_and_test(&fp->refcnt)) call_rcu(&fp->rcu, sk_filter_release_rcu); } void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp) { u32 filter_size = bpf_prog_size(fp->prog->len); atomic_sub(filter_size, &sk->sk_omem_alloc); sk_filter_release(fp); } /* try to charge the socket memory if there is space available * return true on success */ static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp) { u32 filter_size = bpf_prog_size(fp->prog->len); /* same check as in sock_kmalloc() */ if (filter_size <= sysctl_optmem_max && atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) { atomic_add(filter_size, &sk->sk_omem_alloc); return true; } return false; } bool sk_filter_charge(struct sock *sk, struct sk_filter *fp) { if (!refcount_inc_not_zero(&fp->refcnt)) return false; if (!__sk_filter_charge(sk, fp)) { sk_filter_release(fp); return false; } return true; } static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp) { struct sock_filter *old_prog; struct bpf_prog *old_fp; int err, new_len, old_len = fp->len; bool seen_ld_abs = false; /* We are free to overwrite insns et al right here as it * won't be used at this point in time anymore internally * after the migration to the internal BPF instruction * representation. */ BUILD_BUG_ON(sizeof(struct sock_filter) != sizeof(struct bpf_insn)); /* Conversion cannot happen on overlapping memory areas, * so we need to keep the user BPF around until the 2nd * pass. At this time, the user BPF is stored in fp->insns. */ old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter), GFP_KERNEL | __GFP_NOWARN); if (!old_prog) { err = -ENOMEM; goto out_err; } /* 1st pass: calculate the new program length. */ err = bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs); if (err) goto out_err_free; /* Expand fp for appending the new filter representation. */ old_fp = fp; fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0); if (!fp) { /* The old_fp is still around in case we couldn't * allocate new memory, so uncharge on that one. */ fp = old_fp; err = -ENOMEM; goto out_err_free; } fp->len = new_len; /* 2nd pass: remap sock_filter insns into bpf_insn insns. */ err = bpf_convert_filter(old_prog, old_len, fp, &new_len, &seen_ld_abs); if (err) /* 2nd bpf_convert_filter() can fail only if it fails * to allocate memory, remapping must succeed. Note, * that at this time old_fp has already been released * by krealloc(). */ goto out_err_free; fp = bpf_prog_select_runtime(fp, &err); if (err) goto out_err_free; kfree(old_prog); return fp; out_err_free: kfree(old_prog); out_err: __bpf_prog_release(fp); return ERR_PTR(err); } static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp, bpf_aux_classic_check_t trans) { int err; fp->bpf_func = NULL; fp->jited = 0; err = bpf_check_classic(fp->insns, fp->len); if (err) { __bpf_prog_release(fp); return ERR_PTR(err); } /* There might be additional checks and transformations * needed on classic filters, f.e. in case of seccomp. */ if (trans) { err = trans(fp->insns, fp->len); if (err) { __bpf_prog_release(fp); return ERR_PTR(err); } } /* Probe if we can JIT compile the filter and if so, do * the compilation of the filter. */ bpf_jit_compile(fp); /* JIT compiler couldn't process this filter, so do the * internal BPF translation for the optimized interpreter. */ if (!fp->jited) fp = bpf_migrate_filter(fp); return fp; } /** * bpf_prog_create - create an unattached filter * @pfp: the unattached filter that is created * @fprog: the filter program * * Create a filter independent of any socket. We first run some * sanity checks on it to make sure it does not explode on us later. * If an error occurs or there is insufficient memory for the filter * a negative errno code is returned. On success the return is zero. */ int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog) { unsigned int fsize = bpf_classic_proglen(fprog); struct bpf_prog *fp; /* Make sure new filter is there and in the right amounts. */ if (!bpf_check_basics_ok(fprog->filter, fprog->len)) return -EINVAL; fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0); if (!fp) return -ENOMEM; memcpy(fp->insns, fprog->filter, fsize); fp->len = fprog->len; /* Since unattached filters are not copied back to user * space through sk_get_filter(), we do not need to hold * a copy here, and can spare us the work. */ fp->orig_prog = NULL; /* bpf_prepare_filter() already takes care of freeing * memory in case something goes wrong. */ fp = bpf_prepare_filter(fp, NULL); if (IS_ERR(fp)) return PTR_ERR(fp); *pfp = fp; return 0; } EXPORT_SYMBOL_GPL(bpf_prog_create); /** * bpf_prog_create_from_user - create an unattached filter from user buffer * @pfp: the unattached filter that is created * @fprog: the filter program * @trans: post-classic verifier transformation handler * @save_orig: save classic BPF program * * This function effectively does the same as bpf_prog_create(), only * that it builds up its insns buffer from user space provided buffer. * It also allows for passing a bpf_aux_classic_check_t handler. */ int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog, bpf_aux_classic_check_t trans, bool save_orig) { unsigned int fsize = bpf_classic_proglen(fprog); struct bpf_prog *fp; int err; /* Make sure new filter is there and in the right amounts. */ if (!bpf_check_basics_ok(fprog->filter, fprog->len)) return -EINVAL; fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0); if (!fp) return -ENOMEM; if (copy_from_user(fp->insns, fprog->filter, fsize)) { __bpf_prog_free(fp); return -EFAULT; } fp->len = fprog->len; fp->orig_prog = NULL; if (save_orig) { err = bpf_prog_store_orig_filter(fp, fprog); if (err) { __bpf_prog_free(fp); return -ENOMEM; } } /* bpf_prepare_filter() already takes care of freeing * memory in case something goes wrong. */ fp = bpf_prepare_filter(fp, trans); if (IS_ERR(fp)) return PTR_ERR(fp); *pfp = fp; return 0; } EXPORT_SYMBOL_GPL(bpf_prog_create_from_user); void bpf_prog_destroy(struct bpf_prog *fp) { __bpf_prog_release(fp); } EXPORT_SYMBOL_GPL(bpf_prog_destroy); static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk) { struct sk_filter *fp, *old_fp; fp = kmalloc(sizeof(*fp), GFP_KERNEL); if (!fp) return -ENOMEM; fp->prog = prog; if (!__sk_filter_charge(sk, fp)) { kfree(fp); return -ENOMEM; } refcount_set(&fp->refcnt, 1); old_fp = rcu_dereference_protected(sk->sk_filter, lockdep_sock_is_held(sk)); rcu_assign_pointer(sk->sk_filter, fp); if (old_fp) sk_filter_uncharge(sk, old_fp); return 0; } static struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk) { unsigned int fsize = bpf_classic_proglen(fprog); struct bpf_prog *prog; int err; if (sock_flag(sk, SOCK_FILTER_LOCKED)) return ERR_PTR(-EPERM); /* Make sure new filter is there and in the right amounts. */ if (!bpf_check_basics_ok(fprog->filter, fprog->len)) return ERR_PTR(-EINVAL); prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0); if (!prog) return ERR_PTR(-ENOMEM); if (copy_from_user(prog->insns, fprog->filter, fsize)) { __bpf_prog_free(prog); return ERR_PTR(-EFAULT); } prog->len = fprog->len; err = bpf_prog_store_orig_filter(prog, fprog); if (err) { __bpf_prog_free(prog); return ERR_PTR(-ENOMEM); } /* bpf_prepare_filter() already takes care of freeing * memory in case something goes wrong. */ return bpf_prepare_filter(prog, NULL); } /** * sk_attach_filter - attach a socket filter * @fprog: the filter program * @sk: the socket to use * * Attach the user's filter code. We first run some sanity checks on * it to make sure it does not explode on us later. If an error * occurs or there is insufficient memory for the filter a negative * errno code is returned. On success the return is zero. */ int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk) { struct bpf_prog *prog = __get_filter(fprog, sk); int err; if (IS_ERR(prog)) return PTR_ERR(prog); err = __sk_attach_prog(prog, sk); if (err < 0) { __bpf_prog_release(prog); return err; } return 0; } EXPORT_SYMBOL_GPL(sk_attach_filter); int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk) { struct bpf_prog *prog = __get_filter(fprog, sk); int err; if (IS_ERR(prog)) return PTR_ERR(prog); if (bpf_prog_size(prog->len) > sysctl_optmem_max) err = -ENOMEM; else err = reuseport_attach_prog(sk, prog); if (err) __bpf_prog_release(prog); return err; } static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk) { if (sock_flag(sk, SOCK_FILTER_LOCKED)) return ERR_PTR(-EPERM); return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER); } int sk_attach_bpf(u32 ufd, struct sock *sk) { struct bpf_prog *prog = __get_bpf(ufd, sk); int err; if (IS_ERR(prog)) return PTR_ERR(prog); err = __sk_attach_prog(prog, sk); if (err < 0) { bpf_prog_put(prog); return err; } return 0; } int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk) { struct bpf_prog *prog; int err; if (sock_flag(sk, SOCK_FILTER_LOCKED)) return -EPERM; prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER); if (IS_ERR(prog) && PTR_ERR(prog) == -EINVAL) prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT); if (IS_ERR(prog)) return PTR_ERR(prog); if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) { /* Like other non BPF_PROG_TYPE_SOCKET_FILTER * bpf prog (e.g. sockmap). It depends on the * limitation imposed by bpf_prog_load(). * Hence, sysctl_optmem_max is not checked. */ if ((sk->sk_type != SOCK_STREAM && sk->sk_type != SOCK_DGRAM) || (sk->sk_protocol != IPPROTO_UDP && sk->sk_protocol != IPPROTO_TCP) || (sk->sk_family != AF_INET && sk->sk_family != AF_INET6)) { err = -ENOTSUPP; goto err_prog_put; } } else { /* BPF_PROG_TYPE_SOCKET_FILTER */ if (bpf_prog_size(prog->len) > sysctl_optmem_max) { err = -ENOMEM; goto err_prog_put; } } err = reuseport_attach_prog(sk, prog); err_prog_put: if (err) bpf_prog_put(prog); return err; } void sk_reuseport_prog_free(struct bpf_prog *prog) { if (!prog) return; if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) bpf_prog_put(prog); else bpf_prog_destroy(prog); } struct bpf_scratchpad { union { __be32 diff[MAX_BPF_STACK / sizeof(__be32)]; u8 buff[MAX_BPF_STACK]; }; }; static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp); static inline int __bpf_try_make_writable(struct sk_buff *skb, unsigned int write_len) { return skb_ensure_writable(skb, write_len); } static inline int bpf_try_make_writable(struct sk_buff *skb, unsigned int write_len) { int err = __bpf_try_make_writable(skb, write_len); bpf_compute_data_pointers(skb); return err; } static int bpf_try_make_head_writable(struct sk_buff *skb) { return bpf_try_make_writable(skb, skb_headlen(skb)); } static inline void bpf_push_mac_rcsum(struct sk_buff *skb) { if (skb_at_tc_ingress(skb)) skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len); } static inline void bpf_pull_mac_rcsum(struct sk_buff *skb) { if (skb_at_tc_ingress(skb)) skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len); } BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset, const void *, from, u32, len, u64, flags) { void *ptr; if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH))) return -EINVAL; if (unlikely(offset > 0xffff)) return -EFAULT; if (unlikely(bpf_try_make_writable(skb, offset + len))) return -EFAULT; ptr = skb->data + offset; if (flags & BPF_F_RECOMPUTE_CSUM) __skb_postpull_rcsum(skb, ptr, len, offset); memcpy(ptr, from, len); if (flags & BPF_F_RECOMPUTE_CSUM) __skb_postpush_rcsum(skb, ptr, len, offset); if (flags & BPF_F_INVALIDATE_HASH) skb_clear_hash(skb); return 0; } static const struct bpf_func_proto bpf_skb_store_bytes_proto = { .func = bpf_skb_store_bytes, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_PTR_TO_MEM, .arg4_type = ARG_CONST_SIZE, .arg5_type = ARG_ANYTHING, }; BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset, void *, to, u32, len) { void *ptr; if (unlikely(offset > 0xffff)) goto err_clear; ptr = skb_header_pointer(skb, offset, len, to); if (unlikely(!ptr)) goto err_clear; if (ptr != to) memcpy(to, ptr, len); return 0; err_clear: memset(to, 0, len); return -EFAULT; } static const struct bpf_func_proto bpf_skb_load_bytes_proto = { .func = bpf_skb_load_bytes, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_PTR_TO_UNINIT_MEM, .arg4_type = ARG_CONST_SIZE, }; BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb, u32, offset, void *, to, u32, len, u32, start_header) { u8 *end = skb_tail_pointer(skb); u8 *start, *ptr; if (unlikely(offset > 0xffff)) goto err_clear; switch (start_header) { case BPF_HDR_START_MAC: if (unlikely(!skb_mac_header_was_set(skb))) goto err_clear; start = skb_mac_header(skb); break; case BPF_HDR_START_NET: start = skb_network_header(skb); break; default: goto err_clear; } ptr = start + offset; if (likely(ptr + len <= end)) { memcpy(to, ptr, len); return 0; } err_clear: memset(to, 0, len); return -EFAULT; } static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = { .func = bpf_skb_load_bytes_relative, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_PTR_TO_UNINIT_MEM, .arg4_type = ARG_CONST_SIZE, .arg5_type = ARG_ANYTHING, }; BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len) { /* Idea is the following: should the needed direct read/write * test fail during runtime, we can pull in more data and redo * again, since implicitly, we invalidate previous checks here. * * Or, since we know how much we need to make read/writeable, * this can be done once at the program beginning for direct * access case. By this we overcome limitations of only current * headroom being accessible. */ return bpf_try_make_writable(skb, len ? : skb_headlen(skb)); } static const struct bpf_func_proto bpf_skb_pull_data_proto = { .func = bpf_skb_pull_data, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, }; static inline int sk_skb_try_make_writable(struct sk_buff *skb, unsigned int write_len) { int err = __bpf_try_make_writable(skb, write_len); bpf_compute_data_end_sk_skb(skb); return err; } BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len) { /* Idea is the following: should the needed direct read/write * test fail during runtime, we can pull in more data and redo * again, since implicitly, we invalidate previous checks here. * * Or, since we know how much we need to make read/writeable, * this can be done once at the program beginning for direct * access case. By this we overcome limitations of only current * headroom being accessible. */ return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb)); } static const struct bpf_func_proto sk_skb_pull_data_proto = { .func = sk_skb_pull_data, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, }; BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset, u64, from, u64, to, u64, flags) { __sum16 *ptr; if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK))) return -EINVAL; if (unlikely(offset > 0xffff || offset & 1)) return -EFAULT; if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr)))) return -EFAULT; ptr = (__sum16 *)(skb->data + offset); switch (flags & BPF_F_HDR_FIELD_MASK) { case 0: if (unlikely(from != 0)) return -EINVAL; csum_replace_by_diff(ptr, to); break; case 2: csum_replace2(ptr, from, to); break; case 4: csum_replace4(ptr, from, to); break; default: return -EINVAL; } return 0; } static const struct bpf_func_proto bpf_l3_csum_replace_proto = { .func = bpf_l3_csum_replace, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_ANYTHING, .arg5_type = ARG_ANYTHING, }; BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset, u64, from, u64, to, u64, flags) { bool is_pseudo = flags & BPF_F_PSEUDO_HDR; bool is_mmzero = flags & BPF_F_MARK_MANGLED_0; bool do_mforce = flags & BPF_F_MARK_ENFORCE; __sum16 *ptr; if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE | BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK))) return -EINVAL; if (unlikely(offset > 0xffff || offset & 1)) return -EFAULT; if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr)))) return -EFAULT; ptr = (__sum16 *)(skb->data + offset); if (is_mmzero && !do_mforce && !*ptr) return 0; switch (flags & BPF_F_HDR_FIELD_MASK) { case 0: if (unlikely(from != 0)) return -EINVAL; inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo); break; case 2: inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo); break; case 4: inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo); break; default: return -EINVAL; } if (is_mmzero && !*ptr) *ptr = CSUM_MANGLED_0; return 0; } static const struct bpf_func_proto bpf_l4_csum_replace_proto = { .func = bpf_l4_csum_replace, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_ANYTHING, .arg5_type = ARG_ANYTHING, }; BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size, __be32 *, to, u32, to_size, __wsum, seed) { struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp); u32 diff_size = from_size + to_size; int i, j = 0; /* This is quite flexible, some examples: * * from_size == 0, to_size > 0, seed := csum --> pushing data * from_size > 0, to_size == 0, seed := csum --> pulling data * from_size > 0, to_size > 0, seed := 0 --> diffing data * * Even for diffing, from_size and to_size don't need to be equal. */ if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) || diff_size > sizeof(sp->diff))) return -EINVAL; for (i = 0; i < from_size / sizeof(__be32); i++, j++) sp->diff[j] = ~from[i]; for (i = 0; i < to_size / sizeof(__be32); i++, j++) sp->diff[j] = to[i]; return csum_partial(sp->diff, diff_size, seed); } static const struct bpf_func_proto bpf_csum_diff_proto = { .func = bpf_csum_diff, .gpl_only = false, .pkt_access = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_MEM_OR_NULL, .arg2_type = ARG_CONST_SIZE_OR_ZERO, .arg3_type = ARG_PTR_TO_MEM_OR_NULL, .arg4_type = ARG_CONST_SIZE_OR_ZERO, .arg5_type = ARG_ANYTHING, }; BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum) { /* The interface is to be used in combination with bpf_csum_diff() * for direct packet writes. csum rotation for alignment as well * as emulating csum_sub() can be done from the eBPF program. */ if (skb->ip_summed == CHECKSUM_COMPLETE) return (skb->csum = csum_add(skb->csum, csum)); return -ENOTSUPP; } static const struct bpf_func_proto bpf_csum_update_proto = { .func = bpf_csum_update, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, }; static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb) { return dev_forward_skb(dev, skb); } static inline int __bpf_rx_skb_no_mac(struct net_device *dev, struct sk_buff *skb) { int ret = ____dev_forward_skb(dev, skb); if (likely(!ret)) { skb->dev = dev; ret = netif_rx(skb); } return ret; } static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb) { int ret; if (dev_xmit_recursion()) { net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n"); kfree_skb(skb); return -ENETDOWN; } skb->dev = dev; skb->tstamp = 0; dev_xmit_recursion_inc(); ret = dev_queue_xmit(skb); dev_xmit_recursion_dec(); return ret; } static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev, u32 flags) { unsigned int mlen = skb_network_offset(skb); if (mlen) { __skb_pull(skb, mlen); /* At ingress, the mac header has already been pulled once. * At egress, skb_pospull_rcsum has to be done in case that * the skb is originated from ingress (i.e. a forwarded skb) * to ensure that rcsum starts at net header. */ if (!skb_at_tc_ingress(skb)) skb_postpull_rcsum(skb, skb_mac_header(skb), mlen); } skb_pop_mac_header(skb); skb_reset_mac_len(skb); return flags & BPF_F_INGRESS ? __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb); } static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev, u32 flags) { /* Verify that a link layer header is carried */ if (unlikely(skb->mac_header >= skb->network_header)) { kfree_skb(skb); return -ERANGE; } bpf_push_mac_rcsum(skb); return flags & BPF_F_INGRESS ? __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb); } static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev, u32 flags) { if (dev_is_mac_header_xmit(dev)) return __bpf_redirect_common(skb, dev, flags); else return __bpf_redirect_no_mac(skb, dev, flags); } BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags) { struct net_device *dev; struct sk_buff *clone; int ret; if (unlikely(flags & ~(BPF_F_INGRESS))) return -EINVAL; dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex); if (unlikely(!dev)) return -EINVAL; clone = skb_clone(skb, GFP_ATOMIC); if (unlikely(!clone)) return -ENOMEM; /* For direct write, we need to keep the invariant that the skbs * we're dealing with need to be uncloned. Should uncloning fail * here, we need to free the just generated clone to unclone once * again. */ ret = bpf_try_make_head_writable(skb); if (unlikely(ret)) { kfree_skb(clone); return -ENOMEM; } return __bpf_redirect(clone, dev, flags); } static const struct bpf_func_proto bpf_clone_redirect_proto = { .func = bpf_clone_redirect, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_ANYTHING, }; DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info); EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info); BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags) { struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); if (unlikely(flags & ~(BPF_F_INGRESS))) return TC_ACT_SHOT; ri->ifindex = ifindex; ri->flags = flags; return TC_ACT_REDIRECT; } int skb_do_redirect(struct sk_buff *skb) { struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); struct net_device *dev; dev = dev_get_by_index_rcu(dev_net(skb->dev), ri->ifindex); ri->ifindex = 0; if (unlikely(!dev)) { kfree_skb(skb); return -EINVAL; } return __bpf_redirect(skb, dev, ri->flags); } static const struct bpf_func_proto bpf_redirect_proto = { .func = bpf_redirect, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_ANYTHING, .arg2_type = ARG_ANYTHING, }; BPF_CALL_4(bpf_sk_redirect_hash, struct sk_buff *, skb, struct bpf_map *, map, void *, key, u64, flags) { struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); /* If user passes invalid input drop the packet. */ if (unlikely(flags & ~(BPF_F_INGRESS))) return SK_DROP; tcb->bpf.flags = flags; tcb->bpf.sk_redir = __sock_hash_lookup_elem(map, key); if (!tcb->bpf.sk_redir) return SK_DROP; return SK_PASS; } static const struct bpf_func_proto bpf_sk_redirect_hash_proto = { .func = bpf_sk_redirect_hash, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_CONST_MAP_PTR, .arg3_type = ARG_PTR_TO_MAP_KEY, .arg4_type = ARG_ANYTHING, }; BPF_CALL_4(bpf_sk_redirect_map, struct sk_buff *, skb, struct bpf_map *, map, u32, key, u64, flags) { struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); /* If user passes invalid input drop the packet. */ if (unlikely(flags & ~(BPF_F_INGRESS))) return SK_DROP; tcb->bpf.flags = flags; tcb->bpf.sk_redir = __sock_map_lookup_elem(map, key); if (!tcb->bpf.sk_redir) return SK_DROP; return SK_PASS; } struct sock *do_sk_redirect_map(struct sk_buff *skb) { struct tcp_skb_cb *tcb = TCP_SKB_CB(skb); return tcb->bpf.sk_redir; } static const struct bpf_func_proto bpf_sk_redirect_map_proto = { .func = bpf_sk_redirect_map, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_CONST_MAP_PTR, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_ANYTHING, }; BPF_CALL_4(bpf_msg_redirect_hash, struct sk_msg_buff *, msg, struct bpf_map *, map, void *, key, u64, flags) { /* If user passes invalid input drop the packet. */ if (unlikely(flags & ~(BPF_F_INGRESS))) return SK_DROP; msg->flags = flags; msg->sk_redir = __sock_hash_lookup_elem(map, key); if (!msg->sk_redir) return SK_DROP; return SK_PASS; } static const struct bpf_func_proto bpf_msg_redirect_hash_proto = { .func = bpf_msg_redirect_hash, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_CONST_MAP_PTR, .arg3_type = ARG_PTR_TO_MAP_KEY, .arg4_type = ARG_ANYTHING, }; BPF_CALL_4(bpf_msg_redirect_map, struct sk_msg_buff *, msg, struct bpf_map *, map, u32, key, u64, flags) { /* If user passes invalid input drop the packet. */ if (unlikely(flags & ~(BPF_F_INGRESS))) return SK_DROP; msg->flags = flags; msg->sk_redir = __sock_map_lookup_elem(map, key); if (!msg->sk_redir) return SK_DROP; return SK_PASS; } struct sock *do_msg_redirect_map(struct sk_msg_buff *msg) { return msg->sk_redir; } static const struct bpf_func_proto bpf_msg_redirect_map_proto = { .func = bpf_msg_redirect_map, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_CONST_MAP_PTR, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_ANYTHING, }; BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg_buff *, msg, u32, bytes) { msg->apply_bytes = bytes; return 0; } static const struct bpf_func_proto bpf_msg_apply_bytes_proto = { .func = bpf_msg_apply_bytes, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, }; BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg_buff *, msg, u32, bytes) { msg->cork_bytes = bytes; return 0; } static const struct bpf_func_proto bpf_msg_cork_bytes_proto = { .func = bpf_msg_cork_bytes, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, }; #define sk_msg_iter_var(var) \ do { \ var++; \ if (var == MAX_SKB_FRAGS) \ var = 0; \ } while (0) BPF_CALL_4(bpf_msg_pull_data, struct sk_msg_buff *, msg, u32, start, u32, end, u64, flags) { unsigned int len = 0, offset = 0, copy = 0, poffset = 0; int bytes = end - start, bytes_sg_total; struct scatterlist *sg = msg->sg_data; int first_sg, last_sg, i, shift; unsigned char *p, *to, *from; struct page *page; if (unlikely(flags || end <= start)) return -EINVAL; /* First find the starting scatterlist element */ i = msg->sg_start; do { len = sg[i].length; if (start < offset + len) break; offset += len; sk_msg_iter_var(i); } while (i != msg->sg_end); if (unlikely(start >= offset + len)) return -EINVAL; first_sg = i; /* The start may point into the sg element so we need to also * account for the headroom. */ bytes_sg_total = start - offset + bytes; if (!msg->sg_copy[i] && bytes_sg_total <= len) goto out; /* At this point we need to linearize multiple scatterlist * elements or a single shared page. Either way we need to * copy into a linear buffer exclusively owned by BPF. Then * place the buffer in the scatterlist and fixup the original * entries by removing the entries now in the linear buffer * and shifting the remaining entries. For now we do not try * to copy partial entries to avoid complexity of running out * of sg_entry slots. The downside is reading a single byte * will copy the entire sg entry. */ do { copy += sg[i].length; sk_msg_iter_var(i); if (bytes_sg_total <= copy) break; } while (i != msg->sg_end); last_sg = i; if (unlikely(bytes_sg_total > copy)) return -EINVAL; page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP, get_order(copy)); if (unlikely(!page)) return -ENOMEM; p = page_address(page); i = first_sg; do { from = sg_virt(&sg[i]); len = sg[i].length; to = p + poffset; memcpy(to, from, len); poffset += len; sg[i].length = 0; put_page(sg_page(&sg[i])); sk_msg_iter_var(i); } while (i != last_sg); sg[first_sg].length = copy; sg_set_page(&sg[first_sg], page, copy, 0); /* To repair sg ring we need to shift entries. If we only * had a single entry though we can just replace it and * be done. Otherwise walk the ring and shift the entries. */ WARN_ON_ONCE(last_sg == first_sg); shift = last_sg > first_sg ? last_sg - first_sg - 1 : MAX_SKB_FRAGS - first_sg + last_sg - 1; if (!shift) goto out; i = first_sg; sk_msg_iter_var(i); do { int move_from; if (i + shift >= MAX_SKB_FRAGS) move_from = i + shift - MAX_SKB_FRAGS; else move_from = i + shift; if (move_from == msg->sg_end) break; sg[i] = sg[move_from]; sg[move_from].length = 0; sg[move_from].page_link = 0; sg[move_from].offset = 0; sk_msg_iter_var(i); } while (1); msg->sg_end -= shift; if (msg->sg_end < 0) msg->sg_end += MAX_SKB_FRAGS; out: msg->data = sg_virt(&sg[first_sg]) + start - offset; msg->data_end = msg->data + bytes; return 0; } static const struct bpf_func_proto bpf_msg_pull_data_proto = { .func = bpf_msg_pull_data, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_ANYTHING, }; BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb) { return task_get_classid(skb); } static const struct bpf_func_proto bpf_get_cgroup_classid_proto = { .func = bpf_get_cgroup_classid, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, }; BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb) { return dst_tclassid(skb); } static const struct bpf_func_proto bpf_get_route_realm_proto = { .func = bpf_get_route_realm, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, }; BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb) { /* If skb_clear_hash() was called due to mangling, we can * trigger SW recalculation here. Later access to hash * can then use the inline skb->hash via context directly * instead of calling this helper again. */ return skb_get_hash(skb); } static const struct bpf_func_proto bpf_get_hash_recalc_proto = { .func = bpf_get_hash_recalc, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, }; BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb) { /* After all direct packet write, this can be used once for * triggering a lazy recalc on next skb_get_hash() invocation. */ skb_clear_hash(skb); return 0; } static const struct bpf_func_proto bpf_set_hash_invalid_proto = { .func = bpf_set_hash_invalid, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, }; BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash) { /* Set user specified hash as L4(+), so that it gets returned * on skb_get_hash() call unless BPF prog later on triggers a * skb_clear_hash(). */ __skb_set_sw_hash(skb, hash, true); return 0; } static const struct bpf_func_proto bpf_set_hash_proto = { .func = bpf_set_hash, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, }; BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto, u16, vlan_tci) { int ret; if (unlikely(vlan_proto != htons(ETH_P_8021Q) && vlan_proto != htons(ETH_P_8021AD))) vlan_proto = htons(ETH_P_8021Q); bpf_push_mac_rcsum(skb); ret = skb_vlan_push(skb, vlan_proto, vlan_tci); bpf_pull_mac_rcsum(skb); bpf_compute_data_pointers(skb); return ret; } static const struct bpf_func_proto bpf_skb_vlan_push_proto = { .func = bpf_skb_vlan_push, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_ANYTHING, }; BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb) { int ret; bpf_push_mac_rcsum(skb); ret = skb_vlan_pop(skb); bpf_pull_mac_rcsum(skb); bpf_compute_data_pointers(skb); return ret; } static const struct bpf_func_proto bpf_skb_vlan_pop_proto = { .func = bpf_skb_vlan_pop, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, }; static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len) { /* Caller already did skb_cow() with len as headroom, * so no need to do it here. */ skb_push(skb, len); memmove(skb->data, skb->data + len, off); memset(skb->data + off, 0, len); /* No skb_postpush_rcsum(skb, skb->data + off, len) * needed here as it does not change the skb->csum * result for checksum complete when summing over * zeroed blocks. */ return 0; } static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len) { /* skb_ensure_writable() is not needed here, as we're * already working on an uncloned skb. */ if (unlikely(!pskb_may_pull(skb, off + len))) return -ENOMEM; skb_postpull_rcsum(skb, skb->data + off, len); memmove(skb->data + len, skb->data, off); __skb_pull(skb, len); return 0; } static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len) { bool trans_same = skb->transport_header == skb->network_header; int ret; /* There's no need for __skb_push()/__skb_pull() pair to * get to the start of the mac header as we're guaranteed * to always start from here under eBPF. */ ret = bpf_skb_generic_push(skb, off, len); if (likely(!ret)) { skb->mac_header -= len; skb->network_header -= len; if (trans_same) skb->transport_header = skb->network_header; } return ret; } static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len) { bool trans_same = skb->transport_header == skb->network_header; int ret; /* Same here, __skb_push()/__skb_pull() pair not needed. */ ret = bpf_skb_generic_pop(skb, off, len); if (likely(!ret)) { skb->mac_header += len; skb->network_header += len; if (trans_same) skb->transport_header = skb->network_header; } return ret; } static int bpf_skb_proto_4_to_6(struct sk_buff *skb) { const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr); u32 off = skb_mac_header_len(skb); int ret; if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) return -ENOTSUPP; ret = skb_cow(skb, len_diff); if (unlikely(ret < 0)) return ret; ret = bpf_skb_net_hdr_push(skb, off, len_diff); if (unlikely(ret < 0)) return ret; if (skb_is_gso(skb)) { struct skb_shared_info *shinfo = skb_shinfo(skb); /* SKB_GSO_TCPV4 needs to be changed into * SKB_GSO_TCPV6. */ if (shinfo->gso_type & SKB_GSO_TCPV4) { shinfo->gso_type &= ~SKB_GSO_TCPV4; shinfo->gso_type |= SKB_GSO_TCPV6; } /* Due to IPv6 header, MSS needs to be downgraded. */ skb_decrease_gso_size(shinfo, len_diff); /* Header must be checked, and gso_segs recomputed. */ shinfo->gso_type |= SKB_GSO_DODGY; shinfo->gso_segs = 0; } skb->protocol = htons(ETH_P_IPV6); skb_clear_hash(skb); return 0; } static int bpf_skb_proto_6_to_4(struct sk_buff *skb) { const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr); u32 off = skb_mac_header_len(skb); int ret; if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) return -ENOTSUPP; ret = skb_unclone(skb, GFP_ATOMIC); if (unlikely(ret < 0)) return ret; ret = bpf_skb_net_hdr_pop(skb, off, len_diff); if (unlikely(ret < 0)) return ret; if (skb_is_gso(skb)) { struct skb_shared_info *shinfo = skb_shinfo(skb); /* SKB_GSO_TCPV6 needs to be changed into * SKB_GSO_TCPV4. */ if (shinfo->gso_type & SKB_GSO_TCPV6) { shinfo->gso_type &= ~SKB_GSO_TCPV6; shinfo->gso_type |= SKB_GSO_TCPV4; } /* Due to IPv4 header, MSS can be upgraded. */ skb_increase_gso_size(shinfo, len_diff); /* Header must be checked, and gso_segs recomputed. */ shinfo->gso_type |= SKB_GSO_DODGY; shinfo->gso_segs = 0; } skb->protocol = htons(ETH_P_IP); skb_clear_hash(skb); return 0; } static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto) { __be16 from_proto = skb_protocol(skb, true); if (from_proto == htons(ETH_P_IP) && to_proto == htons(ETH_P_IPV6)) return bpf_skb_proto_4_to_6(skb); if (from_proto == htons(ETH_P_IPV6) && to_proto == htons(ETH_P_IP)) return bpf_skb_proto_6_to_4(skb); return -ENOTSUPP; } BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto, u64, flags) { int ret; if (unlikely(flags)) return -EINVAL; /* General idea is that this helper does the basic groundwork * needed for changing the protocol, and eBPF program fills the * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace() * and other helpers, rather than passing a raw buffer here. * * The rationale is to keep this minimal and without a need to * deal with raw packet data. F.e. even if we would pass buffers * here, the program still needs to call the bpf_lX_csum_replace() * helpers anyway. Plus, this way we keep also separation of * concerns, since f.e. bpf_skb_store_bytes() should only take * care of stores. * * Currently, additional options and extension header space are * not supported, but flags register is reserved so we can adapt * that. For offloads, we mark packet as dodgy, so that headers * need to be verified first. */ ret = bpf_skb_proto_xlat(skb, proto); bpf_compute_data_pointers(skb); return ret; } static const struct bpf_func_proto bpf_skb_change_proto_proto = { .func = bpf_skb_change_proto, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_ANYTHING, }; BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type) { /* We only allow a restricted subset to be changed for now. */ if (unlikely(!skb_pkt_type_ok(skb->pkt_type) || !skb_pkt_type_ok(pkt_type))) return -EINVAL; skb->pkt_type = pkt_type; return 0; } static const struct bpf_func_proto bpf_skb_change_type_proto = { .func = bpf_skb_change_type, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, }; static u32 bpf_skb_net_base_len(const struct sk_buff *skb) { switch (skb_protocol(skb, true)) { case htons(ETH_P_IP): return sizeof(struct iphdr); case htons(ETH_P_IPV6): return sizeof(struct ipv6hdr); default: return ~0U; } } static int bpf_skb_net_grow(struct sk_buff *skb, u32 len_diff) { u32 off = skb_mac_header_len(skb) + bpf_skb_net_base_len(skb); int ret; if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) return -ENOTSUPP; ret = skb_cow(skb, len_diff); if (unlikely(ret < 0)) return ret; ret = bpf_skb_net_hdr_push(skb, off, len_diff); if (unlikely(ret < 0)) return ret; if (skb_is_gso(skb)) { struct skb_shared_info *shinfo = skb_shinfo(skb); /* Due to header grow, MSS needs to be downgraded. */ skb_decrease_gso_size(shinfo, len_diff); /* Header must be checked, and gso_segs recomputed. */ shinfo->gso_type |= SKB_GSO_DODGY; shinfo->gso_segs = 0; } return 0; } static int bpf_skb_net_shrink(struct sk_buff *skb, u32 len_diff) { u32 off = skb_mac_header_len(skb) + bpf_skb_net_base_len(skb); int ret; if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) return -ENOTSUPP; ret = skb_unclone(skb, GFP_ATOMIC); if (unlikely(ret < 0)) return ret; ret = bpf_skb_net_hdr_pop(skb, off, len_diff); if (unlikely(ret < 0)) return ret; if (skb_is_gso(skb)) { struct skb_shared_info *shinfo = skb_shinfo(skb); /* Due to header shrink, MSS can be upgraded. */ skb_increase_gso_size(shinfo, len_diff); /* Header must be checked, and gso_segs recomputed. */ shinfo->gso_type |= SKB_GSO_DODGY; shinfo->gso_segs = 0; } return 0; } static u32 __bpf_skb_max_len(const struct sk_buff *skb) { return skb->dev ? skb->dev->mtu + skb->dev->hard_header_len : SKB_MAX_ALLOC; } static int bpf_skb_adjust_net(struct sk_buff *skb, s32 len_diff) { bool trans_same = skb->transport_header == skb->network_header; u32 len_cur, len_diff_abs = abs(len_diff); u32 len_min = bpf_skb_net_base_len(skb); u32 len_max = __bpf_skb_max_len(skb); __be16 proto = skb_protocol(skb, true); bool shrink = len_diff < 0; int ret; if (unlikely(len_diff_abs > 0xfffU)) return -EFAULT; if (unlikely(proto != htons(ETH_P_IP) && proto != htons(ETH_P_IPV6))) return -ENOTSUPP; len_cur = skb->len - skb_network_offset(skb); if (skb_transport_header_was_set(skb) && !trans_same) len_cur = skb_network_header_len(skb); if ((shrink && (len_diff_abs >= len_cur || len_cur - len_diff_abs < len_min)) || (!shrink && (skb->len + len_diff_abs > len_max && !skb_is_gso(skb)))) return -ENOTSUPP; ret = shrink ? bpf_skb_net_shrink(skb, len_diff_abs) : bpf_skb_net_grow(skb, len_diff_abs); bpf_compute_data_pointers(skb); return ret; } BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff, u32, mode, u64, flags) { if (unlikely(flags)) return -EINVAL; if (likely(mode == BPF_ADJ_ROOM_NET)) return bpf_skb_adjust_net(skb, len_diff); return -ENOTSUPP; } static const struct bpf_func_proto bpf_skb_adjust_room_proto = { .func = bpf_skb_adjust_room, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_ANYTHING, }; static u32 __bpf_skb_min_len(const struct sk_buff *skb) { u32 min_len = skb_network_offset(skb); if (skb_transport_header_was_set(skb)) min_len = skb_transport_offset(skb); if (skb->ip_summed == CHECKSUM_PARTIAL) min_len = skb_checksum_start_offset(skb) + skb->csum_offset + sizeof(__sum16); return min_len; } static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len) { unsigned int old_len = skb->len; int ret; ret = __skb_grow_rcsum(skb, new_len); if (!ret) memset(skb->data + old_len, 0, new_len - old_len); return ret; } static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len) { return __skb_trim_rcsum(skb, new_len); } static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len, u64 flags) { u32 max_len = __bpf_skb_max_len(skb); u32 min_len = __bpf_skb_min_len(skb); int ret; if (unlikely(flags || new_len > max_len || new_len < min_len)) return -EINVAL; if (skb->encapsulation) return -ENOTSUPP; /* The basic idea of this helper is that it's performing the * needed work to either grow or trim an skb, and eBPF program * rewrites the rest via helpers like bpf_skb_store_bytes(), * bpf_lX_csum_replace() and others rather than passing a raw * buffer here. This one is a slow path helper and intended * for replies with control messages. * * Like in bpf_skb_change_proto(), we want to keep this rather * minimal and without protocol specifics so that we are able * to separate concerns as in bpf_skb_store_bytes() should only * be the one responsible for writing buffers. * * It's really expected to be a slow path operation here for * control message replies, so we're implicitly linearizing, * uncloning and drop offloads from the skb by this. */ ret = __bpf_try_make_writable(skb, skb->len); if (!ret) { if (new_len > skb->len) ret = bpf_skb_grow_rcsum(skb, new_len); else if (new_len < skb->len) ret = bpf_skb_trim_rcsum(skb, new_len); if (!ret && skb_is_gso(skb)) skb_gso_reset(skb); } return ret; } BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len, u64, flags) { int ret = __bpf_skb_change_tail(skb, new_len, flags); bpf_compute_data_pointers(skb); return ret; } static const struct bpf_func_proto bpf_skb_change_tail_proto = { .func = bpf_skb_change_tail, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_ANYTHING, }; BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len, u64, flags) { int ret = __bpf_skb_change_tail(skb, new_len, flags); bpf_compute_data_end_sk_skb(skb); return ret; } static const struct bpf_func_proto sk_skb_change_tail_proto = { .func = sk_skb_change_tail, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_ANYTHING, }; static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room, u64 flags) { u32 max_len = __bpf_skb_max_len(skb); u32 new_len = skb->len + head_room; int ret; if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) || new_len < skb->len)) return -EINVAL; ret = skb_cow(skb, head_room); if (likely(!ret)) { /* Idea for this helper is that we currently only * allow to expand on mac header. This means that * skb->protocol network header, etc, stay as is. * Compared to bpf_skb_change_tail(), we're more * flexible due to not needing to linearize or * reset GSO. Intention for this helper is to be * used by an L3 skb that needs to push mac header * for redirection into L2 device. */ __skb_push(skb, head_room); memset(skb->data, 0, head_room); skb_reset_mac_header(skb); } return ret; } BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room, u64, flags) { int ret = __bpf_skb_change_head(skb, head_room, flags); bpf_compute_data_pointers(skb); return ret; } static const struct bpf_func_proto bpf_skb_change_head_proto = { .func = bpf_skb_change_head, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_ANYTHING, }; BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room, u64, flags) { int ret = __bpf_skb_change_head(skb, head_room, flags); bpf_compute_data_end_sk_skb(skb); return ret; } static const struct bpf_func_proto sk_skb_change_head_proto = { .func = sk_skb_change_head, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_ANYTHING, }; static unsigned long xdp_get_metalen(const struct xdp_buff *xdp) { return xdp_data_meta_unsupported(xdp) ? 0 : xdp->data - xdp->data_meta; } BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset) { void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame); unsigned long metalen = xdp_get_metalen(xdp); void *data_start = xdp_frame_end + metalen; void *data = xdp->data + offset; if (unlikely(data < data_start || data > xdp->data_end - ETH_HLEN)) return -EINVAL; if (metalen) memmove(xdp->data_meta + offset, xdp->data_meta, metalen); xdp->data_meta += offset; xdp->data = data; return 0; } static const struct bpf_func_proto bpf_xdp_adjust_head_proto = { .func = bpf_xdp_adjust_head, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, }; BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset) { void *data_end = xdp->data_end + offset; /* only shrinking is allowed for now. */ if (unlikely(offset >= 0)) return -EINVAL; if (unlikely(data_end < xdp->data + ETH_HLEN)) return -EINVAL; xdp->data_end = data_end; return 0; } static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = { .func = bpf_xdp_adjust_tail, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, }; BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset) { void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame); void *meta = xdp->data_meta + offset; unsigned long metalen = xdp->data - meta; if (xdp_data_meta_unsupported(xdp)) return -ENOTSUPP; if (unlikely(meta < xdp_frame_end || meta > xdp->data)) return -EINVAL; if (unlikely((metalen & (sizeof(__u32) - 1)) || (metalen > 32))) return -EACCES; xdp->data_meta = meta; return 0; } static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = { .func = bpf_xdp_adjust_meta, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, }; static int __bpf_tx_xdp(struct net_device *dev, struct bpf_map *map, struct xdp_buff *xdp, u32 index) { struct xdp_frame *xdpf; int err, sent; if (!dev->netdev_ops->ndo_xdp_xmit) { return -EOPNOTSUPP; } err = xdp_ok_fwd_dev(dev, xdp->data_end - xdp->data); if (unlikely(err)) return err; xdpf = convert_to_xdp_frame(xdp); if (unlikely(!xdpf)) return -EOVERFLOW; sent = dev->netdev_ops->ndo_xdp_xmit(dev, 1, &xdpf, XDP_XMIT_FLUSH); if (sent <= 0) return sent; return 0; } static int __bpf_tx_xdp_map(struct net_device *dev_rx, void *fwd, struct bpf_map *map, struct xdp_buff *xdp, u32 index) { int err; switch (map->map_type) { case BPF_MAP_TYPE_DEVMAP: { struct bpf_dtab_netdev *dst = fwd; err = dev_map_enqueue(dst, xdp, dev_rx); if (err) return err; __dev_map_insert_ctx(map, index); break; } case BPF_MAP_TYPE_CPUMAP: { struct bpf_cpu_map_entry *rcpu = fwd; err = cpu_map_enqueue(rcpu, xdp, dev_rx); if (err) return err; __cpu_map_insert_ctx(map, index); break; } case BPF_MAP_TYPE_XSKMAP: { struct xdp_sock *xs = fwd; err = __xsk_map_redirect(map, xdp, xs); return err; } default: return -EBADRQC; } return 0; } void xdp_do_flush_map(void) { struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); struct bpf_map *map = ri->map_to_flush; ri->map_to_flush = NULL; if (map) { switch (map->map_type) { case BPF_MAP_TYPE_DEVMAP: __dev_map_flush(map); break; case BPF_MAP_TYPE_CPUMAP: __cpu_map_flush(map); break; case BPF_MAP_TYPE_XSKMAP: __xsk_map_flush(map); break; default: break; } } } EXPORT_SYMBOL_GPL(xdp_do_flush_map); static void *__xdp_map_lookup_elem(struct bpf_map *map, u32 index) { switch (map->map_type) { case BPF_MAP_TYPE_DEVMAP: return __dev_map_lookup_elem(map, index); case BPF_MAP_TYPE_CPUMAP: return __cpu_map_lookup_elem(map, index); case BPF_MAP_TYPE_XSKMAP: return __xsk_map_lookup_elem(map, index); default: return NULL; } } void bpf_clear_redirect_map(struct bpf_map *map) { struct bpf_redirect_info *ri; int cpu; for_each_possible_cpu(cpu) { ri = per_cpu_ptr(&bpf_redirect_info, cpu); /* Avoid polluting remote cacheline due to writes if * not needed. Once we pass this test, we need the * cmpxchg() to make sure it hasn't been changed in * the meantime by remote CPU. */ if (unlikely(READ_ONCE(ri->map) == map)) cmpxchg(&ri->map, map, NULL); } } static int xdp_do_redirect_map(struct net_device *dev, struct xdp_buff *xdp, struct bpf_prog *xdp_prog, struct bpf_map *map) { struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); u32 index = ri->ifindex; void *fwd = NULL; int err; ri->ifindex = 0; WRITE_ONCE(ri->map, NULL); fwd = __xdp_map_lookup_elem(map, index); if (!fwd) { err = -EINVAL; goto err; } if (ri->map_to_flush && ri->map_to_flush != map) xdp_do_flush_map(); err = __bpf_tx_xdp_map(dev, fwd, map, xdp, index); if (unlikely(err)) goto err; ri->map_to_flush = map; _trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index); return 0; err: _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err); return err; } int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp, struct bpf_prog *xdp_prog) { struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); struct bpf_map *map = READ_ONCE(ri->map); struct net_device *fwd; u32 index = ri->ifindex; int err; if (map) return xdp_do_redirect_map(dev, xdp, xdp_prog, map); fwd = dev_get_by_index_rcu(dev_net(dev), index); ri->ifindex = 0; if (unlikely(!fwd)) { err = -EINVAL; goto err; } err = __bpf_tx_xdp(fwd, NULL, xdp, 0); if (unlikely(err)) goto err; _trace_xdp_redirect(dev, xdp_prog, index); return 0; err: _trace_xdp_redirect_err(dev, xdp_prog, index, err); return err; } EXPORT_SYMBOL_GPL(xdp_do_redirect); static int xdp_do_generic_redirect_map(struct net_device *dev, struct sk_buff *skb, struct xdp_buff *xdp, struct bpf_prog *xdp_prog, struct bpf_map *map) { struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); u32 index = ri->ifindex; void *fwd = NULL; int err = 0; ri->ifindex = 0; WRITE_ONCE(ri->map, NULL); fwd = __xdp_map_lookup_elem(map, index); if (unlikely(!fwd)) { err = -EINVAL; goto err; } if (map->map_type == BPF_MAP_TYPE_DEVMAP) { struct bpf_dtab_netdev *dst = fwd; err = dev_map_generic_redirect(dst, skb, xdp_prog); if (unlikely(err)) goto err; } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) { struct xdp_sock *xs = fwd; err = xsk_generic_rcv(xs, xdp); if (err) goto err; consume_skb(skb); } else { /* TODO: Handle BPF_MAP_TYPE_CPUMAP */ err = -EBADRQC; goto err; } _trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index); return 0; err: _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err); return err; } int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb, struct xdp_buff *xdp, struct bpf_prog *xdp_prog) { struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); struct bpf_map *map = READ_ONCE(ri->map); u32 index = ri->ifindex; struct net_device *fwd; int err = 0; if (map) return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog, map); ri->ifindex = 0; fwd = dev_get_by_index_rcu(dev_net(dev), index); if (unlikely(!fwd)) { err = -EINVAL; goto err; } err = xdp_ok_fwd_dev(fwd, skb->len); if (unlikely(err)) goto err; skb->dev = fwd; _trace_xdp_redirect(dev, xdp_prog, index); generic_xdp_tx(skb, xdp_prog); return 0; err: _trace_xdp_redirect_err(dev, xdp_prog, index, err); return err; } EXPORT_SYMBOL_GPL(xdp_do_generic_redirect); BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags) { struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); if (unlikely(flags)) return XDP_ABORTED; ri->ifindex = ifindex; ri->flags = flags; WRITE_ONCE(ri->map, NULL); return XDP_REDIRECT; } static const struct bpf_func_proto bpf_xdp_redirect_proto = { .func = bpf_xdp_redirect, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_ANYTHING, .arg2_type = ARG_ANYTHING, }; BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex, u64, flags) { struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); if (unlikely(flags)) return XDP_ABORTED; ri->ifindex = ifindex; ri->flags = flags; WRITE_ONCE(ri->map, map); return XDP_REDIRECT; } static const struct bpf_func_proto bpf_xdp_redirect_map_proto = { .func = bpf_xdp_redirect_map, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_CONST_MAP_PTR, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_ANYTHING, }; static unsigned long bpf_skb_copy(void *dst_buff, const void *skb, unsigned long off, unsigned long len) { void *ptr = skb_header_pointer(skb, off, len, dst_buff); if (unlikely(!ptr)) return len; if (ptr != dst_buff) memcpy(dst_buff, ptr, len); return 0; } BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map, u64, flags, void *, meta, u64, meta_size) { u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32; if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK))) return -EINVAL; if (unlikely(skb_size > skb->len)) return -EFAULT; return bpf_event_output(map, flags, meta, meta_size, skb, skb_size, bpf_skb_copy); } static const struct bpf_func_proto bpf_skb_event_output_proto = { .func = bpf_skb_event_output, .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_CONST_MAP_PTR, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_PTR_TO_MEM, .arg5_type = ARG_CONST_SIZE_OR_ZERO, }; static unsigned short bpf_tunnel_key_af(u64 flags) { return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET; } BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to, u32, size, u64, flags) { const struct ip_tunnel_info *info = skb_tunnel_info(skb); u8 compat[sizeof(struct bpf_tunnel_key)]; void *to_orig = to; int err; if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) { err = -EINVAL; goto err_clear; } if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) { err = -EPROTO; goto err_clear; } if (unlikely(size != sizeof(struct bpf_tunnel_key))) { err = -EINVAL; switch (size) { case offsetof(struct bpf_tunnel_key, tunnel_label): case offsetof(struct bpf_tunnel_key, tunnel_ext): goto set_compat; case offsetof(struct bpf_tunnel_key, remote_ipv6[1]): /* Fixup deprecated structure layouts here, so we have * a common path later on. */ if (ip_tunnel_info_af(info) != AF_INET) goto err_clear; set_compat: to = (struct bpf_tunnel_key *)compat; break; default: goto err_clear; } } to->tunnel_id = be64_to_cpu(info->key.tun_id); to->tunnel_tos = info->key.tos; to->tunnel_ttl = info->key.ttl; to->tunnel_ext = 0; if (flags & BPF_F_TUNINFO_IPV6) { memcpy(to->remote_ipv6, &info->key.u.ipv6.src, sizeof(to->remote_ipv6)); to->tunnel_label = be32_to_cpu(info->key.label); } else { to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src); memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3); to->tunnel_label = 0; } if (unlikely(size != sizeof(struct bpf_tunnel_key))) memcpy(to_orig, to, size); return 0; err_clear: memset(to_orig, 0, size); return err; } static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = { .func = bpf_skb_get_tunnel_key, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_PTR_TO_UNINIT_MEM, .arg3_type = ARG_CONST_SIZE, .arg4_type = ARG_ANYTHING, }; BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size) { const struct ip_tunnel_info *info = skb_tunnel_info(skb); int err; if (unlikely(!info || !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) { err = -ENOENT; goto err_clear; } if (unlikely(size < info->options_len)) { err = -ENOMEM; goto err_clear; } ip_tunnel_info_opts_get(to, info); if (size > info->options_len) memset(to + info->options_len, 0, size - info->options_len); return info->options_len; err_clear: memset(to, 0, size); return err; } static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = { .func = bpf_skb_get_tunnel_opt, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_PTR_TO_UNINIT_MEM, .arg3_type = ARG_CONST_SIZE, }; static struct metadata_dst __percpu *md_dst; BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb, const struct bpf_tunnel_key *, from, u32, size, u64, flags) { struct metadata_dst *md = this_cpu_ptr(md_dst); u8 compat[sizeof(struct bpf_tunnel_key)]; struct ip_tunnel_info *info; if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX | BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER))) return -EINVAL; if (unlikely(size != sizeof(struct bpf_tunnel_key))) { switch (size) { case offsetof(struct bpf_tunnel_key, tunnel_label): case offsetof(struct bpf_tunnel_key, tunnel_ext): case offsetof(struct bpf_tunnel_key, remote_ipv6[1]): /* Fixup deprecated structure layouts here, so we have * a common path later on. */ memcpy(compat, from, size); memset(compat + size, 0, sizeof(compat) - size); from = (const struct bpf_tunnel_key *) compat; break; default: return -EINVAL; } } if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) || from->tunnel_ext)) return -EINVAL; skb_dst_drop(skb); dst_hold((struct dst_entry *) md); skb_dst_set(skb, (struct dst_entry *) md); info = &md->u.tun_info; memset(info, 0, sizeof(*info)); info->mode = IP_TUNNEL_INFO_TX; info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE; if (flags & BPF_F_DONT_FRAGMENT) info->key.tun_flags |= TUNNEL_DONT_FRAGMENT; if (flags & BPF_F_ZERO_CSUM_TX) info->key.tun_flags &= ~TUNNEL_CSUM; if (flags & BPF_F_SEQ_NUMBER) info->key.tun_flags |= TUNNEL_SEQ; info->key.tun_id = cpu_to_be64(from->tunnel_id); info->key.tos = from->tunnel_tos; info->key.ttl = from->tunnel_ttl; if (flags & BPF_F_TUNINFO_IPV6) { info->mode |= IP_TUNNEL_INFO_IPV6; memcpy(&info->key.u.ipv6.dst, from->remote_ipv6, sizeof(from->remote_ipv6)); info->key.label = cpu_to_be32(from->tunnel_label) & IPV6_FLOWLABEL_MASK; } else { info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4); } return 0; } static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = { .func = bpf_skb_set_tunnel_key, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_PTR_TO_MEM, .arg3_type = ARG_CONST_SIZE, .arg4_type = ARG_ANYTHING, }; BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb, const u8 *, from, u32, size) { struct ip_tunnel_info *info = skb_tunnel_info(skb); const struct metadata_dst *md = this_cpu_ptr(md_dst); if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1)))) return -EINVAL; if (unlikely(size > IP_TUNNEL_OPTS_MAX)) return -ENOMEM; ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT); return 0; } static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = { .func = bpf_skb_set_tunnel_opt, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_PTR_TO_MEM, .arg3_type = ARG_CONST_SIZE, }; static const struct bpf_func_proto * bpf_get_skb_set_tunnel_proto(enum bpf_func_id which) { if (!md_dst) { struct metadata_dst __percpu *tmp; tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX, METADATA_IP_TUNNEL, GFP_KERNEL); if (!tmp) return NULL; if (cmpxchg(&md_dst, NULL, tmp)) metadata_dst_free_percpu(tmp); } switch (which) { case BPF_FUNC_skb_set_tunnel_key: return &bpf_skb_set_tunnel_key_proto; case BPF_FUNC_skb_set_tunnel_opt: return &bpf_skb_set_tunnel_opt_proto; default: return NULL; } } BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map, u32, idx) { struct bpf_array *array = container_of(map, struct bpf_array, map); struct cgroup *cgrp; struct sock *sk; sk = skb_to_full_sk(skb); if (!sk || !sk_fullsock(sk)) return -ENOENT; if (unlikely(idx >= array->map.max_entries)) return -E2BIG; cgrp = READ_ONCE(array->ptrs[idx]); if (unlikely(!cgrp)) return -EAGAIN; return sk_under_cgroup_hierarchy(sk, cgrp); } static const struct bpf_func_proto bpf_skb_under_cgroup_proto = { .func = bpf_skb_under_cgroup, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_CONST_MAP_PTR, .arg3_type = ARG_ANYTHING, }; #ifdef CONFIG_SOCK_CGROUP_DATA BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb) { struct sock *sk = skb_to_full_sk(skb); struct cgroup *cgrp; if (!sk || !sk_fullsock(sk)) return 0; cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); return cgrp->kn->id.id; } static const struct bpf_func_proto bpf_skb_cgroup_id_proto = { .func = bpf_skb_cgroup_id, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, }; BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int, ancestor_level) { struct sock *sk = skb_to_full_sk(skb); struct cgroup *ancestor; struct cgroup *cgrp; if (!sk || !sk_fullsock(sk)) return 0; cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data); ancestor = cgroup_ancestor(cgrp, ancestor_level); if (!ancestor) return 0; return ancestor->kn->id.id; } static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = { .func = bpf_skb_ancestor_cgroup_id, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, }; #endif static unsigned long bpf_xdp_copy(void *dst_buff, const void *src_buff, unsigned long off, unsigned long len) { memcpy(dst_buff, src_buff + off, len); return 0; } BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map, u64, flags, void *, meta, u64, meta_size) { u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32; if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK))) return -EINVAL; if (unlikely(xdp_size > (unsigned long)(xdp->data_end - xdp->data))) return -EFAULT; return bpf_event_output(map, flags, meta, meta_size, xdp->data, xdp_size, bpf_xdp_copy); } static const struct bpf_func_proto bpf_xdp_event_output_proto = { .func = bpf_xdp_event_output, .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_CONST_MAP_PTR, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_PTR_TO_MEM, .arg5_type = ARG_CONST_SIZE_OR_ZERO, }; BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb) { return skb->sk ? sock_gen_cookie(skb->sk) : 0; } static const struct bpf_func_proto bpf_get_socket_cookie_proto = { .func = bpf_get_socket_cookie, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, }; BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx) { return sock_gen_cookie(ctx->sk); } static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = { .func = bpf_get_socket_cookie_sock_addr, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, }; BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx) { return sock_gen_cookie(ctx->sk); } static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = { .func = bpf_get_socket_cookie_sock_ops, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, }; BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb) { struct sock *sk = sk_to_full_sk(skb->sk); kuid_t kuid; if (!sk || !sk_fullsock(sk)) return overflowuid; kuid = sock_net_uid(sock_net(sk), sk); return from_kuid_munged(sock_net(sk)->user_ns, kuid); } static const struct bpf_func_proto bpf_get_socket_uid_proto = { .func = bpf_get_socket_uid, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, }; BPF_CALL_5(bpf_setsockopt, struct bpf_sock_ops_kern *, bpf_sock, int, level, int, optname, char *, optval, int, optlen) { struct sock *sk = bpf_sock->sk; int ret = 0; int val; if (!sk_fullsock(sk)) return -EINVAL; if (level == SOL_SOCKET) { if (optlen != sizeof(int)) return -EINVAL; val = *((int *)optval); /* Only some socketops are supported */ switch (optname) { case SO_RCVBUF: val = min_t(u32, val, sysctl_rmem_max); sk->sk_userlocks |= SOCK_RCVBUF_LOCK; sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF); break; case SO_SNDBUF: val = min_t(u32, val, sysctl_wmem_max); sk->sk_userlocks |= SOCK_SNDBUF_LOCK; sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF); break; case SO_MAX_PACING_RATE: sk->sk_max_pacing_rate = val; sk->sk_pacing_rate = min(sk->sk_pacing_rate, sk->sk_max_pacing_rate); break; case SO_PRIORITY: sk->sk_priority = val; break; case SO_RCVLOWAT: if (val < 0) val = INT_MAX; sk->sk_rcvlowat = val ? : 1; break; case SO_MARK: if (sk->sk_mark != val) { sk->sk_mark = val; sk_dst_reset(sk); } break; default: ret = -EINVAL; } #ifdef CONFIG_INET } else if (level == SOL_IP) { if (optlen != sizeof(int) || sk->sk_family != AF_INET) return -EINVAL; val = *((int *)optval); /* Only some options are supported */ switch (optname) { case IP_TOS: if (val < -1 || val > 0xff) { ret = -EINVAL; } else { struct inet_sock *inet = inet_sk(sk); if (val == -1) val = 0; inet->tos = val; } break; default: ret = -EINVAL; } #if IS_ENABLED(CONFIG_IPV6) } else if (level == SOL_IPV6) { if (optlen != sizeof(int) || sk->sk_family != AF_INET6) return -EINVAL; val = *((int *)optval); /* Only some options are supported */ switch (optname) { case IPV6_TCLASS: if (val < -1 || val > 0xff) { ret = -EINVAL; } else { struct ipv6_pinfo *np = inet6_sk(sk); if (val == -1) val = 0; np->tclass = val; } break; default: ret = -EINVAL; } #endif } else if (level == SOL_TCP && sk->sk_prot->setsockopt == tcp_setsockopt) { if (optname == TCP_CONGESTION) { char name[TCP_CA_NAME_MAX]; bool reinit = bpf_sock->op > BPF_SOCK_OPS_NEEDS_ECN; strncpy(name, optval, min_t(long, optlen, TCP_CA_NAME_MAX-1)); name[TCP_CA_NAME_MAX-1] = 0; ret = tcp_set_congestion_control(sk, name, false, reinit, true); } else { struct tcp_sock *tp = tcp_sk(sk); if (optlen != sizeof(int)) return -EINVAL; val = *((int *)optval); /* Only some options are supported */ switch (optname) { case TCP_BPF_IW: if (val <= 0 || tp->data_segs_out > tp->syn_data) ret = -EINVAL; else tp->snd_cwnd = val; break; case TCP_BPF_SNDCWND_CLAMP: if (val <= 0) { ret = -EINVAL; } else { tp->snd_cwnd_clamp = val; tp->snd_ssthresh = val; } break; default: ret = -EINVAL; } } #endif } else { ret = -EINVAL; } return ret; } static const struct bpf_func_proto bpf_setsockopt_proto = { .func = bpf_setsockopt, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_PTR_TO_MEM, .arg5_type = ARG_CONST_SIZE, }; BPF_CALL_5(bpf_getsockopt, struct bpf_sock_ops_kern *, bpf_sock, int, level, int, optname, char *, optval, int, optlen) { struct sock *sk = bpf_sock->sk; if (!sk_fullsock(sk)) goto err_clear; #ifdef CONFIG_INET if (level == SOL_TCP && sk->sk_prot->getsockopt == tcp_getsockopt) { if (optname == TCP_CONGESTION) { struct inet_connection_sock *icsk = inet_csk(sk); if (!icsk->icsk_ca_ops || optlen <= 1) goto err_clear; strncpy(optval, icsk->icsk_ca_ops->name, optlen); optval[optlen - 1] = 0; } else { goto err_clear; } } else if (level == SOL_IP) { struct inet_sock *inet = inet_sk(sk); if (optlen != sizeof(int) || sk->sk_family != AF_INET) goto err_clear; /* Only some options are supported */ switch (optname) { case IP_TOS: *((int *)optval) = (int)inet->tos; break; default: goto err_clear; } #if IS_ENABLED(CONFIG_IPV6) } else if (level == SOL_IPV6) { struct ipv6_pinfo *np = inet6_sk(sk); if (optlen != sizeof(int) || sk->sk_family != AF_INET6) goto err_clear; /* Only some options are supported */ switch (optname) { case IPV6_TCLASS: *((int *)optval) = (int)np->tclass; break; default: goto err_clear; } #endif } else { goto err_clear; } return 0; #endif err_clear: memset(optval, 0, optlen); return -EINVAL; } static const struct bpf_func_proto bpf_getsockopt_proto = { .func = bpf_getsockopt, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_ANYTHING, .arg4_type = ARG_PTR_TO_UNINIT_MEM, .arg5_type = ARG_CONST_SIZE, }; BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock, int, argval) { struct sock *sk = bpf_sock->sk; int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS; if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk)) return -EINVAL; if (val) tcp_sk(sk)->bpf_sock_ops_cb_flags = val; return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS); } static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = { .func = bpf_sock_ops_cb_flags_set, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, }; const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly; EXPORT_SYMBOL_GPL(ipv6_bpf_stub); BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr, int, addr_len) { #ifdef CONFIG_INET struct sock *sk = ctx->sk; int err; /* Binding to port can be expensive so it's prohibited in the helper. * Only binding to IP is supported. */ err = -EINVAL; if (addr->sa_family == AF_INET) { if (addr_len < sizeof(struct sockaddr_in)) return err; if (((struct sockaddr_in *)addr)->sin_port != htons(0)) return err; return __inet_bind(sk, addr, addr_len, true, false); #if IS_ENABLED(CONFIG_IPV6) } else if (addr->sa_family == AF_INET6) { if (addr_len < SIN6_LEN_RFC2133) return err; if (((struct sockaddr_in6 *)addr)->sin6_port != htons(0)) return err; /* ipv6_bpf_stub cannot be NULL, since it's called from * bpf_cgroup_inet6_connect hook and ipv6 is already loaded */ return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, true, false); #endif /* CONFIG_IPV6 */ } #endif /* CONFIG_INET */ return -EAFNOSUPPORT; } static const struct bpf_func_proto bpf_bind_proto = { .func = bpf_bind, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_PTR_TO_MEM, .arg3_type = ARG_CONST_SIZE, }; #ifdef CONFIG_XFRM BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index, struct bpf_xfrm_state *, to, u32, size, u64, flags) { const struct sec_path *sp = skb_sec_path(skb); const struct xfrm_state *x; if (!sp || unlikely(index >= sp->len || flags)) goto err_clear; x = sp->xvec[index]; if (unlikely(size != sizeof(struct bpf_xfrm_state))) goto err_clear; to->reqid = x->props.reqid; to->spi = x->id.spi; to->family = x->props.family; to->ext = 0; if (to->family == AF_INET6) { memcpy(to->remote_ipv6, x->props.saddr.a6, sizeof(to->remote_ipv6)); } else { to->remote_ipv4 = x->props.saddr.a4; memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3); } return 0; err_clear: memset(to, 0, size); return -EINVAL; } static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = { .func = bpf_skb_get_xfrm_state, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_PTR_TO_UNINIT_MEM, .arg4_type = ARG_CONST_SIZE, .arg5_type = ARG_ANYTHING, }; #endif #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6) static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params, const struct neighbour *neigh, const struct net_device *dev) { memcpy(params->dmac, neigh->ha, ETH_ALEN); memcpy(params->smac, dev->dev_addr, ETH_ALEN); params->h_vlan_TCI = 0; params->h_vlan_proto = 0; params->ifindex = dev->ifindex; return 0; } #endif #if IS_ENABLED(CONFIG_INET) static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params, u32 flags, bool check_mtu) { struct in_device *in_dev; struct neighbour *neigh; struct net_device *dev; struct fib_result res; struct fib_nh *nh; struct flowi4 fl4; int err; u32 mtu; dev = dev_get_by_index_rcu(net, params->ifindex); if (unlikely(!dev)) return -ENODEV; /* verify forwarding is enabled on this interface */ in_dev = __in_dev_get_rcu(dev); if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev))) return BPF_FIB_LKUP_RET_FWD_DISABLED; if (flags & BPF_FIB_LOOKUP_OUTPUT) { fl4.flowi4_iif = 1; fl4.flowi4_oif = params->ifindex; } else { fl4.flowi4_iif = params->ifindex; fl4.flowi4_oif = 0; } fl4.flowi4_tos = params->tos & IPTOS_RT_MASK; fl4.flowi4_scope = RT_SCOPE_UNIVERSE; fl4.flowi4_flags = 0; fl4.flowi4_proto = params->l4_protocol; fl4.daddr = params->ipv4_dst; fl4.saddr = params->ipv4_src; fl4.fl4_sport = params->sport; fl4.fl4_dport = params->dport; if (flags & BPF_FIB_LOOKUP_DIRECT) { u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN; struct fib_table *tb; tb = fib_get_table(net, tbid); if (unlikely(!tb)) return BPF_FIB_LKUP_RET_NOT_FWDED; err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF); } else { fl4.flowi4_mark = 0; fl4.flowi4_secid = 0; fl4.flowi4_tun_key.tun_id = 0; fl4.flowi4_uid = sock_net_uid(net, NULL); err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF); } if (err) { /* map fib lookup errors to RTN_ type */ if (err == -EINVAL) return BPF_FIB_LKUP_RET_BLACKHOLE; if (err == -EHOSTUNREACH) return BPF_FIB_LKUP_RET_UNREACHABLE; if (err == -EACCES) return BPF_FIB_LKUP_RET_PROHIBIT; return BPF_FIB_LKUP_RET_NOT_FWDED; } if (res.type != RTN_UNICAST) return BPF_FIB_LKUP_RET_NOT_FWDED; if (res.fi->fib_nhs > 1) fib_select_path(net, &res, &fl4, NULL); if (check_mtu) { mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst); if (params->tot_len > mtu) return BPF_FIB_LKUP_RET_FRAG_NEEDED; } nh = &res.fi->fib_nh[res.nh_sel]; /* do not handle lwt encaps right now */ if (nh->nh_lwtstate) return BPF_FIB_LKUP_RET_UNSUPP_LWT; dev = nh->nh_dev; if (nh->nh_gw) params->ipv4_dst = nh->nh_gw; params->rt_metric = res.fi->fib_priority; /* xdp and cls_bpf programs are run in RCU-bh so * rcu_read_lock_bh is not needed here */ neigh = __ipv4_neigh_lookup_noref(dev, (__force u32)params->ipv4_dst); if (!neigh) return BPF_FIB_LKUP_RET_NO_NEIGH; return bpf_fib_set_fwd_params(params, neigh, dev); } #endif #if IS_ENABLED(CONFIG_IPV6) static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params, u32 flags, bool check_mtu) { struct in6_addr *src = (struct in6_addr *) params->ipv6_src; struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst; struct neighbour *neigh; struct net_device *dev; struct inet6_dev *idev; struct fib6_info *f6i; struct flowi6 fl6; int strict = 0; int oif; u32 mtu; /* link local addresses are never forwarded */ if (rt6_need_strict(dst) || rt6_need_strict(src)) return BPF_FIB_LKUP_RET_NOT_FWDED; dev = dev_get_by_index_rcu(net, params->ifindex); if (unlikely(!dev)) return -ENODEV; idev = __in6_dev_get_safely(dev); if (unlikely(!idev || !idev->cnf.forwarding)) return BPF_FIB_LKUP_RET_FWD_DISABLED; if (flags & BPF_FIB_LOOKUP_OUTPUT) { fl6.flowi6_iif = 1; oif = fl6.flowi6_oif = params->ifindex; } else { oif = fl6.flowi6_iif = params->ifindex; fl6.flowi6_oif = 0; strict = RT6_LOOKUP_F_HAS_SADDR; } fl6.flowlabel = params->flowinfo; fl6.flowi6_scope = 0; fl6.flowi6_flags = 0; fl6.mp_hash = 0; fl6.flowi6_proto = params->l4_protocol; fl6.daddr = *dst; fl6.saddr = *src; fl6.fl6_sport = params->sport; fl6.fl6_dport = params->dport; if (flags & BPF_FIB_LOOKUP_DIRECT) { u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN; struct fib6_table *tb; tb = ipv6_stub->fib6_get_table(net, tbid); if (unlikely(!tb)) return BPF_FIB_LKUP_RET_NOT_FWDED; f6i = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, strict); } else { fl6.flowi6_mark = 0; fl6.flowi6_secid = 0; fl6.flowi6_tun_key.tun_id = 0; fl6.flowi6_uid = sock_net_uid(net, NULL); f6i = ipv6_stub->fib6_lookup(net, oif, &fl6, strict); } if (unlikely(IS_ERR_OR_NULL(f6i) || f6i == net->ipv6.fib6_null_entry)) return BPF_FIB_LKUP_RET_NOT_FWDED; if (unlikely(f6i->fib6_flags & RTF_REJECT)) { switch (f6i->fib6_type) { case RTN_BLACKHOLE: return BPF_FIB_LKUP_RET_BLACKHOLE; case RTN_UNREACHABLE: return BPF_FIB_LKUP_RET_UNREACHABLE; case RTN_PROHIBIT: return BPF_FIB_LKUP_RET_PROHIBIT; default: return BPF_FIB_LKUP_RET_NOT_FWDED; } } if (f6i->fib6_type != RTN_UNICAST) return BPF_FIB_LKUP_RET_NOT_FWDED; if (f6i->fib6_nsiblings && fl6.flowi6_oif == 0) f6i = ipv6_stub->fib6_multipath_select(net, f6i, &fl6, fl6.flowi6_oif, NULL, strict); if (check_mtu) { mtu = ipv6_stub->ip6_mtu_from_fib6(f6i, dst, src); if (params->tot_len > mtu) return BPF_FIB_LKUP_RET_FRAG_NEEDED; } if (f6i->fib6_nh.nh_lwtstate) return BPF_FIB_LKUP_RET_UNSUPP_LWT; if (f6i->fib6_flags & RTF_GATEWAY) *dst = f6i->fib6_nh.nh_gw; dev = f6i->fib6_nh.nh_dev; params->rt_metric = f6i->fib6_metric; /* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is * not needed here. Can not use __ipv6_neigh_lookup_noref here * because we need to get nd_tbl via the stub */ neigh = ___neigh_lookup_noref(ipv6_stub->nd_tbl, neigh_key_eq128, ndisc_hashfn, dst, dev); if (!neigh) return BPF_FIB_LKUP_RET_NO_NEIGH; return bpf_fib_set_fwd_params(params, neigh, dev); } #endif BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx, struct bpf_fib_lookup *, params, int, plen, u32, flags) { if (plen < sizeof(*params)) return -EINVAL; if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT)) return -EINVAL; switch (params->family) { #if IS_ENABLED(CONFIG_INET) case AF_INET: return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params, flags, true); #endif #if IS_ENABLED(CONFIG_IPV6) case AF_INET6: return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params, flags, true); #endif } return -EAFNOSUPPORT; } static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = { .func = bpf_xdp_fib_lookup, .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_PTR_TO_MEM, .arg3_type = ARG_CONST_SIZE, .arg4_type = ARG_ANYTHING, }; BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb, struct bpf_fib_lookup *, params, int, plen, u32, flags) { struct net *net = dev_net(skb->dev); int rc = -EAFNOSUPPORT; bool check_mtu = false; if (plen < sizeof(*params)) return -EINVAL; if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT)) return -EINVAL; if (params->tot_len) check_mtu = true; switch (params->family) { #if IS_ENABLED(CONFIG_INET) case AF_INET: rc = bpf_ipv4_fib_lookup(net, params, flags, check_mtu); break; #endif #if IS_ENABLED(CONFIG_IPV6) case AF_INET6: rc = bpf_ipv6_fib_lookup(net, params, flags, check_mtu); break; #endif } if (rc == BPF_FIB_LKUP_RET_SUCCESS && !check_mtu) { struct net_device *dev; /* When tot_len isn't provided by user, check skb * against MTU of FIB lookup resulting net_device */ dev = dev_get_by_index_rcu(net, params->ifindex); if (!is_skb_forwardable(dev, skb)) rc = BPF_FIB_LKUP_RET_FRAG_NEEDED; } return rc; } static const struct bpf_func_proto bpf_skb_fib_lookup_proto = { .func = bpf_skb_fib_lookup, .gpl_only = true, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_PTR_TO_MEM, .arg3_type = ARG_CONST_SIZE, .arg4_type = ARG_ANYTHING, }; #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF) static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len) { int err; struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr; if (!seg6_validate_srh(srh, len)) return -EINVAL; switch (type) { case BPF_LWT_ENCAP_SEG6_INLINE: if (skb_protocol(skb, true) != htons(ETH_P_IPV6)) return -EBADMSG; err = seg6_do_srh_inline(skb, srh); break; case BPF_LWT_ENCAP_SEG6: skb_reset_inner_headers(skb); skb->encapsulation = 1; err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6); break; default: return -EINVAL; } bpf_compute_data_pointers(skb); if (err) return err; ipv6_hdr(skb)->payload_len = htons(skb->len - sizeof(struct ipv6hdr)); skb_set_transport_header(skb, sizeof(struct ipv6hdr)); return seg6_lookup_nexthop(skb, NULL, 0); } #endif /* CONFIG_IPV6_SEG6_BPF */ BPF_CALL_4(bpf_lwt_push_encap, struct sk_buff *, skb, u32, type, void *, hdr, u32, len) { switch (type) { #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF) case BPF_LWT_ENCAP_SEG6: case BPF_LWT_ENCAP_SEG6_INLINE: return bpf_push_seg6_encap(skb, type, hdr, len); #endif default: return -EINVAL; } } static const struct bpf_func_proto bpf_lwt_push_encap_proto = { .func = bpf_lwt_push_encap, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_PTR_TO_MEM, .arg4_type = ARG_CONST_SIZE }; #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF) BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset, const void *, from, u32, len) { struct seg6_bpf_srh_state *srh_state = this_cpu_ptr(&seg6_bpf_srh_states); struct ipv6_sr_hdr *srh = srh_state->srh; void *srh_tlvs, *srh_end, *ptr; int srhoff = 0; if (srh == NULL) return -EINVAL; srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4)); srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen); ptr = skb->data + offset; if (ptr >= srh_tlvs && ptr + len <= srh_end) srh_state->valid = false; else if (ptr < (void *)&srh->flags || ptr + len > (void *)&srh->segments) return -EFAULT; if (unlikely(bpf_try_make_writable(skb, offset + len))) return -EFAULT; if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) return -EINVAL; srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff); memcpy(skb->data + offset, from, len); return 0; } static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = { .func = bpf_lwt_seg6_store_bytes, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_PTR_TO_MEM, .arg4_type = ARG_CONST_SIZE }; static void bpf_update_srh_state(struct sk_buff *skb) { struct seg6_bpf_srh_state *srh_state = this_cpu_ptr(&seg6_bpf_srh_states); int srhoff = 0; if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) { srh_state->srh = NULL; } else { srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff); srh_state->hdrlen = srh_state->srh->hdrlen << 3; srh_state->valid = true; } } BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb, u32, action, void *, param, u32, param_len) { struct seg6_bpf_srh_state *srh_state = this_cpu_ptr(&seg6_bpf_srh_states); int hdroff = 0; int err; switch (action) { case SEG6_LOCAL_ACTION_END_X: if (!seg6_bpf_has_valid_srh(skb)) return -EBADMSG; if (param_len != sizeof(struct in6_addr)) return -EINVAL; return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0); case SEG6_LOCAL_ACTION_END_T: if (!seg6_bpf_has_valid_srh(skb)) return -EBADMSG; if (param_len != sizeof(int)) return -EINVAL; return seg6_lookup_nexthop(skb, NULL, *(int *)param); case SEG6_LOCAL_ACTION_END_DT6: if (!seg6_bpf_has_valid_srh(skb)) return -EBADMSG; if (param_len != sizeof(int)) return -EINVAL; if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0) return -EBADMSG; if (!pskb_pull(skb, hdroff)) return -EBADMSG; skb_postpull_rcsum(skb, skb_network_header(skb), hdroff); skb_reset_network_header(skb); skb_reset_transport_header(skb); skb->encapsulation = 0; bpf_compute_data_pointers(skb); bpf_update_srh_state(skb); return seg6_lookup_nexthop(skb, NULL, *(int *)param); case SEG6_LOCAL_ACTION_END_B6: if (srh_state->srh && !seg6_bpf_has_valid_srh(skb)) return -EBADMSG; err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE, param, param_len); if (!err) bpf_update_srh_state(skb); return err; case SEG6_LOCAL_ACTION_END_B6_ENCAP: if (srh_state->srh && !seg6_bpf_has_valid_srh(skb)) return -EBADMSG; err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6, param, param_len); if (!err) bpf_update_srh_state(skb); return err; default: return -EINVAL; } } static const struct bpf_func_proto bpf_lwt_seg6_action_proto = { .func = bpf_lwt_seg6_action, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_PTR_TO_MEM, .arg4_type = ARG_CONST_SIZE }; BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset, s32, len) { struct seg6_bpf_srh_state *srh_state = this_cpu_ptr(&seg6_bpf_srh_states); struct ipv6_sr_hdr *srh = srh_state->srh; void *srh_end, *srh_tlvs, *ptr; struct ipv6hdr *hdr; int srhoff = 0; int ret; if (unlikely(srh == NULL)) return -EINVAL; srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) + ((srh->first_segment + 1) << 4)); srh_end = (void *)((unsigned char *)srh + sizeof(*srh) + srh_state->hdrlen); ptr = skb->data + offset; if (unlikely(ptr < srh_tlvs || ptr > srh_end)) return -EFAULT; if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end)) return -EFAULT; if (len > 0) { ret = skb_cow_head(skb, len); if (unlikely(ret < 0)) return ret; ret = bpf_skb_net_hdr_push(skb, offset, len); } else { ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len); } bpf_compute_data_pointers(skb); if (unlikely(ret < 0)) return ret; hdr = (struct ipv6hdr *)skb->data; hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr)); if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) return -EINVAL; srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff); srh_state->hdrlen += len; srh_state->valid = false; return 0; } static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = { .func = bpf_lwt_seg6_adjust_srh, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_ANYTHING, }; #endif /* CONFIG_IPV6_SEG6_BPF */ bool bpf_helper_changes_pkt_data(void *func) { if (func == bpf_skb_vlan_push || func == bpf_skb_vlan_pop || func == bpf_skb_store_bytes || func == bpf_skb_change_proto || func == bpf_skb_change_head || func == sk_skb_change_head || func == bpf_skb_change_tail || func == sk_skb_change_tail || func == bpf_skb_adjust_room || func == bpf_skb_pull_data || func == sk_skb_pull_data || func == bpf_clone_redirect || func == bpf_l3_csum_replace || func == bpf_l4_csum_replace || func == bpf_xdp_adjust_head || func == bpf_xdp_adjust_meta || func == bpf_msg_pull_data || func == bpf_xdp_adjust_tail || #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF) func == bpf_lwt_seg6_store_bytes || func == bpf_lwt_seg6_adjust_srh || func == bpf_lwt_seg6_action || #endif func == bpf_lwt_push_encap) return true; return false; } static const struct bpf_func_proto * bpf_base_func_proto(enum bpf_func_id func_id) { switch (func_id) { case BPF_FUNC_map_lookup_elem: return &bpf_map_lookup_elem_proto; case BPF_FUNC_map_update_elem: return &bpf_map_update_elem_proto; case BPF_FUNC_map_delete_elem: return &bpf_map_delete_elem_proto; case BPF_FUNC_get_prandom_u32: return &bpf_get_prandom_u32_proto; case BPF_FUNC_get_smp_processor_id: return &bpf_get_raw_smp_processor_id_proto; case BPF_FUNC_get_numa_node_id: return &bpf_get_numa_node_id_proto; case BPF_FUNC_tail_call: return &bpf_tail_call_proto; case BPF_FUNC_ktime_get_ns: return &bpf_ktime_get_ns_proto; case BPF_FUNC_trace_printk: if (capable(CAP_SYS_ADMIN)) return bpf_get_trace_printk_proto(); /* else: fall through */ default: return NULL; } } static const struct bpf_func_proto * sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) { switch (func_id) { /* inet and inet6 sockets are created in a process * context so there is always a valid uid/gid */ case BPF_FUNC_get_current_uid_gid: return &bpf_get_current_uid_gid_proto; case BPF_FUNC_get_local_storage: return &bpf_get_local_storage_proto; default: return bpf_base_func_proto(func_id); } } static const struct bpf_func_proto * sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) { switch (func_id) { /* inet and inet6 sockets are created in a process * context so there is always a valid uid/gid */ case BPF_FUNC_get_current_uid_gid: return &bpf_get_current_uid_gid_proto; case BPF_FUNC_bind: switch (prog->expected_attach_type) { case BPF_CGROUP_INET4_CONNECT: case BPF_CGROUP_INET6_CONNECT: return &bpf_bind_proto; default: return NULL; } case BPF_FUNC_get_socket_cookie: return &bpf_get_socket_cookie_sock_addr_proto; case BPF_FUNC_get_local_storage: return &bpf_get_local_storage_proto; default: return bpf_base_func_proto(func_id); } } static const struct bpf_func_proto * sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) { switch (func_id) { case BPF_FUNC_skb_load_bytes: return &bpf_skb_load_bytes_proto; case BPF_FUNC_skb_load_bytes_relative: return &bpf_skb_load_bytes_relative_proto; case BPF_FUNC_get_socket_cookie: return &bpf_get_socket_cookie_proto; case BPF_FUNC_get_socket_uid: return &bpf_get_socket_uid_proto; default: return bpf_base_func_proto(func_id); } } static const struct bpf_func_proto * cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) { switch (func_id) { case BPF_FUNC_get_local_storage: return &bpf_get_local_storage_proto; default: return sk_filter_func_proto(func_id, prog); } } static const struct bpf_func_proto * tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) { switch (func_id) { case BPF_FUNC_skb_store_bytes: return &bpf_skb_store_bytes_proto; case BPF_FUNC_skb_load_bytes: return &bpf_skb_load_bytes_proto; case BPF_FUNC_skb_load_bytes_relative: return &bpf_skb_load_bytes_relative_proto; case BPF_FUNC_skb_pull_data: return &bpf_skb_pull_data_proto; case BPF_FUNC_csum_diff: return &bpf_csum_diff_proto; case BPF_FUNC_csum_update: return &bpf_csum_update_proto; case BPF_FUNC_l3_csum_replace: return &bpf_l3_csum_replace_proto; case BPF_FUNC_l4_csum_replace: return &bpf_l4_csum_replace_proto; case BPF_FUNC_clone_redirect: return &bpf_clone_redirect_proto; case BPF_FUNC_get_cgroup_classid: return &bpf_get_cgroup_classid_proto; case BPF_FUNC_skb_vlan_push: return &bpf_skb_vlan_push_proto; case BPF_FUNC_skb_vlan_pop: return &bpf_skb_vlan_pop_proto; case BPF_FUNC_skb_change_proto: return &bpf_skb_change_proto_proto; case BPF_FUNC_skb_change_type: return &bpf_skb_change_type_proto; case BPF_FUNC_skb_adjust_room: return &bpf_skb_adjust_room_proto; case BPF_FUNC_skb_change_tail: return &bpf_skb_change_tail_proto; case BPF_FUNC_skb_get_tunnel_key: return &bpf_skb_get_tunnel_key_proto; case BPF_FUNC_skb_set_tunnel_key: return bpf_get_skb_set_tunnel_proto(func_id); case BPF_FUNC_skb_get_tunnel_opt: return &bpf_skb_get_tunnel_opt_proto; case BPF_FUNC_skb_set_tunnel_opt: return bpf_get_skb_set_tunnel_proto(func_id); case BPF_FUNC_redirect: return &bpf_redirect_proto; case BPF_FUNC_get_route_realm: return &bpf_get_route_realm_proto; case BPF_FUNC_get_hash_recalc: return &bpf_get_hash_recalc_proto; case BPF_FUNC_set_hash_invalid: return &bpf_set_hash_invalid_proto; case BPF_FUNC_set_hash: return &bpf_set_hash_proto; case BPF_FUNC_perf_event_output: return &bpf_skb_event_output_proto; case BPF_FUNC_get_smp_processor_id: return &bpf_get_smp_processor_id_proto; case BPF_FUNC_skb_under_cgroup: return &bpf_skb_under_cgroup_proto; case BPF_FUNC_get_socket_cookie: return &bpf_get_socket_cookie_proto; case BPF_FUNC_get_socket_uid: return &bpf_get_socket_uid_proto; case BPF_FUNC_fib_lookup: return &bpf_skb_fib_lookup_proto; #ifdef CONFIG_XFRM case BPF_FUNC_skb_get_xfrm_state: return &bpf_skb_get_xfrm_state_proto; #endif #ifdef CONFIG_SOCK_CGROUP_DATA case BPF_FUNC_skb_cgroup_id: return &bpf_skb_cgroup_id_proto; case BPF_FUNC_skb_ancestor_cgroup_id: return &bpf_skb_ancestor_cgroup_id_proto; #endif default: return bpf_base_func_proto(func_id); } } static const struct bpf_func_proto * xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) { switch (func_id) { case BPF_FUNC_perf_event_output: return &bpf_xdp_event_output_proto; case BPF_FUNC_get_smp_processor_id: return &bpf_get_smp_processor_id_proto; case BPF_FUNC_csum_diff: return &bpf_csum_diff_proto; case BPF_FUNC_xdp_adjust_head: return &bpf_xdp_adjust_head_proto; case BPF_FUNC_xdp_adjust_meta: return &bpf_xdp_adjust_meta_proto; case BPF_FUNC_redirect: return &bpf_xdp_redirect_proto; case BPF_FUNC_redirect_map: return &bpf_xdp_redirect_map_proto; case BPF_FUNC_xdp_adjust_tail: return &bpf_xdp_adjust_tail_proto; case BPF_FUNC_fib_lookup: return &bpf_xdp_fib_lookup_proto; default: return bpf_base_func_proto(func_id); } } static const struct bpf_func_proto * sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) { switch (func_id) { case BPF_FUNC_setsockopt: return &bpf_setsockopt_proto; case BPF_FUNC_getsockopt: return &bpf_getsockopt_proto; case BPF_FUNC_sock_ops_cb_flags_set: return &bpf_sock_ops_cb_flags_set_proto; case BPF_FUNC_sock_map_update: return &bpf_sock_map_update_proto; case BPF_FUNC_sock_hash_update: return &bpf_sock_hash_update_proto; case BPF_FUNC_get_socket_cookie: return &bpf_get_socket_cookie_sock_ops_proto; case BPF_FUNC_get_local_storage: return &bpf_get_local_storage_proto; default: return bpf_base_func_proto(func_id); } } static const struct bpf_func_proto * sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) { switch (func_id) { case BPF_FUNC_msg_redirect_map: return &bpf_msg_redirect_map_proto; case BPF_FUNC_msg_redirect_hash: return &bpf_msg_redirect_hash_proto; case BPF_FUNC_msg_apply_bytes: return &bpf_msg_apply_bytes_proto; case BPF_FUNC_msg_cork_bytes: return &bpf_msg_cork_bytes_proto; case BPF_FUNC_msg_pull_data: return &bpf_msg_pull_data_proto; case BPF_FUNC_get_local_storage: return &bpf_get_local_storage_proto; default: return bpf_base_func_proto(func_id); } } static const struct bpf_func_proto * sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) { switch (func_id) { case BPF_FUNC_skb_store_bytes: return &bpf_skb_store_bytes_proto; case BPF_FUNC_skb_load_bytes: return &bpf_skb_load_bytes_proto; case BPF_FUNC_skb_pull_data: return &sk_skb_pull_data_proto; case BPF_FUNC_skb_change_tail: return &sk_skb_change_tail_proto; case BPF_FUNC_skb_change_head: return &sk_skb_change_head_proto; case BPF_FUNC_get_socket_cookie: return &bpf_get_socket_cookie_proto; case BPF_FUNC_get_socket_uid: return &bpf_get_socket_uid_proto; case BPF_FUNC_sk_redirect_map: return &bpf_sk_redirect_map_proto; case BPF_FUNC_sk_redirect_hash: return &bpf_sk_redirect_hash_proto; case BPF_FUNC_get_local_storage: return &bpf_get_local_storage_proto; default: return bpf_base_func_proto(func_id); } } static const struct bpf_func_proto * lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) { switch (func_id) { case BPF_FUNC_skb_load_bytes: return &bpf_skb_load_bytes_proto; case BPF_FUNC_skb_pull_data: return &bpf_skb_pull_data_proto; case BPF_FUNC_csum_diff: return &bpf_csum_diff_proto; case BPF_FUNC_get_cgroup_classid: return &bpf_get_cgroup_classid_proto; case BPF_FUNC_get_route_realm: return &bpf_get_route_realm_proto; case BPF_FUNC_get_hash_recalc: return &bpf_get_hash_recalc_proto; case BPF_FUNC_perf_event_output: return &bpf_skb_event_output_proto; case BPF_FUNC_get_smp_processor_id: return &bpf_get_smp_processor_id_proto; case BPF_FUNC_skb_under_cgroup: return &bpf_skb_under_cgroup_proto; default: return bpf_base_func_proto(func_id); } } static const struct bpf_func_proto * lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) { switch (func_id) { case BPF_FUNC_lwt_push_encap: return &bpf_lwt_push_encap_proto; default: return lwt_out_func_proto(func_id, prog); } } static const struct bpf_func_proto * lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) { switch (func_id) { case BPF_FUNC_skb_get_tunnel_key: return &bpf_skb_get_tunnel_key_proto; case BPF_FUNC_skb_set_tunnel_key: return bpf_get_skb_set_tunnel_proto(func_id); case BPF_FUNC_skb_get_tunnel_opt: return &bpf_skb_get_tunnel_opt_proto; case BPF_FUNC_skb_set_tunnel_opt: return bpf_get_skb_set_tunnel_proto(func_id); case BPF_FUNC_redirect: return &bpf_redirect_proto; case BPF_FUNC_clone_redirect: return &bpf_clone_redirect_proto; case BPF_FUNC_skb_change_tail: return &bpf_skb_change_tail_proto; case BPF_FUNC_skb_change_head: return &bpf_skb_change_head_proto; case BPF_FUNC_skb_store_bytes: return &bpf_skb_store_bytes_proto; case BPF_FUNC_csum_update: return &bpf_csum_update_proto; case BPF_FUNC_l3_csum_replace: return &bpf_l3_csum_replace_proto; case BPF_FUNC_l4_csum_replace: return &bpf_l4_csum_replace_proto; case BPF_FUNC_set_hash_invalid: return &bpf_set_hash_invalid_proto; default: return lwt_out_func_proto(func_id, prog); } } static const struct bpf_func_proto * lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) { switch (func_id) { #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF) case BPF_FUNC_lwt_seg6_store_bytes: return &bpf_lwt_seg6_store_bytes_proto; case BPF_FUNC_lwt_seg6_action: return &bpf_lwt_seg6_action_proto; case BPF_FUNC_lwt_seg6_adjust_srh: return &bpf_lwt_seg6_adjust_srh_proto; #endif default: return lwt_out_func_proto(func_id, prog); } } static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type, const struct bpf_prog *prog, struct bpf_insn_access_aux *info) { const int size_default = sizeof(__u32); if (off < 0 || off >= sizeof(struct __sk_buff)) return false; /* The verifier guarantees that size > 0. */ if (off % size != 0) return false; switch (off) { case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]): if (off + size > offsetofend(struct __sk_buff, cb[4])) return false; break; case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]): case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]): case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4): case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4): case bpf_ctx_range(struct __sk_buff, data): case bpf_ctx_range(struct __sk_buff, data_meta): case bpf_ctx_range(struct __sk_buff, data_end): if (size != size_default) return false; break; default: /* Only narrow read access allowed for now. */ if (type == BPF_WRITE) { if (size != size_default) return false; } else { bpf_ctx_record_field_size(info, size_default); if (!bpf_ctx_narrow_access_ok(off, size, size_default)) return false; } } return true; } static bool sk_filter_is_valid_access(int off, int size, enum bpf_access_type type, const struct bpf_prog *prog, struct bpf_insn_access_aux *info) { switch (off) { case bpf_ctx_range(struct __sk_buff, tc_classid): case bpf_ctx_range(struct __sk_buff, data): case bpf_ctx_range(struct __sk_buff, data_meta): case bpf_ctx_range(struct __sk_buff, data_end): case bpf_ctx_range_till(struct __sk_buff, family, local_port): return false; } if (type == BPF_WRITE) { switch (off) { case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]): break; default: return false; } } return bpf_skb_is_valid_access(off, size, type, prog, info); } static bool lwt_is_valid_access(int off, int size, enum bpf_access_type type, const struct bpf_prog *prog, struct bpf_insn_access_aux *info) { switch (off) { case bpf_ctx_range(struct __sk_buff, tc_classid): case bpf_ctx_range_till(struct __sk_buff, family, local_port): case bpf_ctx_range(struct __sk_buff, data_meta): return false; } if (type == BPF_WRITE) { switch (off) { case bpf_ctx_range(struct __sk_buff, mark): case bpf_ctx_range(struct __sk_buff, priority): case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]): break; default: return false; } } switch (off) { case bpf_ctx_range(struct __sk_buff, data): info->reg_type = PTR_TO_PACKET; break; case bpf_ctx_range(struct __sk_buff, data_end): info->reg_type = PTR_TO_PACKET_END; break; } return bpf_skb_is_valid_access(off, size, type, prog, info); } /* Attach type specific accesses */ static bool __sock_filter_check_attach_type(int off, enum bpf_access_type access_type, enum bpf_attach_type attach_type) { switch (off) { case offsetof(struct bpf_sock, bound_dev_if): case offsetof(struct bpf_sock, mark): case offsetof(struct bpf_sock, priority): switch (attach_type) { case BPF_CGROUP_INET_SOCK_CREATE: goto full_access; default: return false; } case bpf_ctx_range(struct bpf_sock, src_ip4): switch (attach_type) { case BPF_CGROUP_INET4_POST_BIND: goto read_only; default: return false; } case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]): switch (attach_type) { case BPF_CGROUP_INET6_POST_BIND: goto read_only; default: return false; } case bpf_ctx_range(struct bpf_sock, src_port): switch (attach_type) { case BPF_CGROUP_INET4_POST_BIND: case BPF_CGROUP_INET6_POST_BIND: goto read_only; default: return false; } } read_only: return access_type == BPF_READ; full_access: return true; } static bool __sock_filter_check_size(int off, int size, struct bpf_insn_access_aux *info) { const int size_default = sizeof(__u32); switch (off) { case bpf_ctx_range(struct bpf_sock, src_ip4): case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]): bpf_ctx_record_field_size(info, size_default); return bpf_ctx_narrow_access_ok(off, size, size_default); } return size == size_default; } static bool sock_filter_is_valid_access(int off, int size, enum bpf_access_type type, const struct bpf_prog *prog, struct bpf_insn_access_aux *info) { if (off < 0 || off >= sizeof(struct bpf_sock)) return false; if (off % size != 0) return false; if (!__sock_filter_check_attach_type(off, type, prog->expected_attach_type)) return false; if (!__sock_filter_check_size(off, size, info)) return false; return true; } static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write, const struct bpf_prog *prog, int drop_verdict) { struct bpf_insn *insn = insn_buf; if (!direct_write) return 0; /* if (!skb->cloned) * goto start; * * (Fast-path, otherwise approximation that we might be * a clone, do the rest in helper.) */ *insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET()); *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK); *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7); /* ret = bpf_skb_pull_data(skb, 0); */ *insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1); *insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2); *insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_skb_pull_data); /* if (!ret) * goto restore; * return TC_ACT_SHOT; */ *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2); *insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict); *insn++ = BPF_EXIT_INSN(); /* restore: */ *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6); /* start: */ *insn++ = prog->insnsi[0]; return insn - insn_buf; } static int bpf_gen_ld_abs(const struct bpf_insn *orig, struct bpf_insn *insn_buf) { bool indirect = BPF_MODE(orig->code) == BPF_IND; struct bpf_insn *insn = insn_buf; if (!indirect) { *insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm); } else { *insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg); if (orig->imm) *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm); } /* We're guaranteed here that CTX is in R6. */ *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX); switch (BPF_SIZE(orig->code)) { case BPF_B: *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache); break; case BPF_H: *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache); break; case BPF_W: *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache); break; } *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2); *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0); *insn++ = BPF_EXIT_INSN(); return insn - insn_buf; } static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write, const struct bpf_prog *prog) { return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT); } static bool tc_cls_act_is_valid_access(int off, int size, enum bpf_access_type type, const struct bpf_prog *prog, struct bpf_insn_access_aux *info) { if (type == BPF_WRITE) { switch (off) { case bpf_ctx_range(struct __sk_buff, mark): case bpf_ctx_range(struct __sk_buff, tc_index): case bpf_ctx_range(struct __sk_buff, priority): case bpf_ctx_range(struct __sk_buff, tc_classid): case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]): break; default: return false; } } switch (off) { case bpf_ctx_range(struct __sk_buff, data): info->reg_type = PTR_TO_PACKET; break; case bpf_ctx_range(struct __sk_buff, data_meta): info->reg_type = PTR_TO_PACKET_META; break; case bpf_ctx_range(struct __sk_buff, data_end): info->reg_type = PTR_TO_PACKET_END; break; case bpf_ctx_range_till(struct __sk_buff, family, local_port): return false; } return bpf_skb_is_valid_access(off, size, type, prog, info); } static bool __is_valid_xdp_access(int off, int size) { if (off < 0 || off >= sizeof(struct xdp_md)) return false; if (off % size != 0) return false; if (size != sizeof(__u32)) return false; return true; } static bool xdp_is_valid_access(int off, int size, enum bpf_access_type type, const struct bpf_prog *prog, struct bpf_insn_access_aux *info) { if (type == BPF_WRITE) { if (bpf_prog_is_dev_bound(prog->aux)) { switch (off) { case offsetof(struct xdp_md, rx_queue_index): return __is_valid_xdp_access(off, size); } } return false; } switch (off) { case offsetof(struct xdp_md, data): info->reg_type = PTR_TO_PACKET; break; case offsetof(struct xdp_md, data_meta): info->reg_type = PTR_TO_PACKET_META; break; case offsetof(struct xdp_md, data_end): info->reg_type = PTR_TO_PACKET_END; break; } return __is_valid_xdp_access(off, size); } void bpf_warn_invalid_xdp_action(u32 act) { const u32 act_max = XDP_REDIRECT; WARN_ONCE(1, "%s XDP return value %u, expect packet loss!\n", act > act_max ? "Illegal" : "Driver unsupported", act); } EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action); static bool sock_addr_is_valid_access(int off, int size, enum bpf_access_type type, const struct bpf_prog *prog, struct bpf_insn_access_aux *info) { const int size_default = sizeof(__u32); if (off < 0 || off >= sizeof(struct bpf_sock_addr)) return false; if (off % size != 0) return false; /* Disallow access to IPv6 fields from IPv4 contex and vise * versa. */ switch (off) { case bpf_ctx_range(struct bpf_sock_addr, user_ip4): switch (prog->expected_attach_type) { case BPF_CGROUP_INET4_BIND: case BPF_CGROUP_INET4_CONNECT: case BPF_CGROUP_UDP4_SENDMSG: case BPF_CGROUP_UDP4_RECVMSG: break; default: return false; } break; case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]): switch (prog->expected_attach_type) { case BPF_CGROUP_INET6_BIND: case BPF_CGROUP_INET6_CONNECT: case BPF_CGROUP_UDP6_SENDMSG: case BPF_CGROUP_UDP6_RECVMSG: break; default: return false; } break; case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4): switch (prog->expected_attach_type) { case BPF_CGROUP_UDP4_SENDMSG: break; default: return false; } break; case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0], msg_src_ip6[3]): switch (prog->expected_attach_type) { case BPF_CGROUP_UDP6_SENDMSG: break; default: return false; } break; } switch (off) { case bpf_ctx_range(struct bpf_sock_addr, user_ip4): case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]): case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4): case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0], msg_src_ip6[3]): /* Only narrow read access allowed for now. */ if (type == BPF_READ) { bpf_ctx_record_field_size(info, size_default); if (!bpf_ctx_narrow_access_ok(off, size, size_default)) return false; } else { if (size != size_default) return false; } break; case bpf_ctx_range(struct bpf_sock_addr, user_port): if (size != size_default) return false; break; default: if (type == BPF_READ) { if (size != size_default) return false; } else { return false; } } return true; } static bool sock_ops_is_valid_access(int off, int size, enum bpf_access_type type, const struct bpf_prog *prog, struct bpf_insn_access_aux *info) { const int size_default = sizeof(__u32); if (off < 0 || off >= sizeof(struct bpf_sock_ops)) return false; /* The verifier guarantees that size > 0. */ if (off % size != 0) return false; if (type == BPF_WRITE) { switch (off) { case offsetof(struct bpf_sock_ops, reply): case offsetof(struct bpf_sock_ops, sk_txhash): if (size != size_default) return false; break; default: return false; } } else { switch (off) { case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received, bytes_acked): if (size != sizeof(__u64)) return false; break; default: if (size != size_default) return false; break; } } return true; } static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write, const struct bpf_prog *prog) { return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP); } static bool sk_skb_is_valid_access(int off, int size, enum bpf_access_type type, const struct bpf_prog *prog, struct bpf_insn_access_aux *info) { switch (off) { case bpf_ctx_range(struct __sk_buff, tc_classid): case bpf_ctx_range(struct __sk_buff, data_meta): return false; } if (type == BPF_WRITE) { switch (off) { case bpf_ctx_range(struct __sk_buff, tc_index): case bpf_ctx_range(struct __sk_buff, priority): break; default: return false; } } switch (off) { case bpf_ctx_range(struct __sk_buff, mark): return false; case bpf_ctx_range(struct __sk_buff, data): info->reg_type = PTR_TO_PACKET; break; case bpf_ctx_range(struct __sk_buff, data_end): info->reg_type = PTR_TO_PACKET_END; break; } return bpf_skb_is_valid_access(off, size, type, prog, info); } static bool sk_msg_is_valid_access(int off, int size, enum bpf_access_type type, const struct bpf_prog *prog, struct bpf_insn_access_aux *info) { if (type == BPF_WRITE) return false; switch (off) { case offsetof(struct sk_msg_md, data): info->reg_type = PTR_TO_PACKET; if (size != sizeof(__u64)) return false; break; case offsetof(struct sk_msg_md, data_end): info->reg_type = PTR_TO_PACKET_END; if (size != sizeof(__u64)) return false; break; default: if (size != sizeof(__u32)) return false; } if (off < 0 || off >= sizeof(struct sk_msg_md)) return false; if (off % size != 0) return false; return true; } static u32 bpf_convert_ctx_access(enum bpf_access_type type, const struct bpf_insn *si, struct bpf_insn *insn_buf, struct bpf_prog *prog, u32 *target_size) { struct bpf_insn *insn = insn_buf; int off; switch (si->off) { case offsetof(struct __sk_buff, len): *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, bpf_target_off(struct sk_buff, len, 4, target_size)); break; case offsetof(struct __sk_buff, protocol): *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg, bpf_target_off(struct sk_buff, protocol, 2, target_size)); break; case offsetof(struct __sk_buff, vlan_proto): *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg, bpf_target_off(struct sk_buff, vlan_proto, 2, target_size)); break; case offsetof(struct __sk_buff, priority): if (type == BPF_WRITE) *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg, bpf_target_off(struct sk_buff, priority, 4, target_size)); else *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, bpf_target_off(struct sk_buff, priority, 4, target_size)); break; case offsetof(struct __sk_buff, ingress_ifindex): *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, bpf_target_off(struct sk_buff, skb_iif, 4, target_size)); break; case offsetof(struct __sk_buff, ifindex): *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev), si->dst_reg, si->src_reg, offsetof(struct sk_buff, dev)); *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1); *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, bpf_target_off(struct net_device, ifindex, 4, target_size)); break; case offsetof(struct __sk_buff, hash): *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, bpf_target_off(struct sk_buff, hash, 4, target_size)); break; case offsetof(struct __sk_buff, mark): if (type == BPF_WRITE) *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg, bpf_target_off(struct sk_buff, mark, 4, target_size)); else *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, bpf_target_off(struct sk_buff, mark, 4, target_size)); break; case offsetof(struct __sk_buff, pkt_type): *target_size = 1; *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg, PKT_TYPE_OFFSET()); *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX); #ifdef __BIG_ENDIAN_BITFIELD *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5); #endif break; case offsetof(struct __sk_buff, queue_mapping): *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg, bpf_target_off(struct sk_buff, queue_mapping, 2, target_size)); break; case offsetof(struct __sk_buff, vlan_present): case offsetof(struct __sk_buff, vlan_tci): BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000); *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg, bpf_target_off(struct sk_buff, vlan_tci, 2, target_size)); if (si->off == offsetof(struct __sk_buff, vlan_tci)) { *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, ~VLAN_TAG_PRESENT); } else { *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 12); *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1); } break; case offsetof(struct __sk_buff, cb[0]) ... offsetofend(struct __sk_buff, cb[4]) - 1: BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, data) < 20); BUILD_BUG_ON((offsetof(struct sk_buff, cb) + offsetof(struct qdisc_skb_cb, data)) % sizeof(__u64)); prog->cb_access = 1; off = si->off; off -= offsetof(struct __sk_buff, cb[0]); off += offsetof(struct sk_buff, cb); off += offsetof(struct qdisc_skb_cb, data); if (type == BPF_WRITE) *insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg, si->src_reg, off); else *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg, si->src_reg, off); break; case offsetof(struct __sk_buff, tc_classid): BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, tc_classid) != 2); off = si->off; off -= offsetof(struct __sk_buff, tc_classid); off += offsetof(struct sk_buff, cb); off += offsetof(struct qdisc_skb_cb, tc_classid); *target_size = 2; if (type == BPF_WRITE) *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg, off); else *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg, off); break; case offsetof(struct __sk_buff, data): *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data), si->dst_reg, si->src_reg, offsetof(struct sk_buff, data)); break; case offsetof(struct __sk_buff, data_meta): off = si->off; off -= offsetof(struct __sk_buff, data_meta); off += offsetof(struct sk_buff, cb); off += offsetof(struct bpf_skb_data_end, data_meta); *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg, off); break; case offsetof(struct __sk_buff, data_end): off = si->off; off -= offsetof(struct __sk_buff, data_end); off += offsetof(struct sk_buff, cb); off += offsetof(struct bpf_skb_data_end, data_end); *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg, off); break; case offsetof(struct __sk_buff, tc_index): #ifdef CONFIG_NET_SCHED if (type == BPF_WRITE) *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg, bpf_target_off(struct sk_buff, tc_index, 2, target_size)); else *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg, bpf_target_off(struct sk_buff, tc_index, 2, target_size)); #else *target_size = 2; if (type == BPF_WRITE) *insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg); else *insn++ = BPF_MOV64_IMM(si->dst_reg, 0); #endif break; case offsetof(struct __sk_buff, napi_id): #if defined(CONFIG_NET_RX_BUSY_POLL) *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, bpf_target_off(struct sk_buff, napi_id, 4, target_size)); *insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1); *insn++ = BPF_MOV64_IMM(si->dst_reg, 0); #else *target_size = 4; *insn++ = BPF_MOV64_IMM(si->dst_reg, 0); #endif break; case offsetof(struct __sk_buff, family): BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk), si->dst_reg, si->src_reg, offsetof(struct sk_buff, sk)); *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg, bpf_target_off(struct sock_common, skc_family, 2, target_size)); break; case offsetof(struct __sk_buff, remote_ip4): BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk), si->dst_reg, si->src_reg, offsetof(struct sk_buff, sk)); *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, bpf_target_off(struct sock_common, skc_daddr, 4, target_size)); break; case offsetof(struct __sk_buff, local_ip4): BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_rcv_saddr) != 4); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk), si->dst_reg, si->src_reg, offsetof(struct sk_buff, sk)); *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, bpf_target_off(struct sock_common, skc_rcv_saddr, 4, target_size)); break; case offsetof(struct __sk_buff, remote_ip6[0]) ... offsetof(struct __sk_buff, remote_ip6[3]): #if IS_ENABLED(CONFIG_IPV6) BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_v6_daddr.s6_addr32[0]) != 4); off = si->off; off -= offsetof(struct __sk_buff, remote_ip6[0]); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk), si->dst_reg, si->src_reg, offsetof(struct sk_buff, sk)); *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, offsetof(struct sock_common, skc_v6_daddr.s6_addr32[0]) + off); #else *insn++ = BPF_MOV32_IMM(si->dst_reg, 0); #endif break; case offsetof(struct __sk_buff, local_ip6[0]) ... offsetof(struct __sk_buff, local_ip6[3]): #if IS_ENABLED(CONFIG_IPV6) BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_v6_rcv_saddr.s6_addr32[0]) != 4); off = si->off; off -= offsetof(struct __sk_buff, local_ip6[0]); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk), si->dst_reg, si->src_reg, offsetof(struct sk_buff, sk)); *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, offsetof(struct sock_common, skc_v6_rcv_saddr.s6_addr32[0]) + off); #else *insn++ = BPF_MOV32_IMM(si->dst_reg, 0); #endif break; case offsetof(struct __sk_buff, remote_port): BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk), si->dst_reg, si->src_reg, offsetof(struct sk_buff, sk)); *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg, bpf_target_off(struct sock_common, skc_dport, 2, target_size)); #ifndef __BIG_ENDIAN_BITFIELD *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16); #endif break; case offsetof(struct __sk_buff, local_port): BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk), si->dst_reg, si->src_reg, offsetof(struct sk_buff, sk)); *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg, bpf_target_off(struct sock_common, skc_num, 2, target_size)); break; } return insn - insn_buf; } static u32 sock_filter_convert_ctx_access(enum bpf_access_type type, const struct bpf_insn *si, struct bpf_insn *insn_buf, struct bpf_prog *prog, u32 *target_size) { struct bpf_insn *insn = insn_buf; int off; switch (si->off) { case offsetof(struct bpf_sock, bound_dev_if): BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_bound_dev_if) != 4); if (type == BPF_WRITE) *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg, offsetof(struct sock, sk_bound_dev_if)); else *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, offsetof(struct sock, sk_bound_dev_if)); break; case offsetof(struct bpf_sock, mark): BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_mark) != 4); if (type == BPF_WRITE) *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg, offsetof(struct sock, sk_mark)); else *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, offsetof(struct sock, sk_mark)); break; case offsetof(struct bpf_sock, priority): BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_priority) != 4); if (type == BPF_WRITE) *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg, offsetof(struct sock, sk_priority)); else *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, offsetof(struct sock, sk_priority)); break; case offsetof(struct bpf_sock, family): BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_family) != 2); *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg, offsetof(struct sock, sk_family)); break; case offsetof(struct bpf_sock, type): *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, offsetof(struct sock, __sk_flags_offset)); *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_TYPE_MASK); *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_TYPE_SHIFT); break; case offsetof(struct bpf_sock, protocol): *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, offsetof(struct sock, __sk_flags_offset)); *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_PROTO_MASK); *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_PROTO_SHIFT); break; case offsetof(struct bpf_sock, src_ip4): *insn++ = BPF_LDX_MEM( BPF_SIZE(si->code), si->dst_reg, si->src_reg, bpf_target_off(struct sock_common, skc_rcv_saddr, FIELD_SIZEOF(struct sock_common, skc_rcv_saddr), target_size)); break; case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]): #if IS_ENABLED(CONFIG_IPV6) off = si->off; off -= offsetof(struct bpf_sock, src_ip6[0]); *insn++ = BPF_LDX_MEM( BPF_SIZE(si->code), si->dst_reg, si->src_reg, bpf_target_off( struct sock_common, skc_v6_rcv_saddr.s6_addr32[0], FIELD_SIZEOF(struct sock_common, skc_v6_rcv_saddr.s6_addr32[0]), target_size) + off); #else (void)off; *insn++ = BPF_MOV32_IMM(si->dst_reg, 0); #endif break; case offsetof(struct bpf_sock, src_port): *insn++ = BPF_LDX_MEM( BPF_FIELD_SIZEOF(struct sock_common, skc_num), si->dst_reg, si->src_reg, bpf_target_off(struct sock_common, skc_num, FIELD_SIZEOF(struct sock_common, skc_num), target_size)); break; } return insn - insn_buf; } static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type, const struct bpf_insn *si, struct bpf_insn *insn_buf, struct bpf_prog *prog, u32 *target_size) { struct bpf_insn *insn = insn_buf; switch (si->off) { case offsetof(struct __sk_buff, ifindex): *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev), si->dst_reg, si->src_reg, offsetof(struct sk_buff, dev)); *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, bpf_target_off(struct net_device, ifindex, 4, target_size)); break; default: return bpf_convert_ctx_access(type, si, insn_buf, prog, target_size); } return insn - insn_buf; } static u32 xdp_convert_ctx_access(enum bpf_access_type type, const struct bpf_insn *si, struct bpf_insn *insn_buf, struct bpf_prog *prog, u32 *target_size) { struct bpf_insn *insn = insn_buf; switch (si->off) { case offsetof(struct xdp_md, data): *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data), si->dst_reg, si->src_reg, offsetof(struct xdp_buff, data)); break; case offsetof(struct xdp_md, data_meta): *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta), si->dst_reg, si->src_reg, offsetof(struct xdp_buff, data_meta)); break; case offsetof(struct xdp_md, data_end): *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end), si->dst_reg, si->src_reg, offsetof(struct xdp_buff, data_end)); break; case offsetof(struct xdp_md, ingress_ifindex): *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq), si->dst_reg, si->src_reg, offsetof(struct xdp_buff, rxq)); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev), si->dst_reg, si->dst_reg, offsetof(struct xdp_rxq_info, dev)); *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, offsetof(struct net_device, ifindex)); break; case offsetof(struct xdp_md, rx_queue_index): *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq), si->dst_reg, si->src_reg, offsetof(struct xdp_buff, rxq)); *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, offsetof(struct xdp_rxq_info, queue_index)); break; } return insn - insn_buf; } /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of * context Structure, F is Field in context structure that contains a pointer * to Nested Structure of type NS that has the field NF. * * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make * sure that SIZE is not greater than actual size of S.F.NF. * * If offset OFF is provided, the load happens from that offset relative to * offset of NF. */ #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF) \ do { \ *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg, \ si->src_reg, offsetof(S, F)); \ *insn++ = BPF_LDX_MEM( \ SIZE, si->dst_reg, si->dst_reg, \ bpf_target_off(NS, NF, FIELD_SIZEOF(NS, NF), \ target_size) \ + OFF); \ } while (0) #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF) \ SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, \ BPF_FIELD_SIZEOF(NS, NF), 0) /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation. * * It doesn't support SIZE argument though since narrow stores are not * supported for now. * * In addition it uses Temporary Field TF (member of struct S) as the 3rd * "register" since two registers available in convert_ctx_access are not * enough: we can't override neither SRC, since it contains value to store, nor * DST since it contains pointer to context that may be used by later * instructions. But we need a temporary place to save pointer to nested * structure whose field we want to store to. */ #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, OFF, TF) \ do { \ int tmp_reg = BPF_REG_9; \ if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg) \ --tmp_reg; \ if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg) \ --tmp_reg; \ *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg, \ offsetof(S, TF)); \ *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg, \ si->dst_reg, offsetof(S, F)); \ *insn++ = BPF_STX_MEM( \ BPF_FIELD_SIZEOF(NS, NF), tmp_reg, si->src_reg, \ bpf_target_off(NS, NF, FIELD_SIZEOF(NS, NF), \ target_size) \ + OFF); \ *insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg, \ offsetof(S, TF)); \ } while (0) #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \ TF) \ do { \ if (type == BPF_WRITE) { \ SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, OFF, \ TF); \ } else { \ SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF( \ S, NS, F, NF, SIZE, OFF); \ } \ } while (0) #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF) \ SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF( \ S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF) static u32 sock_addr_convert_ctx_access(enum bpf_access_type type, const struct bpf_insn *si, struct bpf_insn *insn_buf, struct bpf_prog *prog, u32 *target_size) { struct bpf_insn *insn = insn_buf; int off; switch (si->off) { case offsetof(struct bpf_sock_addr, user_family): SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern, struct sockaddr, uaddr, sa_family); break; case offsetof(struct bpf_sock_addr, user_ip4): SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF( struct bpf_sock_addr_kern, struct sockaddr_in, uaddr, sin_addr, BPF_SIZE(si->code), 0, tmp_reg); break; case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]): off = si->off; off -= offsetof(struct bpf_sock_addr, user_ip6[0]); SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF( struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr, sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg); break; case offsetof(struct bpf_sock_addr, user_port): /* To get port we need to know sa_family first and then treat * sockaddr as either sockaddr_in or sockaddr_in6. * Though we can simplify since port field has same offset and * size in both structures. * Here we check this invariant and use just one of the * structures if it's true. */ BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) != offsetof(struct sockaddr_in6, sin6_port)); BUILD_BUG_ON(FIELD_SIZEOF(struct sockaddr_in, sin_port) != FIELD_SIZEOF(struct sockaddr_in6, sin6_port)); SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr, sin6_port, tmp_reg); break; case offsetof(struct bpf_sock_addr, family): SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern, struct sock, sk, sk_family); break; case offsetof(struct bpf_sock_addr, type): SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF( struct bpf_sock_addr_kern, struct sock, sk, __sk_flags_offset, BPF_W, 0); *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_TYPE_MASK); *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_TYPE_SHIFT); break; case offsetof(struct bpf_sock_addr, protocol): SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF( struct bpf_sock_addr_kern, struct sock, sk, __sk_flags_offset, BPF_W, 0); *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_PROTO_MASK); *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_PROTO_SHIFT); break; case offsetof(struct bpf_sock_addr, msg_src_ip4): /* Treat t_ctx as struct in_addr for msg_src_ip4. */ SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF( struct bpf_sock_addr_kern, struct in_addr, t_ctx, s_addr, BPF_SIZE(si->code), 0, tmp_reg); break; case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0], msg_src_ip6[3]): off = si->off; off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]); /* Treat t_ctx as struct in6_addr for msg_src_ip6. */ SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF( struct bpf_sock_addr_kern, struct in6_addr, t_ctx, s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg); break; } return insn - insn_buf; } static u32 sock_ops_convert_ctx_access(enum bpf_access_type type, const struct bpf_insn *si, struct bpf_insn *insn_buf, struct bpf_prog *prog, u32 *target_size) { struct bpf_insn *insn = insn_buf; int off; switch (si->off) { case offsetof(struct bpf_sock_ops, op) ... offsetof(struct bpf_sock_ops, replylong[3]): BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, op) != FIELD_SIZEOF(struct bpf_sock_ops_kern, op)); BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, reply) != FIELD_SIZEOF(struct bpf_sock_ops_kern, reply)); BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, replylong) != FIELD_SIZEOF(struct bpf_sock_ops_kern, replylong)); off = si->off; off -= offsetof(struct bpf_sock_ops, op); off += offsetof(struct bpf_sock_ops_kern, op); if (type == BPF_WRITE) *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg, off); else *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off); break; case offsetof(struct bpf_sock_ops, family): BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( struct bpf_sock_ops_kern, sk), si->dst_reg, si->src_reg, offsetof(struct bpf_sock_ops_kern, sk)); *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg, offsetof(struct sock_common, skc_family)); break; case offsetof(struct bpf_sock_ops, remote_ip4): BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( struct bpf_sock_ops_kern, sk), si->dst_reg, si->src_reg, offsetof(struct bpf_sock_ops_kern, sk)); *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, offsetof(struct sock_common, skc_daddr)); break; case offsetof(struct bpf_sock_ops, local_ip4): BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_rcv_saddr) != 4); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( struct bpf_sock_ops_kern, sk), si->dst_reg, si->src_reg, offsetof(struct bpf_sock_ops_kern, sk)); *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, offsetof(struct sock_common, skc_rcv_saddr)); break; case offsetof(struct bpf_sock_ops, remote_ip6[0]) ... offsetof(struct bpf_sock_ops, remote_ip6[3]): #if IS_ENABLED(CONFIG_IPV6) BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_v6_daddr.s6_addr32[0]) != 4); off = si->off; off -= offsetof(struct bpf_sock_ops, remote_ip6[0]); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( struct bpf_sock_ops_kern, sk), si->dst_reg, si->src_reg, offsetof(struct bpf_sock_ops_kern, sk)); *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, offsetof(struct sock_common, skc_v6_daddr.s6_addr32[0]) + off); #else *insn++ = BPF_MOV32_IMM(si->dst_reg, 0); #endif break; case offsetof(struct bpf_sock_ops, local_ip6[0]) ... offsetof(struct bpf_sock_ops, local_ip6[3]): #if IS_ENABLED(CONFIG_IPV6) BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_v6_rcv_saddr.s6_addr32[0]) != 4); off = si->off; off -= offsetof(struct bpf_sock_ops, local_ip6[0]); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( struct bpf_sock_ops_kern, sk), si->dst_reg, si->src_reg, offsetof(struct bpf_sock_ops_kern, sk)); *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, offsetof(struct sock_common, skc_v6_rcv_saddr.s6_addr32[0]) + off); #else *insn++ = BPF_MOV32_IMM(si->dst_reg, 0); #endif break; case offsetof(struct bpf_sock_ops, remote_port): BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( struct bpf_sock_ops_kern, sk), si->dst_reg, si->src_reg, offsetof(struct bpf_sock_ops_kern, sk)); *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg, offsetof(struct sock_common, skc_dport)); #ifndef __BIG_ENDIAN_BITFIELD *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16); #endif break; case offsetof(struct bpf_sock_ops, local_port): BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( struct bpf_sock_ops_kern, sk), si->dst_reg, si->src_reg, offsetof(struct bpf_sock_ops_kern, sk)); *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg, offsetof(struct sock_common, skc_num)); break; case offsetof(struct bpf_sock_ops, is_fullsock): *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( struct bpf_sock_ops_kern, is_fullsock), si->dst_reg, si->src_reg, offsetof(struct bpf_sock_ops_kern, is_fullsock)); break; case offsetof(struct bpf_sock_ops, state): BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_state) != 1); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( struct bpf_sock_ops_kern, sk), si->dst_reg, si->src_reg, offsetof(struct bpf_sock_ops_kern, sk)); *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg, offsetof(struct sock_common, skc_state)); break; case offsetof(struct bpf_sock_ops, rtt_min): BUILD_BUG_ON(FIELD_SIZEOF(struct tcp_sock, rtt_min) != sizeof(struct minmax)); BUILD_BUG_ON(sizeof(struct minmax) < sizeof(struct minmax_sample)); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( struct bpf_sock_ops_kern, sk), si->dst_reg, si->src_reg, offsetof(struct bpf_sock_ops_kern, sk)); *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, offsetof(struct tcp_sock, rtt_min) + FIELD_SIZEOF(struct minmax_sample, t)); break; /* Helper macro for adding read access to tcp_sock or sock fields. */ #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ) \ do { \ BUILD_BUG_ON(FIELD_SIZEOF(OBJ, OBJ_FIELD) > \ FIELD_SIZEOF(struct bpf_sock_ops, BPF_FIELD)); \ *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \ struct bpf_sock_ops_kern, \ is_fullsock), \ si->dst_reg, si->src_reg, \ offsetof(struct bpf_sock_ops_kern, \ is_fullsock)); \ *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 2); \ *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \ struct bpf_sock_ops_kern, sk),\ si->dst_reg, si->src_reg, \ offsetof(struct bpf_sock_ops_kern, sk));\ *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ, \ OBJ_FIELD), \ si->dst_reg, si->dst_reg, \ offsetof(OBJ, OBJ_FIELD)); \ } while (0) /* Helper macro for adding write access to tcp_sock or sock fields. * The macro is called with two registers, dst_reg which contains a pointer * to ctx (context) and src_reg which contains the value that should be * stored. However, we need an additional register since we cannot overwrite * dst_reg because it may be used later in the program. * Instead we "borrow" one of the other register. We first save its value * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore * it at the end of the macro. */ #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ) \ do { \ int reg = BPF_REG_9; \ BUILD_BUG_ON(FIELD_SIZEOF(OBJ, OBJ_FIELD) > \ FIELD_SIZEOF(struct bpf_sock_ops, BPF_FIELD)); \ if (si->dst_reg == reg || si->src_reg == reg) \ reg--; \ if (si->dst_reg == reg || si->src_reg == reg) \ reg--; \ *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg, \ offsetof(struct bpf_sock_ops_kern, \ temp)); \ *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \ struct bpf_sock_ops_kern, \ is_fullsock), \ reg, si->dst_reg, \ offsetof(struct bpf_sock_ops_kern, \ is_fullsock)); \ *insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2); \ *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( \ struct bpf_sock_ops_kern, sk),\ reg, si->dst_reg, \ offsetof(struct bpf_sock_ops_kern, sk));\ *insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD), \ reg, si->src_reg, \ offsetof(OBJ, OBJ_FIELD)); \ *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg, \ offsetof(struct bpf_sock_ops_kern, \ temp)); \ } while (0) #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE) \ do { \ if (TYPE == BPF_WRITE) \ SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ); \ else \ SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ); \ } while (0) case offsetof(struct bpf_sock_ops, snd_cwnd): SOCK_OPS_GET_FIELD(snd_cwnd, snd_cwnd, struct tcp_sock); break; case offsetof(struct bpf_sock_ops, srtt_us): SOCK_OPS_GET_FIELD(srtt_us, srtt_us, struct tcp_sock); break; case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags): SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags, struct tcp_sock); break; case offsetof(struct bpf_sock_ops, snd_ssthresh): SOCK_OPS_GET_FIELD(snd_ssthresh, snd_ssthresh, struct tcp_sock); break; case offsetof(struct bpf_sock_ops, rcv_nxt): SOCK_OPS_GET_FIELD(rcv_nxt, rcv_nxt, struct tcp_sock); break; case offsetof(struct bpf_sock_ops, snd_nxt): SOCK_OPS_GET_FIELD(snd_nxt, snd_nxt, struct tcp_sock); break; case offsetof(struct bpf_sock_ops, snd_una): SOCK_OPS_GET_FIELD(snd_una, snd_una, struct tcp_sock); break; case offsetof(struct bpf_sock_ops, mss_cache): SOCK_OPS_GET_FIELD(mss_cache, mss_cache, struct tcp_sock); break; case offsetof(struct bpf_sock_ops, ecn_flags): SOCK_OPS_GET_FIELD(ecn_flags, ecn_flags, struct tcp_sock); break; case offsetof(struct bpf_sock_ops, rate_delivered): SOCK_OPS_GET_FIELD(rate_delivered, rate_delivered, struct tcp_sock); break; case offsetof(struct bpf_sock_ops, rate_interval_us): SOCK_OPS_GET_FIELD(rate_interval_us, rate_interval_us, struct tcp_sock); break; case offsetof(struct bpf_sock_ops, packets_out): SOCK_OPS_GET_FIELD(packets_out, packets_out, struct tcp_sock); break; case offsetof(struct bpf_sock_ops, retrans_out): SOCK_OPS_GET_FIELD(retrans_out, retrans_out, struct tcp_sock); break; case offsetof(struct bpf_sock_ops, total_retrans): SOCK_OPS_GET_FIELD(total_retrans, total_retrans, struct tcp_sock); break; case offsetof(struct bpf_sock_ops, segs_in): SOCK_OPS_GET_FIELD(segs_in, segs_in, struct tcp_sock); break; case offsetof(struct bpf_sock_ops, data_segs_in): SOCK_OPS_GET_FIELD(data_segs_in, data_segs_in, struct tcp_sock); break; case offsetof(struct bpf_sock_ops, segs_out): SOCK_OPS_GET_FIELD(segs_out, segs_out, struct tcp_sock); break; case offsetof(struct bpf_sock_ops, data_segs_out): SOCK_OPS_GET_FIELD(data_segs_out, data_segs_out, struct tcp_sock); break; case offsetof(struct bpf_sock_ops, lost_out): SOCK_OPS_GET_FIELD(lost_out, lost_out, struct tcp_sock); break; case offsetof(struct bpf_sock_ops, sacked_out): SOCK_OPS_GET_FIELD(sacked_out, sacked_out, struct tcp_sock); break; case offsetof(struct bpf_sock_ops, sk_txhash): SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash, struct sock, type); break; case offsetof(struct bpf_sock_ops, bytes_received): SOCK_OPS_GET_FIELD(bytes_received, bytes_received, struct tcp_sock); break; case offsetof(struct bpf_sock_ops, bytes_acked): SOCK_OPS_GET_FIELD(bytes_acked, bytes_acked, struct tcp_sock); break; } return insn - insn_buf; } static u32 sk_skb_convert_ctx_access(enum bpf_access_type type, const struct bpf_insn *si, struct bpf_insn *insn_buf, struct bpf_prog *prog, u32 *target_size) { struct bpf_insn *insn = insn_buf; int off; switch (si->off) { case offsetof(struct __sk_buff, data_end): off = si->off; off -= offsetof(struct __sk_buff, data_end); off += offsetof(struct sk_buff, cb); off += offsetof(struct tcp_skb_cb, bpf.data_end); *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg, si->src_reg, off); break; default: return bpf_convert_ctx_access(type, si, insn_buf, prog, target_size); } return insn - insn_buf; } static u32 sk_msg_convert_ctx_access(enum bpf_access_type type, const struct bpf_insn *si, struct bpf_insn *insn_buf, struct bpf_prog *prog, u32 *target_size) { struct bpf_insn *insn = insn_buf; #if IS_ENABLED(CONFIG_IPV6) int off; #endif switch (si->off) { case offsetof(struct sk_msg_md, data): *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_buff, data), si->dst_reg, si->src_reg, offsetof(struct sk_msg_buff, data)); break; case offsetof(struct sk_msg_md, data_end): *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_buff, data_end), si->dst_reg, si->src_reg, offsetof(struct sk_msg_buff, data_end)); break; case offsetof(struct sk_msg_md, family): BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( struct sk_msg_buff, sk), si->dst_reg, si->src_reg, offsetof(struct sk_msg_buff, sk)); *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg, offsetof(struct sock_common, skc_family)); break; case offsetof(struct sk_msg_md, remote_ip4): BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( struct sk_msg_buff, sk), si->dst_reg, si->src_reg, offsetof(struct sk_msg_buff, sk)); *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, offsetof(struct sock_common, skc_daddr)); break; case offsetof(struct sk_msg_md, local_ip4): BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_rcv_saddr) != 4); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( struct sk_msg_buff, sk), si->dst_reg, si->src_reg, offsetof(struct sk_msg_buff, sk)); *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, offsetof(struct sock_common, skc_rcv_saddr)); break; case offsetof(struct sk_msg_md, remote_ip6[0]) ... offsetof(struct sk_msg_md, remote_ip6[3]): #if IS_ENABLED(CONFIG_IPV6) BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_v6_daddr.s6_addr32[0]) != 4); off = si->off; off -= offsetof(struct sk_msg_md, remote_ip6[0]); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( struct sk_msg_buff, sk), si->dst_reg, si->src_reg, offsetof(struct sk_msg_buff, sk)); *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, offsetof(struct sock_common, skc_v6_daddr.s6_addr32[0]) + off); #else *insn++ = BPF_MOV32_IMM(si->dst_reg, 0); #endif break; case offsetof(struct sk_msg_md, local_ip6[0]) ... offsetof(struct sk_msg_md, local_ip6[3]): #if IS_ENABLED(CONFIG_IPV6) BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_v6_rcv_saddr.s6_addr32[0]) != 4); off = si->off; off -= offsetof(struct sk_msg_md, local_ip6[0]); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( struct sk_msg_buff, sk), si->dst_reg, si->src_reg, offsetof(struct sk_msg_buff, sk)); *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg, offsetof(struct sock_common, skc_v6_rcv_saddr.s6_addr32[0]) + off); #else *insn++ = BPF_MOV32_IMM(si->dst_reg, 0); #endif break; case offsetof(struct sk_msg_md, remote_port): BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( struct sk_msg_buff, sk), si->dst_reg, si->src_reg, offsetof(struct sk_msg_buff, sk)); *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg, offsetof(struct sock_common, skc_dport)); #ifndef __BIG_ENDIAN_BITFIELD *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16); #endif break; case offsetof(struct sk_msg_md, local_port): BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2); *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF( struct sk_msg_buff, sk), si->dst_reg, si->src_reg, offsetof(struct sk_msg_buff, sk)); *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg, offsetof(struct sock_common, skc_num)); break; } return insn - insn_buf; } const struct bpf_verifier_ops sk_filter_verifier_ops = { .get_func_proto = sk_filter_func_proto, .is_valid_access = sk_filter_is_valid_access, .convert_ctx_access = bpf_convert_ctx_access, .gen_ld_abs = bpf_gen_ld_abs, }; const struct bpf_prog_ops sk_filter_prog_ops = { .test_run = bpf_prog_test_run_skb, }; const struct bpf_verifier_ops tc_cls_act_verifier_ops = { .get_func_proto = tc_cls_act_func_proto, .is_valid_access = tc_cls_act_is_valid_access, .convert_ctx_access = tc_cls_act_convert_ctx_access, .gen_prologue = tc_cls_act_prologue, .gen_ld_abs = bpf_gen_ld_abs, }; const struct bpf_prog_ops tc_cls_act_prog_ops = { .test_run = bpf_prog_test_run_skb, }; const struct bpf_verifier_ops xdp_verifier_ops = { .get_func_proto = xdp_func_proto, .is_valid_access = xdp_is_valid_access, .convert_ctx_access = xdp_convert_ctx_access, }; const struct bpf_prog_ops xdp_prog_ops = { .test_run = bpf_prog_test_run_xdp, }; const struct bpf_verifier_ops cg_skb_verifier_ops = { .get_func_proto = cg_skb_func_proto, .is_valid_access = sk_filter_is_valid_access, .convert_ctx_access = bpf_convert_ctx_access, }; const struct bpf_prog_ops cg_skb_prog_ops = { .test_run = bpf_prog_test_run_skb, }; const struct bpf_verifier_ops lwt_in_verifier_ops = { .get_func_proto = lwt_in_func_proto, .is_valid_access = lwt_is_valid_access, .convert_ctx_access = bpf_convert_ctx_access, }; const struct bpf_prog_ops lwt_in_prog_ops = { .test_run = bpf_prog_test_run_skb, }; const struct bpf_verifier_ops lwt_out_verifier_ops = { .get_func_proto = lwt_out_func_proto, .is_valid_access = lwt_is_valid_access, .convert_ctx_access = bpf_convert_ctx_access, }; const struct bpf_prog_ops lwt_out_prog_ops = { .test_run = bpf_prog_test_run_skb, }; const struct bpf_verifier_ops lwt_xmit_verifier_ops = { .get_func_proto = lwt_xmit_func_proto, .is_valid_access = lwt_is_valid_access, .convert_ctx_access = bpf_convert_ctx_access, .gen_prologue = tc_cls_act_prologue, }; const struct bpf_prog_ops lwt_xmit_prog_ops = { .test_run = bpf_prog_test_run_skb, }; const struct bpf_verifier_ops lwt_seg6local_verifier_ops = { .get_func_proto = lwt_seg6local_func_proto, .is_valid_access = lwt_is_valid_access, .convert_ctx_access = bpf_convert_ctx_access, }; const struct bpf_prog_ops lwt_seg6local_prog_ops = { .test_run = bpf_prog_test_run_skb, }; const struct bpf_verifier_ops cg_sock_verifier_ops = { .get_func_proto = sock_filter_func_proto, .is_valid_access = sock_filter_is_valid_access, .convert_ctx_access = sock_filter_convert_ctx_access, }; const struct bpf_prog_ops cg_sock_prog_ops = { }; const struct bpf_verifier_ops cg_sock_addr_verifier_ops = { .get_func_proto = sock_addr_func_proto, .is_valid_access = sock_addr_is_valid_access, .convert_ctx_access = sock_addr_convert_ctx_access, }; const struct bpf_prog_ops cg_sock_addr_prog_ops = { }; const struct bpf_verifier_ops sock_ops_verifier_ops = { .get_func_proto = sock_ops_func_proto, .is_valid_access = sock_ops_is_valid_access, .convert_ctx_access = sock_ops_convert_ctx_access, }; const struct bpf_prog_ops sock_ops_prog_ops = { }; const struct bpf_verifier_ops sk_skb_verifier_ops = { .get_func_proto = sk_skb_func_proto, .is_valid_access = sk_skb_is_valid_access, .convert_ctx_access = sk_skb_convert_ctx_access, .gen_prologue = sk_skb_prologue, }; const struct bpf_prog_ops sk_skb_prog_ops = { }; const struct bpf_verifier_ops sk_msg_verifier_ops = { .get_func_proto = sk_msg_func_proto, .is_valid_access = sk_msg_is_valid_access, .convert_ctx_access = sk_msg_convert_ctx_access, }; const struct bpf_prog_ops sk_msg_prog_ops = { }; int sk_detach_filter(struct sock *sk) { int ret = -ENOENT; struct sk_filter *filter; if (sock_flag(sk, SOCK_FILTER_LOCKED)) return -EPERM; filter = rcu_dereference_protected(sk->sk_filter, lockdep_sock_is_held(sk)); if (filter) { RCU_INIT_POINTER(sk->sk_filter, NULL); sk_filter_uncharge(sk, filter); ret = 0; } return ret; } EXPORT_SYMBOL_GPL(sk_detach_filter); int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf, unsigned int len) { struct sock_fprog_kern *fprog; struct sk_filter *filter; int ret = 0; lock_sock(sk); filter = rcu_dereference_protected(sk->sk_filter, lockdep_sock_is_held(sk)); if (!filter) goto out; /* We're copying the filter that has been originally attached, * so no conversion/decode needed anymore. eBPF programs that * have no original program cannot be dumped through this. */ ret = -EACCES; fprog = filter->prog->orig_prog; if (!fprog) goto out; ret = fprog->len; if (!len) /* User space only enquires number of filter blocks. */ goto out; ret = -EINVAL; if (len < fprog->len) goto out; ret = -EFAULT; if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog))) goto out; /* Instead of bytes, the API requests to return the number * of filter blocks. */ ret = fprog->len; out: release_sock(sk); return ret; } #ifdef CONFIG_INET struct sk_reuseport_kern { struct sk_buff *skb; struct sock *sk; struct sock *selected_sk; void *data_end; u32 hash; u32 reuseport_id; bool bind_inany; }; static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern, struct sock_reuseport *reuse, struct sock *sk, struct sk_buff *skb, u32 hash) { reuse_kern->skb = skb; reuse_kern->sk = sk; reuse_kern->selected_sk = NULL; reuse_kern->data_end = skb->data + skb_headlen(skb); reuse_kern->hash = hash; reuse_kern->reuseport_id = reuse->reuseport_id; reuse_kern->bind_inany = reuse->bind_inany; } struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk, struct bpf_prog *prog, struct sk_buff *skb, u32 hash) { struct sk_reuseport_kern reuse_kern; enum sk_action action; bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, hash); action = BPF_PROG_RUN(prog, &reuse_kern); if (action == SK_PASS) return reuse_kern.selected_sk; else return ERR_PTR(-ECONNREFUSED); } BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern, struct bpf_map *, map, void *, key, u32, flags) { struct sock_reuseport *reuse; struct sock *selected_sk; selected_sk = map->ops->map_lookup_elem(map, key); if (!selected_sk) return -ENOENT; reuse = rcu_dereference(selected_sk->sk_reuseport_cb); if (!reuse) /* selected_sk is unhashed (e.g. by close()) after the * above map_lookup_elem(). Treat selected_sk has already * been removed from the map. */ return -ENOENT; if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) { struct sock *sk; if (unlikely(!reuse_kern->reuseport_id)) /* There is a small race between adding the * sk to the map and setting the * reuse_kern->reuseport_id. * Treat it as the sk has not been added to * the bpf map yet. */ return -ENOENT; sk = reuse_kern->sk; if (sk->sk_protocol != selected_sk->sk_protocol) return -EPROTOTYPE; else if (sk->sk_family != selected_sk->sk_family) return -EAFNOSUPPORT; /* Catch all. Likely bound to a different sockaddr. */ return -EBADFD; } reuse_kern->selected_sk = selected_sk; return 0; } static const struct bpf_func_proto sk_select_reuseport_proto = { .func = sk_select_reuseport, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_CONST_MAP_PTR, .arg3_type = ARG_PTR_TO_MAP_KEY, .arg4_type = ARG_ANYTHING, }; BPF_CALL_4(sk_reuseport_load_bytes, const struct sk_reuseport_kern *, reuse_kern, u32, offset, void *, to, u32, len) { return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len); } static const struct bpf_func_proto sk_reuseport_load_bytes_proto = { .func = sk_reuseport_load_bytes, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_PTR_TO_UNINIT_MEM, .arg4_type = ARG_CONST_SIZE, }; BPF_CALL_5(sk_reuseport_load_bytes_relative, const struct sk_reuseport_kern *, reuse_kern, u32, offset, void *, to, u32, len, u32, start_header) { return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to, len, start_header); } static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = { .func = sk_reuseport_load_bytes_relative, .gpl_only = false, .ret_type = RET_INTEGER, .arg1_type = ARG_PTR_TO_CTX, .arg2_type = ARG_ANYTHING, .arg3_type = ARG_PTR_TO_UNINIT_MEM, .arg4_type = ARG_CONST_SIZE, .arg5_type = ARG_ANYTHING, }; static const struct bpf_func_proto * sk_reuseport_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) { switch (func_id) { case BPF_FUNC_sk_select_reuseport: return &sk_select_reuseport_proto; case BPF_FUNC_skb_load_bytes: return &sk_reuseport_load_bytes_proto; case BPF_FUNC_skb_load_bytes_relative: return &sk_reuseport_load_bytes_relative_proto; default: return bpf_base_func_proto(func_id); } } static bool sk_reuseport_is_valid_access(int off, int size, enum bpf_access_type type, const struct bpf_prog *prog, struct bpf_insn_access_aux *info) { const u32 size_default = sizeof(__u32); if (off < 0 || off >= sizeof(struct sk_reuseport_md) || off % size || type != BPF_READ) return false; switch (off) { case offsetof(struct sk_reuseport_md, data): info->reg_type = PTR_TO_PACKET; return size == sizeof(__u64); case offsetof(struct sk_reuseport_md, data_end): info->reg_type = PTR_TO_PACKET_END; return size == sizeof(__u64); case offsetof(struct sk_reuseport_md, hash): return size == size_default; /* Fields that allow narrowing */ case bpf_ctx_range(struct sk_reuseport_md, eth_protocol): if (size < FIELD_SIZEOF(struct sk_buff, protocol)) return false; /* fall through */ case bpf_ctx_range(struct sk_reuseport_md, ip_protocol): case bpf_ctx_range(struct sk_reuseport_md, bind_inany): case bpf_ctx_range(struct sk_reuseport_md, len): bpf_ctx_record_field_size(info, size_default); return bpf_ctx_narrow_access_ok(off, size, size_default); default: return false; } } #define SK_REUSEPORT_LOAD_FIELD(F) ({ \ *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \ si->dst_reg, si->src_reg, \ bpf_target_off(struct sk_reuseport_kern, F, \ FIELD_SIZEOF(struct sk_reuseport_kern, F), \ target_size)); \ }) #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD) \ SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern, \ struct sk_buff, \ skb, \ SKB_FIELD) #define SK_REUSEPORT_LOAD_SK_FIELD_SIZE_OFF(SK_FIELD, BPF_SIZE, EXTRA_OFF) \ SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(struct sk_reuseport_kern, \ struct sock, \ sk, \ SK_FIELD, BPF_SIZE, EXTRA_OFF) static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type, const struct bpf_insn *si, struct bpf_insn *insn_buf, struct bpf_prog *prog, u32 *target_size) { struct bpf_insn *insn = insn_buf; switch (si->off) { case offsetof(struct sk_reuseport_md, data): SK_REUSEPORT_LOAD_SKB_FIELD(data); break; case offsetof(struct sk_reuseport_md, len): SK_REUSEPORT_LOAD_SKB_FIELD(len); break; case offsetof(struct sk_reuseport_md, eth_protocol): SK_REUSEPORT_LOAD_SKB_FIELD(protocol); break; case offsetof(struct sk_reuseport_md, ip_protocol): BUILD_BUG_ON(HWEIGHT32(SK_FL_PROTO_MASK) != BITS_PER_BYTE); SK_REUSEPORT_LOAD_SK_FIELD_SIZE_OFF(__sk_flags_offset, BPF_W, 0); *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_PROTO_MASK); *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_PROTO_SHIFT); /* SK_FL_PROTO_MASK and SK_FL_PROTO_SHIFT are endian * aware. No further narrowing or masking is needed. */ *target_size = 1; break; case offsetof(struct sk_reuseport_md, data_end): SK_REUSEPORT_LOAD_FIELD(data_end); break; case offsetof(struct sk_reuseport_md, hash): SK_REUSEPORT_LOAD_FIELD(hash); break; case offsetof(struct sk_reuseport_md, bind_inany): SK_REUSEPORT_LOAD_FIELD(bind_inany); break; } return insn - insn_buf; } const struct bpf_verifier_ops sk_reuseport_verifier_ops = { .get_func_proto = sk_reuseport_func_proto, .is_valid_access = sk_reuseport_is_valid_access, .convert_ctx_access = sk_reuseport_convert_ctx_access, }; const struct bpf_prog_ops sk_reuseport_prog_ops = { }; #endif /* CONFIG_INET */