/* * GICv3 ITS emulation * * Copyright (C) 2015,2016 ARM Ltd. * Author: Andre Przywara * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include #include #include #include #include #include "vgic.h" #include "vgic-mmio.h" static int vgic_its_save_tables_v0(struct vgic_its *its); static int vgic_its_restore_tables_v0(struct vgic_its *its); static int vgic_its_commit_v0(struct vgic_its *its); static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq, struct kvm_vcpu *filter_vcpu, bool needs_inv); /* * Creates a new (reference to a) struct vgic_irq for a given LPI. * If this LPI is already mapped on another ITS, we increase its refcount * and return a pointer to the existing structure. * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq. * This function returns a pointer to the _unlocked_ structure. */ static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid, struct kvm_vcpu *vcpu) { struct vgic_dist *dist = &kvm->arch.vgic; struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intid), *oldirq; unsigned long flags; int ret; /* In this case there is no put, since we keep the reference. */ if (irq) return irq; irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL); if (!irq) return ERR_PTR(-ENOMEM); INIT_LIST_HEAD(&irq->lpi_list); INIT_LIST_HEAD(&irq->ap_list); spin_lock_init(&irq->irq_lock); irq->config = VGIC_CONFIG_EDGE; kref_init(&irq->refcount); irq->intid = intid; irq->target_vcpu = vcpu; irq->group = 1; raw_spin_lock_irqsave(&dist->lpi_list_lock, flags); /* * There could be a race with another vgic_add_lpi(), so we need to * check that we don't add a second list entry with the same LPI. */ list_for_each_entry(oldirq, &dist->lpi_list_head, lpi_list) { if (oldirq->intid != intid) continue; /* Someone was faster with adding this LPI, lets use that. */ kfree(irq); irq = oldirq; /* * This increases the refcount, the caller is expected to * call vgic_put_irq() on the returned pointer once it's * finished with the IRQ. */ vgic_get_irq_kref(irq); goto out_unlock; } list_add_tail(&irq->lpi_list, &dist->lpi_list_head); dist->lpi_list_count++; out_unlock: raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags); /* * We "cache" the configuration table entries in our struct vgic_irq's. * However we only have those structs for mapped IRQs, so we read in * the respective config data from memory here upon mapping the LPI. * * Should any of these fail, behave as if we couldn't create the LPI * by dropping the refcount and returning the error. */ ret = update_lpi_config(kvm, irq, NULL, false); if (ret) { vgic_put_irq(kvm, irq); return ERR_PTR(ret); } ret = vgic_v3_lpi_sync_pending_status(kvm, irq); if (ret) { vgic_put_irq(kvm, irq); return ERR_PTR(ret); } return irq; } struct its_device { struct list_head dev_list; /* the head for the list of ITTEs */ struct list_head itt_head; u32 num_eventid_bits; gpa_t itt_addr; u32 device_id; }; #define COLLECTION_NOT_MAPPED ((u32)~0) struct its_collection { struct list_head coll_list; u32 collection_id; u32 target_addr; }; #define its_is_collection_mapped(coll) ((coll) && \ ((coll)->target_addr != COLLECTION_NOT_MAPPED)) struct its_ite { struct list_head ite_list; struct vgic_irq *irq; struct its_collection *collection; u32 event_id; }; /** * struct vgic_its_abi - ITS abi ops and settings * @cte_esz: collection table entry size * @dte_esz: device table entry size * @ite_esz: interrupt translation table entry size * @save tables: save the ITS tables into guest RAM * @restore_tables: restore the ITS internal structs from tables * stored in guest RAM * @commit: initialize the registers which expose the ABI settings, * especially the entry sizes */ struct vgic_its_abi { int cte_esz; int dte_esz; int ite_esz; int (*save_tables)(struct vgic_its *its); int (*restore_tables)(struct vgic_its *its); int (*commit)(struct vgic_its *its); }; #define ABI_0_ESZ 8 #define ESZ_MAX ABI_0_ESZ static const struct vgic_its_abi its_table_abi_versions[] = { [0] = { .cte_esz = ABI_0_ESZ, .dte_esz = ABI_0_ESZ, .ite_esz = ABI_0_ESZ, .save_tables = vgic_its_save_tables_v0, .restore_tables = vgic_its_restore_tables_v0, .commit = vgic_its_commit_v0, }, }; #define NR_ITS_ABIS ARRAY_SIZE(its_table_abi_versions) inline const struct vgic_its_abi *vgic_its_get_abi(struct vgic_its *its) { return &its_table_abi_versions[its->abi_rev]; } static int vgic_its_set_abi(struct vgic_its *its, u32 rev) { const struct vgic_its_abi *abi; its->abi_rev = rev; abi = vgic_its_get_abi(its); return abi->commit(its); } /* * Find and returns a device in the device table for an ITS. * Must be called with the its_lock mutex held. */ static struct its_device *find_its_device(struct vgic_its *its, u32 device_id) { struct its_device *device; list_for_each_entry(device, &its->device_list, dev_list) if (device_id == device->device_id) return device; return NULL; } /* * Find and returns an interrupt translation table entry (ITTE) for a given * Device ID/Event ID pair on an ITS. * Must be called with the its_lock mutex held. */ static struct its_ite *find_ite(struct vgic_its *its, u32 device_id, u32 event_id) { struct its_device *device; struct its_ite *ite; device = find_its_device(its, device_id); if (device == NULL) return NULL; list_for_each_entry(ite, &device->itt_head, ite_list) if (ite->event_id == event_id) return ite; return NULL; } /* To be used as an iterator this macro misses the enclosing parentheses */ #define for_each_lpi_its(dev, ite, its) \ list_for_each_entry(dev, &(its)->device_list, dev_list) \ list_for_each_entry(ite, &(dev)->itt_head, ite_list) /* * We only implement 48 bits of PA at the moment, although the ITS * supports more. Let's be restrictive here. */ #define BASER_ADDRESS(x) ((x) & GENMASK_ULL(47, 16)) #define CBASER_ADDRESS(x) ((x) & GENMASK_ULL(47, 12)) #define GIC_LPI_OFFSET 8192 #define VITS_TYPER_IDBITS 16 #define VITS_TYPER_DEVBITS 16 #define VITS_DTE_MAX_DEVID_OFFSET (BIT(14) - 1) #define VITS_ITE_MAX_EVENTID_OFFSET (BIT(16) - 1) /* * Finds and returns a collection in the ITS collection table. * Must be called with the its_lock mutex held. */ static struct its_collection *find_collection(struct vgic_its *its, int coll_id) { struct its_collection *collection; list_for_each_entry(collection, &its->collection_list, coll_list) { if (coll_id == collection->collection_id) return collection; } return NULL; } #define LPI_PROP_ENABLE_BIT(p) ((p) & LPI_PROP_ENABLED) #define LPI_PROP_PRIORITY(p) ((p) & 0xfc) /* * Reads the configuration data for a given LPI from guest memory and * updates the fields in struct vgic_irq. * If filter_vcpu is not NULL, applies only if the IRQ is targeting this * VCPU. Unconditionally applies if filter_vcpu is NULL. */ static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq, struct kvm_vcpu *filter_vcpu, bool needs_inv) { u64 propbase = GICR_PROPBASER_ADDRESS(kvm->arch.vgic.propbaser); u8 prop; int ret; unsigned long flags; ret = kvm_read_guest_lock(kvm, propbase + irq->intid - GIC_LPI_OFFSET, &prop, 1); if (ret) return ret; spin_lock_irqsave(&irq->irq_lock, flags); if (!filter_vcpu || filter_vcpu == irq->target_vcpu) { irq->priority = LPI_PROP_PRIORITY(prop); irq->enabled = LPI_PROP_ENABLE_BIT(prop); if (!irq->hw) { vgic_queue_irq_unlock(kvm, irq, flags); return 0; } } spin_unlock_irqrestore(&irq->irq_lock, flags); if (irq->hw) return its_prop_update_vlpi(irq->host_irq, prop, needs_inv); return 0; } /* * Create a snapshot of the current LPIs targeting @vcpu, so that we can * enumerate those LPIs without holding any lock. * Returns their number and puts the kmalloc'ed array into intid_ptr. */ int vgic_copy_lpi_list(struct kvm *kvm, struct kvm_vcpu *vcpu, u32 **intid_ptr) { struct vgic_dist *dist = &kvm->arch.vgic; struct vgic_irq *irq; unsigned long flags; u32 *intids; int irq_count, i = 0; /* * There is an obvious race between allocating the array and LPIs * being mapped/unmapped. If we ended up here as a result of a * command, we're safe (locks are held, preventing another * command). If coming from another path (such as enabling LPIs), * we must be careful not to overrun the array. */ irq_count = READ_ONCE(dist->lpi_list_count); intids = kmalloc_array(irq_count, sizeof(intids[0]), GFP_KERNEL); if (!intids) return -ENOMEM; raw_spin_lock_irqsave(&dist->lpi_list_lock, flags); list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) { if (i == irq_count) break; /* We don't need to "get" the IRQ, as we hold the list lock. */ if (vcpu && irq->target_vcpu != vcpu) continue; intids[i++] = irq->intid; } raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags); *intid_ptr = intids; return i; } static int update_affinity(struct vgic_irq *irq, struct kvm_vcpu *vcpu) { int ret = 0; unsigned long flags; spin_lock_irqsave(&irq->irq_lock, flags); irq->target_vcpu = vcpu; spin_unlock_irqrestore(&irq->irq_lock, flags); if (irq->hw) { struct its_vlpi_map map; ret = its_get_vlpi(irq->host_irq, &map); if (ret) return ret; map.vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe; ret = its_map_vlpi(irq->host_irq, &map); } return ret; } /* * Promotes the ITS view of affinity of an ITTE (which redistributor this LPI * is targeting) to the VGIC's view, which deals with target VCPUs. * Needs to be called whenever either the collection for a LPIs has * changed or the collection itself got retargeted. */ static void update_affinity_ite(struct kvm *kvm, struct its_ite *ite) { struct kvm_vcpu *vcpu; if (!its_is_collection_mapped(ite->collection)) return; vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr); update_affinity(ite->irq, vcpu); } /* * Updates the target VCPU for every LPI targeting this collection. * Must be called with the its_lock mutex held. */ static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its, struct its_collection *coll) { struct its_device *device; struct its_ite *ite; for_each_lpi_its(device, ite, its) { if (!ite->collection || coll != ite->collection) continue; update_affinity_ite(kvm, ite); } } static u32 max_lpis_propbaser(u64 propbaser) { int nr_idbits = (propbaser & 0x1f) + 1; return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS); } /* * Sync the pending table pending bit of LPIs targeting @vcpu * with our own data structures. This relies on the LPI being * mapped before. */ static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu) { gpa_t pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser); struct vgic_irq *irq; int last_byte_offset = -1; int ret = 0; u32 *intids; int nr_irqs, i; unsigned long flags; u8 pendmask; nr_irqs = vgic_copy_lpi_list(vcpu->kvm, vcpu, &intids); if (nr_irqs < 0) return nr_irqs; for (i = 0; i < nr_irqs; i++) { int byte_offset, bit_nr; byte_offset = intids[i] / BITS_PER_BYTE; bit_nr = intids[i] % BITS_PER_BYTE; /* * For contiguously allocated LPIs chances are we just read * this very same byte in the last iteration. Reuse that. */ if (byte_offset != last_byte_offset) { ret = kvm_read_guest_lock(vcpu->kvm, pendbase + byte_offset, &pendmask, 1); if (ret) { kfree(intids); return ret; } last_byte_offset = byte_offset; } irq = vgic_get_irq(vcpu->kvm, NULL, intids[i]); spin_lock_irqsave(&irq->irq_lock, flags); irq->pending_latch = pendmask & (1U << bit_nr); vgic_queue_irq_unlock(vcpu->kvm, irq, flags); vgic_put_irq(vcpu->kvm, irq); } kfree(intids); return ret; } static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm, struct vgic_its *its, gpa_t addr, unsigned int len) { const struct vgic_its_abi *abi = vgic_its_get_abi(its); u64 reg = GITS_TYPER_PLPIS; /* * We use linear CPU numbers for redistributor addressing, * so GITS_TYPER.PTA is 0. * Also we force all PROPBASER registers to be the same, so * CommonLPIAff is 0 as well. * To avoid memory waste in the guest, we keep the number of IDBits and * DevBits low - as least for the time being. */ reg |= GIC_ENCODE_SZ(VITS_TYPER_DEVBITS, 5) << GITS_TYPER_DEVBITS_SHIFT; reg |= GIC_ENCODE_SZ(VITS_TYPER_IDBITS, 5) << GITS_TYPER_IDBITS_SHIFT; reg |= GIC_ENCODE_SZ(abi->ite_esz, 4) << GITS_TYPER_ITT_ENTRY_SIZE_SHIFT; return extract_bytes(reg, addr & 7, len); } static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm, struct vgic_its *its, gpa_t addr, unsigned int len) { u32 val; val = (its->abi_rev << GITS_IIDR_REV_SHIFT) & GITS_IIDR_REV_MASK; val |= (PRODUCT_ID_KVM << GITS_IIDR_PRODUCTID_SHIFT) | IMPLEMENTER_ARM; return val; } static int vgic_mmio_uaccess_write_its_iidr(struct kvm *kvm, struct vgic_its *its, gpa_t addr, unsigned int len, unsigned long val) { u32 rev = GITS_IIDR_REV(val); if (rev >= NR_ITS_ABIS) return -EINVAL; return vgic_its_set_abi(its, rev); } static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm, struct vgic_its *its, gpa_t addr, unsigned int len) { switch (addr & 0xffff) { case GITS_PIDR0: return 0x92; /* part number, bits[7:0] */ case GITS_PIDR1: return 0xb4; /* part number, bits[11:8] */ case GITS_PIDR2: return GIC_PIDR2_ARCH_GICv3 | 0x0b; case GITS_PIDR4: return 0x40; /* This is a 64K software visible page */ /* The following are the ID registers for (any) GIC. */ case GITS_CIDR0: return 0x0d; case GITS_CIDR1: return 0xf0; case GITS_CIDR2: return 0x05; case GITS_CIDR3: return 0xb1; } return 0; } int vgic_its_resolve_lpi(struct kvm *kvm, struct vgic_its *its, u32 devid, u32 eventid, struct vgic_irq **irq) { struct kvm_vcpu *vcpu; struct its_ite *ite; if (!its->enabled) return -EBUSY; ite = find_ite(its, devid, eventid); if (!ite || !its_is_collection_mapped(ite->collection)) return E_ITS_INT_UNMAPPED_INTERRUPT; vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr); if (!vcpu) return E_ITS_INT_UNMAPPED_INTERRUPT; if (!vcpu->arch.vgic_cpu.lpis_enabled) return -EBUSY; *irq = ite->irq; return 0; } struct vgic_its *vgic_msi_to_its(struct kvm *kvm, struct kvm_msi *msi) { u64 address; struct kvm_io_device *kvm_io_dev; struct vgic_io_device *iodev; if (!vgic_has_its(kvm)) return ERR_PTR(-ENODEV); if (!(msi->flags & KVM_MSI_VALID_DEVID)) return ERR_PTR(-EINVAL); address = (u64)msi->address_hi << 32 | msi->address_lo; kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, address); if (!kvm_io_dev) return ERR_PTR(-EINVAL); if (kvm_io_dev->ops != &kvm_io_gic_ops) return ERR_PTR(-EINVAL); iodev = container_of(kvm_io_dev, struct vgic_io_device, dev); if (iodev->iodev_type != IODEV_ITS) return ERR_PTR(-EINVAL); return iodev->its; } /* * Find the target VCPU and the LPI number for a given devid/eventid pair * and make this IRQ pending, possibly injecting it. * Must be called with the its_lock mutex held. * Returns 0 on success, a positive error value for any ITS mapping * related errors and negative error values for generic errors. */ static int vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its, u32 devid, u32 eventid) { struct vgic_irq *irq = NULL; unsigned long flags; int err; err = vgic_its_resolve_lpi(kvm, its, devid, eventid, &irq); if (err) return err; if (irq->hw) return irq_set_irqchip_state(irq->host_irq, IRQCHIP_STATE_PENDING, true); spin_lock_irqsave(&irq->irq_lock, flags); irq->pending_latch = true; vgic_queue_irq_unlock(kvm, irq, flags); return 0; } /* * Queries the KVM IO bus framework to get the ITS pointer from the given * doorbell address. * We then call vgic_its_trigger_msi() with the decoded data. * According to the KVM_SIGNAL_MSI API description returns 1 on success. */ int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi) { struct vgic_its *its; int ret; its = vgic_msi_to_its(kvm, msi); if (IS_ERR(its)) return PTR_ERR(its); mutex_lock(&its->its_lock); ret = vgic_its_trigger_msi(kvm, its, msi->devid, msi->data); mutex_unlock(&its->its_lock); if (ret < 0) return ret; /* * KVM_SIGNAL_MSI demands a return value > 0 for success and 0 * if the guest has blocked the MSI. So we map any LPI mapping * related error to that. */ if (ret) return 0; else return 1; } /* Requires the its_lock to be held. */ static void its_free_ite(struct kvm *kvm, struct its_ite *ite) { list_del(&ite->ite_list); /* This put matches the get in vgic_add_lpi. */ if (ite->irq) { if (ite->irq->hw) WARN_ON(its_unmap_vlpi(ite->irq->host_irq)); vgic_put_irq(kvm, ite->irq); } kfree(ite); } static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size) { return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1); } #define its_cmd_get_command(cmd) its_cmd_mask_field(cmd, 0, 0, 8) #define its_cmd_get_deviceid(cmd) its_cmd_mask_field(cmd, 0, 32, 32) #define its_cmd_get_size(cmd) (its_cmd_mask_field(cmd, 1, 0, 5) + 1) #define its_cmd_get_id(cmd) its_cmd_mask_field(cmd, 1, 0, 32) #define its_cmd_get_physical_id(cmd) its_cmd_mask_field(cmd, 1, 32, 32) #define its_cmd_get_collection(cmd) its_cmd_mask_field(cmd, 2, 0, 16) #define its_cmd_get_ittaddr(cmd) (its_cmd_mask_field(cmd, 2, 8, 44) << 8) #define its_cmd_get_target_addr(cmd) its_cmd_mask_field(cmd, 2, 16, 32) #define its_cmd_get_validbit(cmd) its_cmd_mask_field(cmd, 2, 63, 1) /* * The DISCARD command frees an Interrupt Translation Table Entry (ITTE). * Must be called with the its_lock mutex held. */ static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its, u64 *its_cmd) { u32 device_id = its_cmd_get_deviceid(its_cmd); u32 event_id = its_cmd_get_id(its_cmd); struct its_ite *ite; ite = find_ite(its, device_id, event_id); if (ite && ite->collection) { /* * Though the spec talks about removing the pending state, we * don't bother here since we clear the ITTE anyway and the * pending state is a property of the ITTE struct. */ its_free_ite(kvm, ite); return 0; } return E_ITS_DISCARD_UNMAPPED_INTERRUPT; } /* * The MOVI command moves an ITTE to a different collection. * Must be called with the its_lock mutex held. */ static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its, u64 *its_cmd) { u32 device_id = its_cmd_get_deviceid(its_cmd); u32 event_id = its_cmd_get_id(its_cmd); u32 coll_id = its_cmd_get_collection(its_cmd); struct kvm_vcpu *vcpu; struct its_ite *ite; struct its_collection *collection; ite = find_ite(its, device_id, event_id); if (!ite) return E_ITS_MOVI_UNMAPPED_INTERRUPT; if (!its_is_collection_mapped(ite->collection)) return E_ITS_MOVI_UNMAPPED_COLLECTION; collection = find_collection(its, coll_id); if (!its_is_collection_mapped(collection)) return E_ITS_MOVI_UNMAPPED_COLLECTION; ite->collection = collection; vcpu = kvm_get_vcpu(kvm, collection->target_addr); return update_affinity(ite->irq, vcpu); } /* * Check whether an ID can be stored into the corresponding guest table. * For a direct table this is pretty easy, but gets a bit nasty for * indirect tables. We check whether the resulting guest physical address * is actually valid (covered by a memslot and guest accessible). * For this we have to read the respective first level entry. */ static bool vgic_its_check_id(struct vgic_its *its, u64 baser, u32 id, gpa_t *eaddr) { int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K; u64 indirect_ptr, type = GITS_BASER_TYPE(baser); int esz = GITS_BASER_ENTRY_SIZE(baser); int index, idx; gfn_t gfn; bool ret; switch (type) { case GITS_BASER_TYPE_DEVICE: if (id >= BIT_ULL(VITS_TYPER_DEVBITS)) return false; break; case GITS_BASER_TYPE_COLLECTION: /* as GITS_TYPER.CIL == 0, ITS supports 16-bit collection ID */ if (id >= BIT_ULL(16)) return false; break; default: return false; } if (!(baser & GITS_BASER_INDIRECT)) { phys_addr_t addr; if (id >= (l1_tbl_size / esz)) return false; addr = BASER_ADDRESS(baser) + id * esz; gfn = addr >> PAGE_SHIFT; if (eaddr) *eaddr = addr; goto out; } /* calculate and check the index into the 1st level */ index = id / (SZ_64K / esz); if (index >= (l1_tbl_size / sizeof(u64))) return false; /* Each 1st level entry is represented by a 64-bit value. */ if (kvm_read_guest_lock(its->dev->kvm, BASER_ADDRESS(baser) + index * sizeof(indirect_ptr), &indirect_ptr, sizeof(indirect_ptr))) return false; indirect_ptr = le64_to_cpu(indirect_ptr); /* check the valid bit of the first level entry */ if (!(indirect_ptr & BIT_ULL(63))) return false; /* * Mask the guest physical address and calculate the frame number. * Any address beyond our supported 48 bits of PA will be caught * by the actual check in the final step. */ indirect_ptr &= GENMASK_ULL(51, 16); /* Find the address of the actual entry */ index = id % (SZ_64K / esz); indirect_ptr += index * esz; gfn = indirect_ptr >> PAGE_SHIFT; if (eaddr) *eaddr = indirect_ptr; out: idx = srcu_read_lock(&its->dev->kvm->srcu); ret = kvm_is_visible_gfn(its->dev->kvm, gfn); srcu_read_unlock(&its->dev->kvm->srcu, idx); return ret; } static int vgic_its_alloc_collection(struct vgic_its *its, struct its_collection **colp, u32 coll_id) { struct its_collection *collection; if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL)) return E_ITS_MAPC_COLLECTION_OOR; collection = kzalloc(sizeof(*collection), GFP_KERNEL); if (!collection) return -ENOMEM; collection->collection_id = coll_id; collection->target_addr = COLLECTION_NOT_MAPPED; list_add_tail(&collection->coll_list, &its->collection_list); *colp = collection; return 0; } static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id) { struct its_collection *collection; struct its_device *device; struct its_ite *ite; /* * Clearing the mapping for that collection ID removes the * entry from the list. If there wasn't any before, we can * go home early. */ collection = find_collection(its, coll_id); if (!collection) return; for_each_lpi_its(device, ite, its) if (ite->collection && ite->collection->collection_id == coll_id) ite->collection = NULL; list_del(&collection->coll_list); kfree(collection); } /* Must be called with its_lock mutex held */ static struct its_ite *vgic_its_alloc_ite(struct its_device *device, struct its_collection *collection, u32 event_id) { struct its_ite *ite; ite = kzalloc(sizeof(*ite), GFP_KERNEL); if (!ite) return ERR_PTR(-ENOMEM); ite->event_id = event_id; ite->collection = collection; list_add_tail(&ite->ite_list, &device->itt_head); return ite; } /* * The MAPTI and MAPI commands map LPIs to ITTEs. * Must be called with its_lock mutex held. */ static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its, u64 *its_cmd) { u32 device_id = its_cmd_get_deviceid(its_cmd); u32 event_id = its_cmd_get_id(its_cmd); u32 coll_id = its_cmd_get_collection(its_cmd); struct its_ite *ite; struct kvm_vcpu *vcpu = NULL; struct its_device *device; struct its_collection *collection, *new_coll = NULL; struct vgic_irq *irq; int lpi_nr; device = find_its_device(its, device_id); if (!device) return E_ITS_MAPTI_UNMAPPED_DEVICE; if (event_id >= BIT_ULL(device->num_eventid_bits)) return E_ITS_MAPTI_ID_OOR; if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI) lpi_nr = its_cmd_get_physical_id(its_cmd); else lpi_nr = event_id; if (lpi_nr < GIC_LPI_OFFSET || lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser)) return E_ITS_MAPTI_PHYSICALID_OOR; /* If there is an existing mapping, behavior is UNPREDICTABLE. */ if (find_ite(its, device_id, event_id)) return 0; collection = find_collection(its, coll_id); if (!collection) { int ret = vgic_its_alloc_collection(its, &collection, coll_id); if (ret) return ret; new_coll = collection; } ite = vgic_its_alloc_ite(device, collection, event_id); if (IS_ERR(ite)) { if (new_coll) vgic_its_free_collection(its, coll_id); return PTR_ERR(ite); } if (its_is_collection_mapped(collection)) vcpu = kvm_get_vcpu(kvm, collection->target_addr); irq = vgic_add_lpi(kvm, lpi_nr, vcpu); if (IS_ERR(irq)) { if (new_coll) vgic_its_free_collection(its, coll_id); its_free_ite(kvm, ite); return PTR_ERR(irq); } ite->irq = irq; return 0; } /* Requires the its_lock to be held. */ static void vgic_its_free_device(struct kvm *kvm, struct its_device *device) { struct its_ite *ite, *temp; /* * The spec says that unmapping a device with still valid * ITTEs associated is UNPREDICTABLE. We remove all ITTEs, * since we cannot leave the memory unreferenced. */ list_for_each_entry_safe(ite, temp, &device->itt_head, ite_list) its_free_ite(kvm, ite); list_del(&device->dev_list); kfree(device); } /* its lock must be held */ static void vgic_its_free_device_list(struct kvm *kvm, struct vgic_its *its) { struct its_device *cur, *temp; list_for_each_entry_safe(cur, temp, &its->device_list, dev_list) vgic_its_free_device(kvm, cur); } /* its lock must be held */ static void vgic_its_free_collection_list(struct kvm *kvm, struct vgic_its *its) { struct its_collection *cur, *temp; list_for_each_entry_safe(cur, temp, &its->collection_list, coll_list) vgic_its_free_collection(its, cur->collection_id); } /* Must be called with its_lock mutex held */ static struct its_device *vgic_its_alloc_device(struct vgic_its *its, u32 device_id, gpa_t itt_addr, u8 num_eventid_bits) { struct its_device *device; device = kzalloc(sizeof(*device), GFP_KERNEL); if (!device) return ERR_PTR(-ENOMEM); device->device_id = device_id; device->itt_addr = itt_addr; device->num_eventid_bits = num_eventid_bits; INIT_LIST_HEAD(&device->itt_head); list_add_tail(&device->dev_list, &its->device_list); return device; } /* * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs). * Must be called with the its_lock mutex held. */ static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its, u64 *its_cmd) { u32 device_id = its_cmd_get_deviceid(its_cmd); bool valid = its_cmd_get_validbit(its_cmd); u8 num_eventid_bits = its_cmd_get_size(its_cmd); gpa_t itt_addr = its_cmd_get_ittaddr(its_cmd); struct its_device *device; if (!vgic_its_check_id(its, its->baser_device_table, device_id, NULL)) return E_ITS_MAPD_DEVICE_OOR; if (valid && num_eventid_bits > VITS_TYPER_IDBITS) return E_ITS_MAPD_ITTSIZE_OOR; device = find_its_device(its, device_id); /* * The spec says that calling MAPD on an already mapped device * invalidates all cached data for this device. We implement this * by removing the mapping and re-establishing it. */ if (device) vgic_its_free_device(kvm, device); /* * The spec does not say whether unmapping a not-mapped device * is an error, so we are done in any case. */ if (!valid) return 0; device = vgic_its_alloc_device(its, device_id, itt_addr, num_eventid_bits); return PTR_ERR_OR_ZERO(device); } /* * The MAPC command maps collection IDs to redistributors. * Must be called with the its_lock mutex held. */ static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its, u64 *its_cmd) { u16 coll_id; u32 target_addr; struct its_collection *collection; bool valid; valid = its_cmd_get_validbit(its_cmd); coll_id = its_cmd_get_collection(its_cmd); target_addr = its_cmd_get_target_addr(its_cmd); if (target_addr >= atomic_read(&kvm->online_vcpus)) return E_ITS_MAPC_PROCNUM_OOR; if (!valid) { vgic_its_free_collection(its, coll_id); } else { collection = find_collection(its, coll_id); if (!collection) { int ret; ret = vgic_its_alloc_collection(its, &collection, coll_id); if (ret) return ret; collection->target_addr = target_addr; } else { collection->target_addr = target_addr; update_affinity_collection(kvm, its, collection); } } return 0; } /* * The CLEAR command removes the pending state for a particular LPI. * Must be called with the its_lock mutex held. */ static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its, u64 *its_cmd) { u32 device_id = its_cmd_get_deviceid(its_cmd); u32 event_id = its_cmd_get_id(its_cmd); struct its_ite *ite; ite = find_ite(its, device_id, event_id); if (!ite) return E_ITS_CLEAR_UNMAPPED_INTERRUPT; ite->irq->pending_latch = false; if (ite->irq->hw) return irq_set_irqchip_state(ite->irq->host_irq, IRQCHIP_STATE_PENDING, false); return 0; } /* * The INV command syncs the configuration bits from the memory table. * Must be called with the its_lock mutex held. */ static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its, u64 *its_cmd) { u32 device_id = its_cmd_get_deviceid(its_cmd); u32 event_id = its_cmd_get_id(its_cmd); struct its_ite *ite; ite = find_ite(its, device_id, event_id); if (!ite) return E_ITS_INV_UNMAPPED_INTERRUPT; return update_lpi_config(kvm, ite->irq, NULL, true); } /* * The INVALL command requests flushing of all IRQ data in this collection. * Find the VCPU mapped to that collection, then iterate over the VM's list * of mapped LPIs and update the configuration for each IRQ which targets * the specified vcpu. The configuration will be read from the in-memory * configuration table. * Must be called with the its_lock mutex held. */ static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its, u64 *its_cmd) { u32 coll_id = its_cmd_get_collection(its_cmd); struct its_collection *collection; struct kvm_vcpu *vcpu; struct vgic_irq *irq; u32 *intids; int irq_count, i; collection = find_collection(its, coll_id); if (!its_is_collection_mapped(collection)) return E_ITS_INVALL_UNMAPPED_COLLECTION; vcpu = kvm_get_vcpu(kvm, collection->target_addr); irq_count = vgic_copy_lpi_list(kvm, vcpu, &intids); if (irq_count < 0) return irq_count; for (i = 0; i < irq_count; i++) { irq = vgic_get_irq(kvm, NULL, intids[i]); if (!irq) continue; update_lpi_config(kvm, irq, vcpu, false); vgic_put_irq(kvm, irq); } kfree(intids); if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.its_vm) its_invall_vpe(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe); return 0; } /* * The MOVALL command moves the pending state of all IRQs targeting one * redistributor to another. We don't hold the pending state in the VCPUs, * but in the IRQs instead, so there is really not much to do for us here. * However the spec says that no IRQ must target the old redistributor * afterwards, so we make sure that no LPI is using the associated target_vcpu. * This command affects all LPIs in the system that target that redistributor. */ static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its, u64 *its_cmd) { u32 target1_addr = its_cmd_get_target_addr(its_cmd); u32 target2_addr = its_cmd_mask_field(its_cmd, 3, 16, 32); struct kvm_vcpu *vcpu1, *vcpu2; struct vgic_irq *irq; u32 *intids; int irq_count, i; if (target1_addr >= atomic_read(&kvm->online_vcpus) || target2_addr >= atomic_read(&kvm->online_vcpus)) return E_ITS_MOVALL_PROCNUM_OOR; if (target1_addr == target2_addr) return 0; vcpu1 = kvm_get_vcpu(kvm, target1_addr); vcpu2 = kvm_get_vcpu(kvm, target2_addr); irq_count = vgic_copy_lpi_list(kvm, vcpu1, &intids); if (irq_count < 0) return irq_count; for (i = 0; i < irq_count; i++) { irq = vgic_get_irq(kvm, NULL, intids[i]); update_affinity(irq, vcpu2); vgic_put_irq(kvm, irq); } kfree(intids); return 0; } /* * The INT command injects the LPI associated with that DevID/EvID pair. * Must be called with the its_lock mutex held. */ static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its, u64 *its_cmd) { u32 msi_data = its_cmd_get_id(its_cmd); u64 msi_devid = its_cmd_get_deviceid(its_cmd); return vgic_its_trigger_msi(kvm, its, msi_devid, msi_data); } /* * This function is called with the its_cmd lock held, but the ITS data * structure lock dropped. */ static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its, u64 *its_cmd) { int ret = -ENODEV; mutex_lock(&its->its_lock); switch (its_cmd_get_command(its_cmd)) { case GITS_CMD_MAPD: ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd); break; case GITS_CMD_MAPC: ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd); break; case GITS_CMD_MAPI: ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd); break; case GITS_CMD_MAPTI: ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd); break; case GITS_CMD_MOVI: ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd); break; case GITS_CMD_DISCARD: ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd); break; case GITS_CMD_CLEAR: ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd); break; case GITS_CMD_MOVALL: ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd); break; case GITS_CMD_INT: ret = vgic_its_cmd_handle_int(kvm, its, its_cmd); break; case GITS_CMD_INV: ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd); break; case GITS_CMD_INVALL: ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd); break; case GITS_CMD_SYNC: /* we ignore this command: we are in sync all of the time */ ret = 0; break; } mutex_unlock(&its->its_lock); return ret; } static u64 vgic_sanitise_its_baser(u64 reg) { reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK, GITS_BASER_SHAREABILITY_SHIFT, vgic_sanitise_shareability); reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK, GITS_BASER_INNER_CACHEABILITY_SHIFT, vgic_sanitise_inner_cacheability); reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK, GITS_BASER_OUTER_CACHEABILITY_SHIFT, vgic_sanitise_outer_cacheability); /* Bits 15:12 contain bits 51:48 of the PA, which we don't support. */ reg &= ~GENMASK_ULL(15, 12); /* We support only one (ITS) page size: 64K */ reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K; return reg; } static u64 vgic_sanitise_its_cbaser(u64 reg) { reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK, GITS_CBASER_SHAREABILITY_SHIFT, vgic_sanitise_shareability); reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK, GITS_CBASER_INNER_CACHEABILITY_SHIFT, vgic_sanitise_inner_cacheability); reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK, GITS_CBASER_OUTER_CACHEABILITY_SHIFT, vgic_sanitise_outer_cacheability); /* * Sanitise the physical address to be 64k aligned. * Also limit the physical addresses to 48 bits. */ reg &= ~(GENMASK_ULL(51, 48) | GENMASK_ULL(15, 12)); return reg; } static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm, struct vgic_its *its, gpa_t addr, unsigned int len) { return extract_bytes(its->cbaser, addr & 7, len); } static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its, gpa_t addr, unsigned int len, unsigned long val) { /* When GITS_CTLR.Enable is 1, this register is RO. */ if (its->enabled) return; mutex_lock(&its->cmd_lock); its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val); its->cbaser = vgic_sanitise_its_cbaser(its->cbaser); its->creadr = 0; /* * CWRITER is architecturally UNKNOWN on reset, but we need to reset * it to CREADR to make sure we start with an empty command buffer. */ its->cwriter = its->creadr; mutex_unlock(&its->cmd_lock); } #define ITS_CMD_BUFFER_SIZE(baser) ((((baser) & 0xff) + 1) << 12) #define ITS_CMD_SIZE 32 #define ITS_CMD_OFFSET(reg) ((reg) & GENMASK(19, 5)) /* Must be called with the cmd_lock held. */ static void vgic_its_process_commands(struct kvm *kvm, struct vgic_its *its) { gpa_t cbaser; u64 cmd_buf[4]; /* Commands are only processed when the ITS is enabled. */ if (!its->enabled) return; cbaser = CBASER_ADDRESS(its->cbaser); while (its->cwriter != its->creadr) { int ret = kvm_read_guest_lock(kvm, cbaser + its->creadr, cmd_buf, ITS_CMD_SIZE); /* * If kvm_read_guest() fails, this could be due to the guest * programming a bogus value in CBASER or something else going * wrong from which we cannot easily recover. * According to section 6.3.2 in the GICv3 spec we can just * ignore that command then. */ if (!ret) vgic_its_handle_command(kvm, its, cmd_buf); its->creadr += ITS_CMD_SIZE; if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser)) its->creadr = 0; } } /* * By writing to CWRITER the guest announces new commands to be processed. * To avoid any races in the first place, we take the its_cmd lock, which * protects our ring buffer variables, so that there is only one user * per ITS handling commands at a given time. */ static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its, gpa_t addr, unsigned int len, unsigned long val) { u64 reg; if (!its) return; mutex_lock(&its->cmd_lock); reg = update_64bit_reg(its->cwriter, addr & 7, len, val); reg = ITS_CMD_OFFSET(reg); if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) { mutex_unlock(&its->cmd_lock); return; } its->cwriter = reg; vgic_its_process_commands(kvm, its); mutex_unlock(&its->cmd_lock); } static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm, struct vgic_its *its, gpa_t addr, unsigned int len) { return extract_bytes(its->cwriter, addr & 0x7, len); } static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm, struct vgic_its *its, gpa_t addr, unsigned int len) { return extract_bytes(its->creadr, addr & 0x7, len); } static int vgic_mmio_uaccess_write_its_creadr(struct kvm *kvm, struct vgic_its *its, gpa_t addr, unsigned int len, unsigned long val) { u32 cmd_offset; int ret = 0; mutex_lock(&its->cmd_lock); if (its->enabled) { ret = -EBUSY; goto out; } cmd_offset = ITS_CMD_OFFSET(val); if (cmd_offset >= ITS_CMD_BUFFER_SIZE(its->cbaser)) { ret = -EINVAL; goto out; } its->creadr = cmd_offset; out: mutex_unlock(&its->cmd_lock); return ret; } #define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7) static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm, struct vgic_its *its, gpa_t addr, unsigned int len) { u64 reg; switch (BASER_INDEX(addr)) { case 0: reg = its->baser_device_table; break; case 1: reg = its->baser_coll_table; break; default: reg = 0; break; } return extract_bytes(reg, addr & 7, len); } #define GITS_BASER_RO_MASK (GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56)) static void vgic_mmio_write_its_baser(struct kvm *kvm, struct vgic_its *its, gpa_t addr, unsigned int len, unsigned long val) { const struct vgic_its_abi *abi = vgic_its_get_abi(its); u64 entry_size, table_type; u64 reg, *regptr, clearbits = 0; /* When GITS_CTLR.Enable is 1, we ignore write accesses. */ if (its->enabled) return; switch (BASER_INDEX(addr)) { case 0: regptr = &its->baser_device_table; entry_size = abi->dte_esz; table_type = GITS_BASER_TYPE_DEVICE; break; case 1: regptr = &its->baser_coll_table; entry_size = abi->cte_esz; table_type = GITS_BASER_TYPE_COLLECTION; clearbits = GITS_BASER_INDIRECT; break; default: return; } reg = update_64bit_reg(*regptr, addr & 7, len, val); reg &= ~GITS_BASER_RO_MASK; reg &= ~clearbits; reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT; reg |= table_type << GITS_BASER_TYPE_SHIFT; reg = vgic_sanitise_its_baser(reg); *regptr = reg; if (!(reg & GITS_BASER_VALID)) { /* Take the its_lock to prevent a race with a save/restore */ mutex_lock(&its->its_lock); switch (table_type) { case GITS_BASER_TYPE_DEVICE: vgic_its_free_device_list(kvm, its); break; case GITS_BASER_TYPE_COLLECTION: vgic_its_free_collection_list(kvm, its); break; } mutex_unlock(&its->its_lock); } } static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu, struct vgic_its *its, gpa_t addr, unsigned int len) { u32 reg = 0; mutex_lock(&its->cmd_lock); if (its->creadr == its->cwriter) reg |= GITS_CTLR_QUIESCENT; if (its->enabled) reg |= GITS_CTLR_ENABLE; mutex_unlock(&its->cmd_lock); return reg; } static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its, gpa_t addr, unsigned int len, unsigned long val) { mutex_lock(&its->cmd_lock); /* * It is UNPREDICTABLE to enable the ITS if any of the CBASER or * device/collection BASER are invalid */ if (!its->enabled && (val & GITS_CTLR_ENABLE) && (!(its->baser_device_table & GITS_BASER_VALID) || !(its->baser_coll_table & GITS_BASER_VALID) || !(its->cbaser & GITS_CBASER_VALID))) goto out; its->enabled = !!(val & GITS_CTLR_ENABLE); /* * Try to process any pending commands. This function bails out early * if the ITS is disabled or no commands have been queued. */ vgic_its_process_commands(kvm, its); out: mutex_unlock(&its->cmd_lock); } #define REGISTER_ITS_DESC(off, rd, wr, length, acc) \ { \ .reg_offset = off, \ .len = length, \ .access_flags = acc, \ .its_read = rd, \ .its_write = wr, \ } #define REGISTER_ITS_DESC_UACCESS(off, rd, wr, uwr, length, acc)\ { \ .reg_offset = off, \ .len = length, \ .access_flags = acc, \ .its_read = rd, \ .its_write = wr, \ .uaccess_its_write = uwr, \ } static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its, gpa_t addr, unsigned int len, unsigned long val) { /* Ignore */ } static struct vgic_register_region its_registers[] = { REGISTER_ITS_DESC(GITS_CTLR, vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4, VGIC_ACCESS_32bit), REGISTER_ITS_DESC_UACCESS(GITS_IIDR, vgic_mmio_read_its_iidr, its_mmio_write_wi, vgic_mmio_uaccess_write_its_iidr, 4, VGIC_ACCESS_32bit), REGISTER_ITS_DESC(GITS_TYPER, vgic_mmio_read_its_typer, its_mmio_write_wi, 8, VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), REGISTER_ITS_DESC(GITS_CBASER, vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8, VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), REGISTER_ITS_DESC(GITS_CWRITER, vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8, VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), REGISTER_ITS_DESC_UACCESS(GITS_CREADR, vgic_mmio_read_its_creadr, its_mmio_write_wi, vgic_mmio_uaccess_write_its_creadr, 8, VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), REGISTER_ITS_DESC(GITS_BASER, vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40, VGIC_ACCESS_64bit | VGIC_ACCESS_32bit), REGISTER_ITS_DESC(GITS_IDREGS_BASE, vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30, VGIC_ACCESS_32bit), }; /* This is called on setting the LPI enable bit in the redistributor. */ void vgic_enable_lpis(struct kvm_vcpu *vcpu) { if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ)) its_sync_lpi_pending_table(vcpu); } static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its, u64 addr) { struct vgic_io_device *iodev = &its->iodev; int ret; mutex_lock(&kvm->slots_lock); if (!IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) { ret = -EBUSY; goto out; } its->vgic_its_base = addr; iodev->regions = its_registers; iodev->nr_regions = ARRAY_SIZE(its_registers); kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops); iodev->base_addr = its->vgic_its_base; iodev->iodev_type = IODEV_ITS; iodev->its = its; ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr, KVM_VGIC_V3_ITS_SIZE, &iodev->dev); out: mutex_unlock(&kvm->slots_lock); return ret; } #define INITIAL_BASER_VALUE \ (GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb) | \ GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner) | \ GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable) | \ GITS_BASER_PAGE_SIZE_64K) #define INITIAL_PROPBASER_VALUE \ (GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb) | \ GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner) | \ GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable)) static int vgic_its_create(struct kvm_device *dev, u32 type) { struct vgic_its *its; if (type != KVM_DEV_TYPE_ARM_VGIC_ITS) return -ENODEV; its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL); if (!its) return -ENOMEM; if (vgic_initialized(dev->kvm)) { int ret = vgic_v4_init(dev->kvm); if (ret < 0) { kfree(its); return ret; } } mutex_init(&its->its_lock); mutex_init(&its->cmd_lock); its->vgic_its_base = VGIC_ADDR_UNDEF; INIT_LIST_HEAD(&its->device_list); INIT_LIST_HEAD(&its->collection_list); dev->kvm->arch.vgic.msis_require_devid = true; dev->kvm->arch.vgic.has_its = true; its->enabled = false; its->dev = dev; its->baser_device_table = INITIAL_BASER_VALUE | ((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT); its->baser_coll_table = INITIAL_BASER_VALUE | ((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT); dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE; dev->private = its; return vgic_its_set_abi(its, NR_ITS_ABIS - 1); } static void vgic_its_destroy(struct kvm_device *kvm_dev) { struct kvm *kvm = kvm_dev->kvm; struct vgic_its *its = kvm_dev->private; mutex_lock(&its->its_lock); vgic_its_free_device_list(kvm, its); vgic_its_free_collection_list(kvm, its); mutex_unlock(&its->its_lock); kfree(its); kfree(kvm_dev);/* alloc by kvm_ioctl_create_device, free by .destroy */ } int vgic_its_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr) { const struct vgic_register_region *region; gpa_t offset = attr->attr; int align; align = (offset < GITS_TYPER) || (offset >= GITS_PIDR4) ? 0x3 : 0x7; if (offset & align) return -EINVAL; region = vgic_find_mmio_region(its_registers, ARRAY_SIZE(its_registers), offset); if (!region) return -ENXIO; return 0; } int vgic_its_attr_regs_access(struct kvm_device *dev, struct kvm_device_attr *attr, u64 *reg, bool is_write) { const struct vgic_register_region *region; struct vgic_its *its; gpa_t addr, offset; unsigned int len; int align, ret = 0; its = dev->private; offset = attr->attr; /* * Although the spec supports upper/lower 32-bit accesses to * 64-bit ITS registers, the userspace ABI requires 64-bit * accesses to all 64-bit wide registers. We therefore only * support 32-bit accesses to GITS_CTLR, GITS_IIDR and GITS ID * registers */ if ((offset < GITS_TYPER) || (offset >= GITS_PIDR4)) align = 0x3; else align = 0x7; if (offset & align) return -EINVAL; mutex_lock(&dev->kvm->lock); if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) { ret = -ENXIO; goto out; } region = vgic_find_mmio_region(its_registers, ARRAY_SIZE(its_registers), offset); if (!region) { ret = -ENXIO; goto out; } if (!lock_all_vcpus(dev->kvm)) { ret = -EBUSY; goto out; } addr = its->vgic_its_base + offset; len = region->access_flags & VGIC_ACCESS_64bit ? 8 : 4; if (is_write) { if (region->uaccess_its_write) ret = region->uaccess_its_write(dev->kvm, its, addr, len, *reg); else region->its_write(dev->kvm, its, addr, len, *reg); } else { *reg = region->its_read(dev->kvm, its, addr, len); } unlock_all_vcpus(dev->kvm); out: mutex_unlock(&dev->kvm->lock); return ret; } static u32 compute_next_devid_offset(struct list_head *h, struct its_device *dev) { struct its_device *next; u32 next_offset; if (list_is_last(&dev->dev_list, h)) return 0; next = list_next_entry(dev, dev_list); next_offset = next->device_id - dev->device_id; return min_t(u32, next_offset, VITS_DTE_MAX_DEVID_OFFSET); } static u32 compute_next_eventid_offset(struct list_head *h, struct its_ite *ite) { struct its_ite *next; u32 next_offset; if (list_is_last(&ite->ite_list, h)) return 0; next = list_next_entry(ite, ite_list); next_offset = next->event_id - ite->event_id; return min_t(u32, next_offset, VITS_ITE_MAX_EVENTID_OFFSET); } /** * entry_fn_t - Callback called on a table entry restore path * @its: its handle * @id: id of the entry * @entry: pointer to the entry * @opaque: pointer to an opaque data * * Return: < 0 on error, 0 if last element was identified, id offset to next * element otherwise */ typedef int (*entry_fn_t)(struct vgic_its *its, u32 id, void *entry, void *opaque); /** * scan_its_table - Scan a contiguous table in guest RAM and applies a function * to each entry * * @its: its handle * @base: base gpa of the table * @size: size of the table in bytes * @esz: entry size in bytes * @start_id: the ID of the first entry in the table * (non zero for 2d level tables) * @fn: function to apply on each entry * * Return: < 0 on error, 0 if last element was identified, 1 otherwise * (the last element may not be found on second level tables) */ static int scan_its_table(struct vgic_its *its, gpa_t base, int size, u32 esz, int start_id, entry_fn_t fn, void *opaque) { struct kvm *kvm = its->dev->kvm; unsigned long len = size; int id = start_id; gpa_t gpa = base; char entry[ESZ_MAX]; int ret; memset(entry, 0, esz); while (len > 0) { int next_offset; size_t byte_offset; ret = kvm_read_guest_lock(kvm, gpa, entry, esz); if (ret) return ret; next_offset = fn(its, id, entry, opaque); if (next_offset <= 0) return next_offset; byte_offset = next_offset * esz; id += next_offset; gpa += byte_offset; len -= byte_offset; } return 1; } /** * vgic_its_save_ite - Save an interrupt translation entry at @gpa */ static int vgic_its_save_ite(struct vgic_its *its, struct its_device *dev, struct its_ite *ite, gpa_t gpa, int ite_esz) { struct kvm *kvm = its->dev->kvm; u32 next_offset; u64 val; next_offset = compute_next_eventid_offset(&dev->itt_head, ite); val = ((u64)next_offset << KVM_ITS_ITE_NEXT_SHIFT) | ((u64)ite->irq->intid << KVM_ITS_ITE_PINTID_SHIFT) | ite->collection->collection_id; val = cpu_to_le64(val); return kvm_write_guest_lock(kvm, gpa, &val, ite_esz); } /** * vgic_its_restore_ite - restore an interrupt translation entry * @event_id: id used for indexing * @ptr: pointer to the ITE entry * @opaque: pointer to the its_device */ static int vgic_its_restore_ite(struct vgic_its *its, u32 event_id, void *ptr, void *opaque) { struct its_device *dev = (struct its_device *)opaque; struct its_collection *collection; struct kvm *kvm = its->dev->kvm; struct kvm_vcpu *vcpu = NULL; u64 val; u64 *p = (u64 *)ptr; struct vgic_irq *irq; u32 coll_id, lpi_id; struct its_ite *ite; u32 offset; val = *p; val = le64_to_cpu(val); coll_id = val & KVM_ITS_ITE_ICID_MASK; lpi_id = (val & KVM_ITS_ITE_PINTID_MASK) >> KVM_ITS_ITE_PINTID_SHIFT; if (!lpi_id) return 1; /* invalid entry, no choice but to scan next entry */ if (lpi_id < VGIC_MIN_LPI) return -EINVAL; offset = val >> KVM_ITS_ITE_NEXT_SHIFT; if (event_id + offset >= BIT_ULL(dev->num_eventid_bits)) return -EINVAL; collection = find_collection(its, coll_id); if (!collection) return -EINVAL; ite = vgic_its_alloc_ite(dev, collection, event_id); if (IS_ERR(ite)) return PTR_ERR(ite); if (its_is_collection_mapped(collection)) vcpu = kvm_get_vcpu(kvm, collection->target_addr); irq = vgic_add_lpi(kvm, lpi_id, vcpu); if (IS_ERR(irq)) return PTR_ERR(irq); ite->irq = irq; return offset; } static int vgic_its_ite_cmp(void *priv, struct list_head *a, struct list_head *b) { struct its_ite *itea = container_of(a, struct its_ite, ite_list); struct its_ite *iteb = container_of(b, struct its_ite, ite_list); if (itea->event_id < iteb->event_id) return -1; else return 1; } static int vgic_its_save_itt(struct vgic_its *its, struct its_device *device) { const struct vgic_its_abi *abi = vgic_its_get_abi(its); gpa_t base = device->itt_addr; struct its_ite *ite; int ret; int ite_esz = abi->ite_esz; list_sort(NULL, &device->itt_head, vgic_its_ite_cmp); list_for_each_entry(ite, &device->itt_head, ite_list) { gpa_t gpa = base + ite->event_id * ite_esz; /* * If an LPI carries the HW bit, this means that this * interrupt is controlled by GICv4, and we do not * have direct access to that state. Let's simply fail * the save operation... */ if (ite->irq->hw) return -EACCES; ret = vgic_its_save_ite(its, device, ite, gpa, ite_esz); if (ret) return ret; } return 0; } /** * vgic_its_restore_itt - restore the ITT of a device * * @its: its handle * @dev: device handle * * Return 0 on success, < 0 on error */ static int vgic_its_restore_itt(struct vgic_its *its, struct its_device *dev) { const struct vgic_its_abi *abi = vgic_its_get_abi(its); gpa_t base = dev->itt_addr; int ret; int ite_esz = abi->ite_esz; size_t max_size = BIT_ULL(dev->num_eventid_bits) * ite_esz; ret = scan_its_table(its, base, max_size, ite_esz, 0, vgic_its_restore_ite, dev); /* scan_its_table returns +1 if all ITEs are invalid */ if (ret > 0) ret = 0; return ret; } /** * vgic_its_save_dte - Save a device table entry at a given GPA * * @its: ITS handle * @dev: ITS device * @ptr: GPA */ static int vgic_its_save_dte(struct vgic_its *its, struct its_device *dev, gpa_t ptr, int dte_esz) { struct kvm *kvm = its->dev->kvm; u64 val, itt_addr_field; u32 next_offset; itt_addr_field = dev->itt_addr >> 8; next_offset = compute_next_devid_offset(&its->device_list, dev); val = (1ULL << KVM_ITS_DTE_VALID_SHIFT | ((u64)next_offset << KVM_ITS_DTE_NEXT_SHIFT) | (itt_addr_field << KVM_ITS_DTE_ITTADDR_SHIFT) | (dev->num_eventid_bits - 1)); val = cpu_to_le64(val); return kvm_write_guest_lock(kvm, ptr, &val, dte_esz); } /** * vgic_its_restore_dte - restore a device table entry * * @its: its handle * @id: device id the DTE corresponds to * @ptr: kernel VA where the 8 byte DTE is located * @opaque: unused * * Return: < 0 on error, 0 if the dte is the last one, id offset to the * next dte otherwise */ static int vgic_its_restore_dte(struct vgic_its *its, u32 id, void *ptr, void *opaque) { struct its_device *dev; gpa_t itt_addr; u8 num_eventid_bits; u64 entry = *(u64 *)ptr; bool valid; u32 offset; int ret; entry = le64_to_cpu(entry); valid = entry >> KVM_ITS_DTE_VALID_SHIFT; num_eventid_bits = (entry & KVM_ITS_DTE_SIZE_MASK) + 1; itt_addr = ((entry & KVM_ITS_DTE_ITTADDR_MASK) >> KVM_ITS_DTE_ITTADDR_SHIFT) << 8; if (!valid) return 1; /* dte entry is valid */ offset = (entry & KVM_ITS_DTE_NEXT_MASK) >> KVM_ITS_DTE_NEXT_SHIFT; dev = vgic_its_alloc_device(its, id, itt_addr, num_eventid_bits); if (IS_ERR(dev)) return PTR_ERR(dev); ret = vgic_its_restore_itt(its, dev); if (ret) { vgic_its_free_device(its->dev->kvm, dev); return ret; } return offset; } static int vgic_its_device_cmp(void *priv, struct list_head *a, struct list_head *b) { struct its_device *deva = container_of(a, struct its_device, dev_list); struct its_device *devb = container_of(b, struct its_device, dev_list); if (deva->device_id < devb->device_id) return -1; else return 1; } /** * vgic_its_save_device_tables - Save the device table and all ITT * into guest RAM * * L1/L2 handling is hidden by vgic_its_check_id() helper which directly * returns the GPA of the device entry */ static int vgic_its_save_device_tables(struct vgic_its *its) { const struct vgic_its_abi *abi = vgic_its_get_abi(its); u64 baser = its->baser_device_table; struct its_device *dev; int dte_esz = abi->dte_esz; if (!(baser & GITS_BASER_VALID)) return 0; list_sort(NULL, &its->device_list, vgic_its_device_cmp); list_for_each_entry(dev, &its->device_list, dev_list) { int ret; gpa_t eaddr; if (!vgic_its_check_id(its, baser, dev->device_id, &eaddr)) return -EINVAL; ret = vgic_its_save_itt(its, dev); if (ret) return ret; ret = vgic_its_save_dte(its, dev, eaddr, dte_esz); if (ret) return ret; } return 0; } /** * handle_l1_dte - callback used for L1 device table entries (2 stage case) * * @its: its handle * @id: index of the entry in the L1 table * @addr: kernel VA * @opaque: unused * * L1 table entries are scanned by steps of 1 entry * Return < 0 if error, 0 if last dte was found when scanning the L2 * table, +1 otherwise (meaning next L1 entry must be scanned) */ static int handle_l1_dte(struct vgic_its *its, u32 id, void *addr, void *opaque) { const struct vgic_its_abi *abi = vgic_its_get_abi(its); int l2_start_id = id * (SZ_64K / abi->dte_esz); u64 entry = *(u64 *)addr; int dte_esz = abi->dte_esz; gpa_t gpa; int ret; entry = le64_to_cpu(entry); if (!(entry & KVM_ITS_L1E_VALID_MASK)) return 1; gpa = entry & KVM_ITS_L1E_ADDR_MASK; ret = scan_its_table(its, gpa, SZ_64K, dte_esz, l2_start_id, vgic_its_restore_dte, NULL); return ret; } /** * vgic_its_restore_device_tables - Restore the device table and all ITT * from guest RAM to internal data structs */ static int vgic_its_restore_device_tables(struct vgic_its *its) { const struct vgic_its_abi *abi = vgic_its_get_abi(its); u64 baser = its->baser_device_table; int l1_esz, ret; int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K; gpa_t l1_gpa; if (!(baser & GITS_BASER_VALID)) return 0; l1_gpa = BASER_ADDRESS(baser); if (baser & GITS_BASER_INDIRECT) { l1_esz = GITS_LVL1_ENTRY_SIZE; ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0, handle_l1_dte, NULL); } else { l1_esz = abi->dte_esz; ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0, vgic_its_restore_dte, NULL); } /* scan_its_table returns +1 if all entries are invalid */ if (ret > 0) ret = 0; return ret; } static int vgic_its_save_cte(struct vgic_its *its, struct its_collection *collection, gpa_t gpa, int esz) { u64 val; val = (1ULL << KVM_ITS_CTE_VALID_SHIFT | ((u64)collection->target_addr << KVM_ITS_CTE_RDBASE_SHIFT) | collection->collection_id); val = cpu_to_le64(val); return kvm_write_guest_lock(its->dev->kvm, gpa, &val, esz); } static int vgic_its_restore_cte(struct vgic_its *its, gpa_t gpa, int esz) { struct its_collection *collection; struct kvm *kvm = its->dev->kvm; u32 target_addr, coll_id; u64 val; int ret; BUG_ON(esz > sizeof(val)); ret = kvm_read_guest_lock(kvm, gpa, &val, esz); if (ret) return ret; val = le64_to_cpu(val); if (!(val & KVM_ITS_CTE_VALID_MASK)) return 0; target_addr = (u32)(val >> KVM_ITS_CTE_RDBASE_SHIFT); coll_id = val & KVM_ITS_CTE_ICID_MASK; if (target_addr != COLLECTION_NOT_MAPPED && target_addr >= atomic_read(&kvm->online_vcpus)) return -EINVAL; collection = find_collection(its, coll_id); if (collection) return -EEXIST; ret = vgic_its_alloc_collection(its, &collection, coll_id); if (ret) return ret; collection->target_addr = target_addr; return 1; } /** * vgic_its_save_collection_table - Save the collection table into * guest RAM */ static int vgic_its_save_collection_table(struct vgic_its *its) { const struct vgic_its_abi *abi = vgic_its_get_abi(its); u64 baser = its->baser_coll_table; gpa_t gpa = BASER_ADDRESS(baser); struct its_collection *collection; u64 val; size_t max_size, filled = 0; int ret, cte_esz = abi->cte_esz; if (!(baser & GITS_BASER_VALID)) return 0; max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K; list_for_each_entry(collection, &its->collection_list, coll_list) { ret = vgic_its_save_cte(its, collection, gpa, cte_esz); if (ret) return ret; gpa += cte_esz; filled += cte_esz; } if (filled == max_size) return 0; /* * table is not fully filled, add a last dummy element * with valid bit unset */ val = 0; BUG_ON(cte_esz > sizeof(val)); ret = kvm_write_guest_lock(its->dev->kvm, gpa, &val, cte_esz); return ret; } /** * vgic_its_restore_collection_table - reads the collection table * in guest memory and restores the ITS internal state. Requires the * BASER registers to be restored before. */ static int vgic_its_restore_collection_table(struct vgic_its *its) { const struct vgic_its_abi *abi = vgic_its_get_abi(its); u64 baser = its->baser_coll_table; int cte_esz = abi->cte_esz; size_t max_size, read = 0; gpa_t gpa; int ret; if (!(baser & GITS_BASER_VALID)) return 0; gpa = BASER_ADDRESS(baser); max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K; while (read < max_size) { ret = vgic_its_restore_cte(its, gpa, cte_esz); if (ret <= 0) break; gpa += cte_esz; read += cte_esz; } if (ret > 0) return 0; return ret; } /** * vgic_its_save_tables_v0 - Save the ITS tables into guest ARM * according to v0 ABI */ static int vgic_its_save_tables_v0(struct vgic_its *its) { int ret; ret = vgic_its_save_device_tables(its); if (ret) return ret; return vgic_its_save_collection_table(its); } /** * vgic_its_restore_tables_v0 - Restore the ITS tables from guest RAM * to internal data structs according to V0 ABI * */ static int vgic_its_restore_tables_v0(struct vgic_its *its) { int ret; ret = vgic_its_restore_collection_table(its); if (ret) return ret; return vgic_its_restore_device_tables(its); } static int vgic_its_commit_v0(struct vgic_its *its) { const struct vgic_its_abi *abi; abi = vgic_its_get_abi(its); its->baser_coll_table &= ~GITS_BASER_ENTRY_SIZE_MASK; its->baser_device_table &= ~GITS_BASER_ENTRY_SIZE_MASK; its->baser_coll_table |= (GIC_ENCODE_SZ(abi->cte_esz, 5) << GITS_BASER_ENTRY_SIZE_SHIFT); its->baser_device_table |= (GIC_ENCODE_SZ(abi->dte_esz, 5) << GITS_BASER_ENTRY_SIZE_SHIFT); return 0; } static void vgic_its_reset(struct kvm *kvm, struct vgic_its *its) { /* We need to keep the ABI specific field values */ its->baser_coll_table &= ~GITS_BASER_VALID; its->baser_device_table &= ~GITS_BASER_VALID; its->cbaser = 0; its->creadr = 0; its->cwriter = 0; its->enabled = 0; vgic_its_free_device_list(kvm, its); vgic_its_free_collection_list(kvm, its); } static int vgic_its_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr) { switch (attr->group) { case KVM_DEV_ARM_VGIC_GRP_ADDR: switch (attr->attr) { case KVM_VGIC_ITS_ADDR_TYPE: return 0; } break; case KVM_DEV_ARM_VGIC_GRP_CTRL: switch (attr->attr) { case KVM_DEV_ARM_VGIC_CTRL_INIT: return 0; case KVM_DEV_ARM_ITS_CTRL_RESET: return 0; case KVM_DEV_ARM_ITS_SAVE_TABLES: return 0; case KVM_DEV_ARM_ITS_RESTORE_TABLES: return 0; } break; case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: return vgic_its_has_attr_regs(dev, attr); } return -ENXIO; } static int vgic_its_ctrl(struct kvm *kvm, struct vgic_its *its, u64 attr) { const struct vgic_its_abi *abi = vgic_its_get_abi(its); int ret = 0; if (attr == KVM_DEV_ARM_VGIC_CTRL_INIT) /* Nothing to do */ return 0; mutex_lock(&kvm->lock); mutex_lock(&its->its_lock); if (!lock_all_vcpus(kvm)) { mutex_unlock(&its->its_lock); mutex_unlock(&kvm->lock); return -EBUSY; } switch (attr) { case KVM_DEV_ARM_ITS_CTRL_RESET: vgic_its_reset(kvm, its); break; case KVM_DEV_ARM_ITS_SAVE_TABLES: ret = abi->save_tables(its); break; case KVM_DEV_ARM_ITS_RESTORE_TABLES: ret = abi->restore_tables(its); break; } unlock_all_vcpus(kvm); mutex_unlock(&its->its_lock); mutex_unlock(&kvm->lock); return ret; } static int vgic_its_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr) { struct vgic_its *its = dev->private; int ret; switch (attr->group) { case KVM_DEV_ARM_VGIC_GRP_ADDR: { u64 __user *uaddr = (u64 __user *)(long)attr->addr; unsigned long type = (unsigned long)attr->attr; u64 addr; if (type != KVM_VGIC_ITS_ADDR_TYPE) return -ENODEV; if (copy_from_user(&addr, uaddr, sizeof(addr))) return -EFAULT; ret = vgic_check_ioaddr(dev->kvm, &its->vgic_its_base, addr, SZ_64K); if (ret) return ret; return vgic_register_its_iodev(dev->kvm, its, addr); } case KVM_DEV_ARM_VGIC_GRP_CTRL: return vgic_its_ctrl(dev->kvm, its, attr->attr); case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: { u64 __user *uaddr = (u64 __user *)(long)attr->addr; u64 reg; if (get_user(reg, uaddr)) return -EFAULT; return vgic_its_attr_regs_access(dev, attr, ®, true); } } return -ENXIO; } static int vgic_its_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr) { switch (attr->group) { case KVM_DEV_ARM_VGIC_GRP_ADDR: { struct vgic_its *its = dev->private; u64 addr = its->vgic_its_base; u64 __user *uaddr = (u64 __user *)(long)attr->addr; unsigned long type = (unsigned long)attr->attr; if (type != KVM_VGIC_ITS_ADDR_TYPE) return -ENODEV; if (copy_to_user(uaddr, &addr, sizeof(addr))) return -EFAULT; break; } case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: { u64 __user *uaddr = (u64 __user *)(long)attr->addr; u64 reg; int ret; ret = vgic_its_attr_regs_access(dev, attr, ®, false); if (ret) return ret; return put_user(reg, uaddr); } default: return -ENXIO; } return 0; } static struct kvm_device_ops kvm_arm_vgic_its_ops = { .name = "kvm-arm-vgic-its", .create = vgic_its_create, .destroy = vgic_its_destroy, .set_attr = vgic_its_set_attr, .get_attr = vgic_its_get_attr, .has_attr = vgic_its_has_attr, }; int kvm_vgic_register_its_device(void) { return kvm_register_device_ops(&kvm_arm_vgic_its_ops, KVM_DEV_TYPE_ARM_VGIC_ITS); }