/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_POWERPC_PGTABLE_RADIX_H #define _ASM_POWERPC_PGTABLE_RADIX_H #include #ifndef __ASSEMBLY__ #include #endif #ifdef CONFIG_PPC_64K_PAGES #include #else #include #endif #ifndef __ASSEMBLY__ #include #include #endif /* An empty PTE can still have a R or C writeback */ #define RADIX_PTE_NONE_MASK (_PAGE_DIRTY | _PAGE_ACCESSED) /* Bits to set in a RPMD/RPUD/RPGD */ #define RADIX_PMD_VAL_BITS (0x8000000000000000UL | RADIX_PTE_INDEX_SIZE) #define RADIX_PUD_VAL_BITS (0x8000000000000000UL | RADIX_PMD_INDEX_SIZE) #define RADIX_PGD_VAL_BITS (0x8000000000000000UL | RADIX_PUD_INDEX_SIZE) /* Don't have anything in the reserved bits and leaf bits */ #define RADIX_PMD_BAD_BITS 0x60000000000000e0UL #define RADIX_PUD_BAD_BITS 0x60000000000000e0UL #define RADIX_PGD_BAD_BITS 0x60000000000000e0UL #define RADIX_PMD_SHIFT (PAGE_SHIFT + RADIX_PTE_INDEX_SIZE) #define RADIX_PUD_SHIFT (RADIX_PMD_SHIFT + RADIX_PMD_INDEX_SIZE) #define RADIX_PGD_SHIFT (RADIX_PUD_SHIFT + RADIX_PUD_INDEX_SIZE) /* * Size of EA range mapped by our pagetables. */ #define RADIX_PGTABLE_EADDR_SIZE (RADIX_PTE_INDEX_SIZE + RADIX_PMD_INDEX_SIZE + \ RADIX_PUD_INDEX_SIZE + RADIX_PGD_INDEX_SIZE + PAGE_SHIFT) #define RADIX_PGTABLE_RANGE (ASM_CONST(1) << RADIX_PGTABLE_EADDR_SIZE) /* * We support 52 bit address space, Use top bit for kernel * virtual mapping. Also make sure kernel fit in the top * quadrant. * * +------------------+ * +------------------+ Kernel virtual map (0xc008000000000000) * | | * | | * | | * 0b11......+------------------+ Kernel linear map (0xc....) * | | * | 2 quadrant | * | | * 0b10......+------------------+ * | | * | 1 quadrant | * | | * 0b01......+------------------+ * | | * | 0 quadrant | * | | * 0b00......+------------------+ * * * 3rd quadrant expanded: * +------------------------------+ * | | * | | * | | * +------------------------------+ Kernel IO map end (0xc010000000000000) * | | * | | * | 1/2 of virtual map | * | | * | | * +------------------------------+ Kernel IO map start * | | * | 1/4 of virtual map | * | | * +------------------------------+ Kernel vmemap start * | | * | 1/4 of virtual map | * | | * +------------------------------+ Kernel virt start (0xc008000000000000) * | | * | | * | | * +------------------------------+ Kernel linear (0xc.....) */ #define RADIX_KERN_VIRT_START ASM_CONST(0xc008000000000000) #define RADIX_KERN_VIRT_SIZE ASM_CONST(0x0008000000000000) /* * The vmalloc space starts at the beginning of that region, and * occupies a quarter of it on radix config. * (we keep a quarter for the virtual memmap) */ #define RADIX_VMALLOC_START RADIX_KERN_VIRT_START #define RADIX_VMALLOC_SIZE (RADIX_KERN_VIRT_SIZE >> 2) #define RADIX_VMALLOC_END (RADIX_VMALLOC_START + RADIX_VMALLOC_SIZE) /* * Defines the address of the vmemap area, in its own region on * hash table CPUs. */ #define RADIX_VMEMMAP_BASE (RADIX_VMALLOC_END) #define RADIX_KERN_IO_START (RADIX_KERN_VIRT_START + (RADIX_KERN_VIRT_SIZE >> 1)) #ifndef __ASSEMBLY__ #define RADIX_PTE_TABLE_SIZE (sizeof(pte_t) << RADIX_PTE_INDEX_SIZE) #define RADIX_PMD_TABLE_SIZE (sizeof(pmd_t) << RADIX_PMD_INDEX_SIZE) #define RADIX_PUD_TABLE_SIZE (sizeof(pud_t) << RADIX_PUD_INDEX_SIZE) #define RADIX_PGD_TABLE_SIZE (sizeof(pgd_t) << RADIX_PGD_INDEX_SIZE) #ifdef CONFIG_STRICT_KERNEL_RWX extern void radix__mark_rodata_ro(void); extern void radix__mark_initmem_nx(void); #endif extern void radix__ptep_set_access_flags(struct vm_area_struct *vma, pte_t *ptep, pte_t entry, unsigned long address, int psize); static inline unsigned long __radix_pte_update(pte_t *ptep, unsigned long clr, unsigned long set) { __be64 old_be, tmp_be; __asm__ __volatile__( "1: ldarx %0,0,%3 # pte_update\n" " andc %1,%0,%5 \n" " or %1,%1,%4 \n" " stdcx. %1,0,%3 \n" " bne- 1b" : "=&r" (old_be), "=&r" (tmp_be), "=m" (*ptep) : "r" (ptep), "r" (cpu_to_be64(set)), "r" (cpu_to_be64(clr)) : "cc" ); return be64_to_cpu(old_be); } static inline unsigned long radix__pte_update(struct mm_struct *mm, unsigned long addr, pte_t *ptep, unsigned long clr, unsigned long set, int huge) { unsigned long old_pte; old_pte = __radix_pte_update(ptep, clr, set); if (!huge) assert_pte_locked(mm, addr); return old_pte; } static inline pte_t radix__ptep_get_and_clear_full(struct mm_struct *mm, unsigned long addr, pte_t *ptep, int full) { unsigned long old_pte; if (full) { old_pte = pte_val(*ptep); *ptep = __pte(0); } else old_pte = radix__pte_update(mm, addr, ptep, ~0ul, 0, 0); return __pte(old_pte); } static inline int radix__pte_same(pte_t pte_a, pte_t pte_b) { return ((pte_raw(pte_a) ^ pte_raw(pte_b)) == 0); } static inline int radix__pte_none(pte_t pte) { return (pte_val(pte) & ~RADIX_PTE_NONE_MASK) == 0; } static inline void radix__set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pte, int percpu) { *ptep = pte; /* * The architecture suggests a ptesync after setting the pte, which * orders the store that updates the pte with subsequent page table * walk accesses which may load the pte. Without this it may be * possible for a subsequent access to result in spurious fault. * * This is not necessary for correctness, because a spurious fault * is tolerated by the page fault handler, and this store will * eventually be seen. In testing, there was no noticable increase * in user faults on POWER9. Avoiding ptesync here is a significant * win for things like fork. If a future microarchitecture benefits * from ptesync, it should probably go into update_mmu_cache, rather * than set_pte_at (which is used to set ptes unrelated to faults). * * Spurious faults to vmalloc region are not tolerated, so there is * a ptesync in flush_cache_vmap. */ } static inline int radix__pmd_bad(pmd_t pmd) { return !!(pmd_val(pmd) & RADIX_PMD_BAD_BITS); } static inline int radix__pmd_same(pmd_t pmd_a, pmd_t pmd_b) { return ((pmd_raw(pmd_a) ^ pmd_raw(pmd_b)) == 0); } static inline int radix__pud_bad(pud_t pud) { return !!(pud_val(pud) & RADIX_PUD_BAD_BITS); } static inline int radix__pgd_bad(pgd_t pgd) { return !!(pgd_val(pgd) & RADIX_PGD_BAD_BITS); } #ifdef CONFIG_TRANSPARENT_HUGEPAGE static inline int radix__pmd_trans_huge(pmd_t pmd) { return (pmd_val(pmd) & (_PAGE_PTE | _PAGE_DEVMAP)) == _PAGE_PTE; } static inline pmd_t radix__pmd_mkhuge(pmd_t pmd) { return __pmd(pmd_val(pmd) | _PAGE_PTE); } extern unsigned long radix__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp, unsigned long clr, unsigned long set); extern pmd_t radix__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp); extern void radix__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, pgtable_t pgtable); extern pgtable_t radix__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp); extern pmd_t radix__pmdp_huge_get_and_clear(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp); extern int radix__has_transparent_hugepage(void); #endif static inline pmd_t radix__pmd_mkdevmap(pmd_t pmd) { return __pmd(pmd_val(pmd) | (_PAGE_PTE | _PAGE_DEVMAP)); } extern int __meminit radix__vmemmap_create_mapping(unsigned long start, unsigned long page_size, unsigned long phys); extern void radix__vmemmap_remove_mapping(unsigned long start, unsigned long page_size); extern int radix__map_kernel_page(unsigned long ea, unsigned long pa, pgprot_t flags, unsigned int psz); static inline unsigned long radix__get_tree_size(void) { unsigned long rts_field; /* * We support 52 bits, hence: * bits 52 - 31 = 21, 0b10101 * RTS encoding details * bits 0 - 3 of rts -> bits 6 - 8 unsigned long * bits 4 - 5 of rts -> bits 62 - 63 of unsigned long */ rts_field = (0x5UL << 5); /* 6 - 8 bits */ rts_field |= (0x2UL << 61); return rts_field; } #ifdef CONFIG_MEMORY_HOTPLUG int radix__create_section_mapping(unsigned long start, unsigned long end, int nid); int radix__remove_section_mapping(unsigned long start, unsigned long end); #endif /* CONFIG_MEMORY_HOTPLUG */ #endif /* __ASSEMBLY__ */ #endif