/* <:copyright-BRCM:2013:DUAL/GPL:standard Copyright (c) 2013 Broadcom All Rights Reserved Unless you and Broadcom execute a separate written software license agreement governing use of this software, this software is licensed to you under the terms of the GNU General Public License version 2 (the "GPL"), available at http://www.broadcom.com/licenses/GPLv2.php, with the following added to such license: As a special exception, the copyright holders of this software give you permission to link this software with independent modules, and to copy and distribute the resulting executable under terms of your choice, provided that you also meet, for each linked independent module, the terms and conditions of the license of that module. An independent module is a module which is not derived from this software. The special exception does not apply to any modifications of the software. Not withstanding the above, under no circumstances may you combine this software in any way with any other Broadcom software provided under a license other than the GPL, without Broadcom's express prior written consent. :> */ #ifndef BPCM_H #define BPCM_H #ifndef NULL #define NULL ((void *)0) #endif #ifndef _TYPEDEFS_H_ #ifndef _UINT32_T_DECLARED typedef unsigned int uint32_t; #define _UINT32_T_DECLARED #endif #ifndef _UINT64_T_DECLARED typedef unsigned long long uint64_t; #define _UINT64_T_DECLARED #endif #endif typedef union { struct { uint32_t pmbAddr:12; // [11:00] uint32_t map_rev:4; // [15:12] always non-zero for AVS3 devices (see CLASSIC_BPCM_ID_REG below) uint32_t island:4; // [19:16] uint32_t devType:4; // [23:20] see enum above uint32_t hw_rev:8; // [31:24] } Bits; uint32_t Reg32; } BPCM_ID_REG; enum { kPMB_NO_DEVICE = 0, kPMB_BPCM = 1, // in AVS3, this structure does not contain ARS registers (except for "classic" BPCM devices) kPMB_MIPS_PLL = 2, kPMB_GEN_PLL = 3, kPMB_LC_PLL = 4, kPMB_CLKRST = 5, kPMB_PVTMON = 6, // used in in AVS3 when PVT is wrapped in a BPCM structure kPMB_TMON_INTERNAL = 7, // ditto - used when TMON thermistor is on-die kPMB_TMON_EXTERNAL = 8, // ditto - used when thermistor is off-die kPMB_ARS = 9, // AVS Remote Sensors - remote oscillators and Power-Watchdog // 10..15 reserved }; typedef union { struct { uint32_t num_zones:8; uint32_t num_sr_bits:8; uint32_t devType:4; // see enum above uint32_t reserved1:12; } Bits; uint32_t Reg32; } BPCM_CAPABILITES_REG; typedef union { struct { uint32_t pwd_alert:1; uint32_t reserved:31; } Bits; uint32_t Reg32; } BPCM_STATUS_REG; typedef union { struct { uint32_t ro_en_s:1; uint32_t ro_en_h:1; uint32_t ectr_en_s:1; uint32_t ectr_en_h:1; uint32_t thresh_en_s:1; uint32_t thresh_en_h:1; uint32_t continuous_s:1; uint32_t continuous_h:1; uint32_t reserved:4; uint32_t valid_s:1; uint32_t alert_s:1; uint32_t valid_h:1; uint32_t alert_h:1; uint32_t interval:16; } Bits; uint32_t Reg32; } BPCM_AVS_ROSC_CONTROL_REG; typedef union { struct { uint32_t thresh_lo:16; uint32_t thresh_hi:16; } Bits; uint32_t Reg32; } BPCM_AVS_ROSC_THRESHOLD; typedef union { struct { uint32_t count_s:16; uint32_t count_h:16; } Bits; uint32_t Reg32; } BPCM_AVS_ROSC_COUNT; typedef union { struct { uint32_t pwd_en:1; uint32_t pwd_alert_sel:1; uint32_t start:6; uint32_t pwd_tm_en:1; uint32_t reserved2:6; uint32_t alert:1; uint32_t ccfg:8; uint32_t rsel:3; uint32_t clr_cfg:3; uint32_t reserved1:2; } Bits; uint32_t Reg32; } BPCM_AVS_PWD_CONTROL; typedef union { struct { uint32_t tbd:32; } Bits; uint32_t Reg32; } BPCM_PWD_ACCUM_CONTROL; typedef union { struct { uint32_t sr:8; uint32_t gp:24; } Bits; uint32_t Reg32; } BPCM_SR_CONTROL; typedef union{ struct { uint32_t tbd:32; } Bits; uint32_t Reg32; struct { uint32_t vdsl_arm_por_reset_n:1; uint32_t vdsl_arm_reset_n:1; uint32_t vdsl_arm_debug_reset_n:1; uint32_t vdsl_arm_l2_reset_n:1; uint32_t vdsl_arm_cdbgrstreq_en:1; uint32_t vdsl_arm_niden_a7_b0:1; uint32_t vdsl_arm_spniden_a7_b0:1; uint32_t vdsl_arm_nsocdbgreset_a7:1; uint32_t axi4_ubus4_pass_through_disable:1; uint32_t vdsl_arm_dbgen_a7_b0:1; uint32_t vdsl_arm_spiden_a7_b0:1; uint32_t vdsl_arm_scratch_reg:21; } Bits_vdsl; } BPCM_VDSL_ARM_RST_CTL; typedef union { struct { uint32_t tbd:32; } Bits; uint32_t Reg32; } BPCM_GLOBAL_CNTL; typedef union { struct { uint32_t ctl; } Bits_sata_gp; struct { uint32_t iddq_bias:1; /* 0 */ uint32_t ext_pwr_down:4; /* 1-4 */ uint32_t force_dll_en:1; /* 5 */ uint32_t iddq_global_pwr:1; /* 6 */ uint32_t reserved:25; } Bits_switch_z1_qgphy; struct { uint32_t iddq_bias:1; /* 0 */ uint32_t ext_pwr_down:1; /* 1 */ uint32_t force_dll_en:1; /* 2 */ uint32_t iddq_global_pwd:1; /* 3 */ uint32_t ck25_dis:1; /* 4 */ uint32_t phy_reset:1; /* 5 */ uint32_t reserved0:2; uint32_t phy_ad:5; /* 8-12 */ uint32_t reserved1:18; uint32_t ctrl_en:1; /* 31 */ } Bits_egphy_1port; struct { uint32_t iddq_bias:1; /* 0 */ uint32_t ext_pwr_down:4; /* 1-4 */ uint32_t force_dll_en:1; /* 5 */ uint32_t iddq_global_pwd:1; /* 6 */ uint32_t ck25_dis:1; /* 7 */ uint32_t phy_reset:1; /* 8 */ uint32_t reserved0:3; uint32_t phy_ad:5; /* 12-16 */ uint32_t reserved1:14; uint32_t ctrl_en:1; /* 31 */ } Bits_egphy_4port; struct { uint32_t iddq_bias:1; /* 0 */ uint32_t ext_pwr_down:4; /* 1-4 */ uint32_t force_dll_en:1; /* 5 */ uint32_t iddq_global_pwr:1; /* 6 */ uint32_t reserved0:25; /* 7-31 */ } Bits_qgphy_cntl; struct { uint32_t ctl; } Bits_vdsl_phy; struct { uint32_t alt_bfc_vector:12; /* 00-11 */ uint32_t reserved0:3; uint32_t alt_bfc_en:1; /* 15 */ uint32_t reset_dly_cfg:2; /* 16-17 */ uint32_t reserved1:8; uint32_t ext_mclk_en_reset:1; /* 26 */ uint32_t ext_mclk_en:1; /* 27 */ uint32_t por_reset_n_ctl:1; /* 28 */ uint32_t reset_n_ctl:1; /* 29 */ uint32_t reserved2:1; uint32_t clken:1; /* 31 */ } Bits_vdsl_mips; uint32_t Reg32; } BPCM_MISC_CONTROL; typedef union { struct { uint32_t field; } Bits_qgphy_status; struct { uint32_t alt_bfc_vector:12; /* 00-11 */ uint32_t reserved0:3; uint32_t alt_bfc_en:1; /* 15 */ uint32_t reset_dly_cfg:2; /* 16-17 */ uint32_t reserved1:8; uint32_t ext_mclk_en_reset:1; /* 26 */ uint32_t ext_mclk_en:1; /* 27 */ uint32_t por_reset_n_ctl:1; /* 28 */ uint32_t reset_n_ctl:1; /* 29 */ uint32_t reserved2:1; uint32_t clken:1; /* 31 */ } Bits_vdsl_mips; /* second PHY MIPS core */ uint32_t Reg32; } BPCM_MISC_CONTROL2; typedef union { struct { uint32_t gphy_iddq_bias:1; /* 00 */ uint32_t gphy_ext_pwr_down:1; /* 01 */ uint32_t gphy_force_dll_en:1; /* 02 */ uint32_t gphy_iddq_global_pwr:1; /* 03 */ uint32_t serdes_iddq:1; /* 04 */ uint32_t serdes_pwrdwn:1; /* 05 */ uint32_t reserved0:2; /* 07:06 */ uint32_t serdes_refclk_sel:3; /* 10:08 */ uint32_t reserved1:5; /* 15:11 */ uint32_t pll_clk125_250_sel:1; /* 16 */ uint32_t pll_mux_clk_250_sel:1; /* 17 */ uint32_t reserved2:14; /* 31:18 */ } Bits; uint32_t Reg32; } BPCM_SGPHY_CNTL; typedef union { struct { uint32_t field; } Bits; uint32_t Reg32; } BPCM_SGPHY_STATUS; typedef union { struct { uint32_t cpu_reset_n:8; // 07:00 R/W uint32_t c0l2_reset:1; // 08:08 R/W uint32_t c1l2_reset:1; // 09:09 R/W uint32_t reserved0:6; // 15:10 R/O uint32_t cpu_bpcm_init_on:8; // 23:16 R/W uint32_t c0l2_bpcm_init_on:1; // 24:24 R/W uint32_t c1l2_bpcm_init_on:1; // 25:25 R/W uint32_t ubus_sr:1; // 26:26 R/W uint32_t cci_sr:1; // 27:27 R/W uint32_t webcores_sr:1; // 28:28 R/W uint32_t hw_done:1; // 29:29 R/O uint32_t sw_done:1; // 30:30 R/W uint32_t start:1; // 31:31 R/W } Bits; uint32_t Reg32; } ARM_CONTROL_REG; typedef union { struct { uint32_t mem_pwr_ok:1; // 00:00 R/W uint32_t mem_pwr_on:1; // 01:01 R/W uint32_t mem_clamp_on:1; // 02:02 R/W uint32_t reserved2:1; // 03:03 R/W uint32_t mem_pwr_ok_status:1; // 04:04 R/O uint32_t mem_pwr_on_status:1; // 05:05 R/O uint32_t reserved1:2; // 07:06 R/W uint32_t mem_pda:4; // 11:08 R/W only LS bit for CPU0/1, all four bits for neon_l2 uint32_t reserved0:3; // 14:12 R/W uint32_t clamp_on:1; // 15:15 R/W uint32_t pwr_ok:4; // 19:16 R/W ditto uint32_t pwr_on:4; // 23:20 R/W ditto uint32_t pwr_ok_status:4; // 27:24 R/O ditto uint32_t pwr_on_status:4; // 31:28 R/O only LS 2-bits for CPU1, only LS 1 bit for neon_l2 } Bits; uint32_t Reg32; } ARM_CPUx_PWR_CTRL_REG; typedef union { struct { uint32_t resetb:1; // 00:00 uint32_t post_resetb:1; // 01:01 uint32_t pwrdwn:1; // 02:02 uint32_t master_reset:1; // 03:03 uint32_t pwrdwn_ldo:1; // 04:04 uint32_t iso:1; // 05:05 // only used in afepll uint32_t reserved0:2; // 07:06 uint32_t ldo_ctrl:6; // 13:08 uint32_t reserved1:1; // 14:14 uint32_t hold_ch_all:1; // 15:15 uint32_t reserved2:4; // 16:19 uint32_t byp_wait:1; // 20:20 // only used in b15pll uint32_t reserved3:11; // 21:31 } Bits; uint32_t Reg32; } PLL_CTRL_REG; typedef union { struct { uint32_t fb_offset:12; // 11:00 uint32_t fb_phase_en:1; // 12:12 uint32_t _8phase_en:1; // 13:13 uint32_t sr:18; // 31:14 } Bits; uint32_t Reg32; } PLL_PHASE_REG; typedef union { struct { uint32_t ndiv_int:10; // 09:00 uint32_t ndiv_frac:20; // 29:10 uint32_t reserved0:1; // 30 uint32_t ndiv_override:1; // 31 } Bits; uint32_t Reg32; } PLL_NDIV_REG; typedef union { struct { uint32_t pdiv:3; // 02:00 uint32_t reserved0:28; // 30:03 uint32_t ndiv_pdiv_override:1; // 31:31 } Bits; uint32_t Reg32; } PLL_PDIV_REG; typedef union { struct { uint32_t mdiv0:8; // 07:00 uint32_t enableb_ch0:1; // 08:08 uint32_t hold_ch0:1; // 09:09 uint32_t load_en_ch0:1; // 10:10 uint32_t mdel0:1; // 11:11 uint32_t reserved0:3; // 14:12 uint32_t mdiv_override0:1; // 15:15 uint32_t mdiv1:8; // 23:16 uint32_t enableb_ch1:1; // 24:24 uint32_t hold_ch1:1; // 25:25 uint32_t load_en_ch1:1; // 26:26 uint32_t mdel1:1; // 27:27 uint32_t reserved1:3; // 30:28 uint32_t mdiv_override1:1; // 31:31 } Bits; uint32_t Reg32; } PLL_CHCFG_REG; typedef union { struct { uint32_t reserved0:4; // 03:00 uint32_t ka:3; // 06:04 uint32_t reserved1:1; // 07:07 uint32_t ki:3; // 10:08 uint32_t reserved2:1; // 11:11 uint32_t kp:4; // 15:12 uint32_t ssc_step:16; // 31:16 } Bits; uint32_t Reg32; } PLL_LOOP0_REG; typedef union { struct { uint32_t ssc_limit:22; // 21:00 uint32_t reserved0:2; // 23:22 uint32_t ssc_clkdiv:4; // 27:24 uint32_t ssc_status:1; // 28:28 uint32_t reserved1:2; // 30:29 uint32_t ssc_mode:1; // 31:31 } Bits; uint32_t Reg32; } PLL_LOOP1_REG; typedef union { struct { uint32_t fdco_ctrl_bypass:16; // 15:00 uint32_t fdco_bypass_en:1; // 16:16 uint32_t fdco_dac_sel:1; // 17:17 uint32_t state_reset:1; // 18:18 uint32_t state_mode:2; // 20:19 uint32_t state_sel:3; // 23:21 uint32_t state_update:1; // 24:24 uint32_t dco_en:1; // 25:25 uint32_t dco_div2_div4:1; // 26:26 uint32_t dco_bias_boost:1; // 27:27 uint32_t bb_en:1; // 28:28 uint32_t t2d_offset:3; // 31:29 } Bits; uint32_t Reg32; } PLL_CFG0_REG; typedef union { struct { uint32_t t2d_offset_msb:1; // 00:00 uint32_t t2d_clk_enable:1; // 01:01 uint32_t t2d_clk_sel:1; // 02:02 uint32_t kpp:4; // 06:03 uint32_t pwm_ctrl:2; // 08:07 uint32_t port_reset_mode:2; // 10:09 uint32_t byp2_en:1; // 11:11 uint32_t byp1_en:1; // 12:12 uint32_t ref_diff_sel:1; // 13:13 uint32_t ki_startlow:1; // 14:14 uint32_t en_500ohm:1; // 15:15 uint32_t refd2c_bias:3; // 18:16 uint32_t post_div2_div3:1; // 19:19 uint32_t ki_boost:1; // 20:20 uint32_t reserved0:11; // 31:21 } Bits; uint32_t Reg32; } PLL_CFG1_REG; typedef union { struct { uint32_t en_cml:3; // 02:00 uint32_t tri_en:1; // 03:03 uint32_t test_sel:3; // 06:04 uint32_t test_en:1; // 07:07 uint32_t reserved0:24; } Bits; uint32_t Reg32; } PLL_OCTRL_REG; typedef union { struct { uint32_t out:12; // 11:00 uint32_t reserved:19; // 30:12 uint32_t lock:1; // 31:31 } Bits; uint32_t Reg32; } PLL_STAT_REG; typedef union { struct { uint32_t ndiv_int:10; // 09:00 uint32_t reserved0:2; // 11:10 uint32_t ndiv_frac:20; // 31:12 } Bits; uint32_t Reg32; } PLL_DECNDIV_REG; typedef union { struct { uint32_t pdiv:4; // 03:00 uint32_t reserved0:12; // 15:04 uint32_t mdiv0:8; // 23:16 uint32_t mdiv1:8; // 31:24 } Bits; uint32_t Reg32; } PLL_DECPDIV_REG; typedef union { struct { uint32_t mdiv2:8; // 07:00 uint32_t mdiv3:8; // 15:08 uint32_t mdiv4:8; // 23:16 uint32_t mdiv5:8; // 31:24 } Bits; uint32_t Reg32; } PLL_DECCH25_REG; typedef union { struct { uint32_t manual_clk_en:1; uint32_t manual_reset_ctl:1; uint32_t freq_scale_used:1; // R/O uint32_t dpg_capable:1; // R/O uint32_t manual_mem_pwr:2; uint32_t manual_iso_ctl:1; uint32_t manual_ctl:1; uint32_t dpg_ctl_en:1; uint32_t pwr_dn_req:1; uint32_t pwr_up_req:1; uint32_t mem_pwr_ctl_en:1; uint32_t blk_reset_assert:1; uint32_t mem_stby:1; uint32_t reserved:5; uint32_t pwr_cntl_state:5; uint32_t freq_scalar_dyn_sel:1; // R/O uint32_t pwr_off_state:1; // R/O uint32_t pwr_on_state:1; // R/O uint32_t pwr_good:1; // R/O uint32_t dpg_pwr_state:1; // R/O uint32_t mem_pwr_state:1; // R/O uint32_t iso_state:1; // R/O uint32_t reset_state:1; // R/O } Bits; uint32_t Reg32; } BPCM_PWR_ZONE_N_CONTROL; typedef union { struct { uint32_t pwr_ok_delay_sel:3; uint32_t pwk_ok_thresh:2; uint32_t reserved:3; uint32_t iso_on_delay:4; uint32_t iso_off_delay:4; uint32_t clock_on_delay:4; uint32_t clock_off_delay:4; uint32_t reset_on_delay:4; uint32_t reset_off_delay:4; } Bits; uint32_t Reg32; } BPCM_PWR_ZONE_N_CONFIG1; typedef union { struct { uint32_t delay_prescale_sel:3; uint32_t slew_prescale_sel:3; uint32_t reserved:6; uint32_t dpgn_on_delay:4; uint32_t dpg1_on_delay:4; uint32_t dpg_off_delay:4; uint32_t mem_on_delay:4; uint32_t mem_off_delay:4; } Bits; uint32_t Reg32; } BPCM_PWR_ZONE_N_CONFIG2; typedef union { struct { uint32_t fs_bypass_en:1; uint32_t gear_sel:1; uint32_t use_dyn_gear_sel:1; uint32_t reserved2:1; uint32_t low_gear_div:3; uint32_t high_gear_div:3; uint32_t reserved:22; } Bits; uint32_t Reg32; } BPCM_ZONE_N_FREQ_SCALAR_CONTROL; typedef struct { BPCM_PWR_ZONE_N_CONTROL control; BPCM_PWR_ZONE_N_CONFIG1 config1; BPCM_PWR_ZONE_N_CONFIG2 config2; uint32_t reserved0; uint32_t timer_control; uint32_t timer_status; uint32_t reserved1[2]; } BPCM_ZONE; #define BPCMZoneOffset(reg) offsetof(BPCM_ZONE,reg) #define BPCMZoneRegOffset(reg) (BPCMZoneOffset(reg) >> 2) typedef union { struct { uint32_t pmb_Addr:8; uint32_t hw_rev:8; uint32_t module_id:16; } Bits; uint32_t Reg32; } BPCM_UBUS_ID_REG; typedef union { struct { uint32_t num_zones:8; uint32_t sr_reg_bits:8; uint32_t pllType:2; uint32_t reserved0:1; uint32_t ubus:1; uint32_t reserved1:12; } Bits; uint32_t Reg32; } BPCM_UBUS_CAPABILITES_REG; typedef union { struct { uint32_t ctrl_eswap:4; uint32_t reserved0:4; uint32_t ctrl_cd:4; uint32_t reserved1:4; uint32_t ctrl_seclev:8; uint32_t reqout_seclev:8; } Bits; uint32_t Reg32; } BPCM_UBUS_CTRL_REG; typedef union { struct { uint64_t addr_in:24; uint64_t addr_out:24; uint64_t pid:8; uint64_t size:5; uint64_t cmddta:1; uint64_t en:2; } Bits; struct { uint32_t word0; uint32_t word1; } Regs32; uint64_t Reg64; } BPCM_UBUS_CFG_REG; // There is a 20-bit address used to access any given BPCM register. The upper 8-bits // is the device address and the lower 12-bits is used to represent the BPCM register // set for that device. 32-bit registers are allocated on 4-byte boundaries // (i.e. 0, 1, 2, 3...) rather than on byte boundaries (0x00, 0x04, 0x08, 0x0c...) // Thus, to get the actual address of any given register within the device's address // space, I'll use the "C" offsetof macro and divide the result by 4 // e.g.: // int regOffset = offsetof(BPCM_REGS,BPCM_AVS_PWD_CONTROL); // yields the byte offset of the target register // int regAddress = regOffset/4; // yields the 32-bit word offset of the target register // The ReadBPCMReg and WriteBPCMReg functions will always take a device address // (address of the BPCM device) and register offset (like regOffset above). The offset // will be divided by 4 and used as the lower 12-bits of the actual target address, while the // device address will serve as the upper 8-bits of the actual address. typedef struct { // PMB-slave: BPCM_ID_REG id_reg; // offset 0x00, PMB reg index 0 BPCM_CAPABILITES_REG capabilities; // offset 0x04, PMB reg index 1 uint32_t reserved0[2]; // offset 0x08, PMB reg index 2/3 // BPCM uint32_t control; // offset 0x10, PMB reg index 4 BPCM_SR_CONTROL sr_control; // offset 0x14, PMB reg index 5 uint32_t reserved1[2]; // offset 0x18, PMB reg index 6/7 // Client-specific registers uint32_t client_specific[24]; // offset 0x20, PMB reg index 8..31 // Zones BPCM_ZONE zones[]; // offset 0x80..(0x20 + MAX_ZONES*32)), PMB reg index 32..(32+(MAX_ZONES*8-1)) } BPCM_REGS; // total offset space = 4096 #define BPCMOffset(reg) offsetof(BPCM_REGS,reg) #define BPCMRegOffset(reg) (BPCMOffset(reg) >> 2) typedef struct { BPCM_ID_REG id_reg; // offset = 0x00, actual offset = 0 BPCM_CAPABILITES_REG capabilities; // offset = 0x04, actual offset = 1 uint32_t reserved0[2]; // offset = 0x08, actual offset = 2 uint32_t cfg_control; // offset = 0x10, actual offset = 4 BPCM_SR_CONTROL sr_control; // offset = 0x14, actual offset = 5 uint32_t reserved1[6]; // offset = 0x18, actual offset = 6 ARM_CONTROL_REG arm_control; // offset = 0x30, actual offset = 12 uint32_t biu_clk_control0; // offset = 0x34, actual offset = 13 uint32_t tbd[18]; // offset = 0x38, actual offset = 14 BPCM_ZONE zones; // offset = 0x80, actual offset = 32 } ARM_BPCM_REGS; #define ARMBPCMOffset(reg) offsetof(ARM_BPCM_REGS,reg) #define ARMBPCMRegOffset(reg) (ARMBPCMOffset(reg) >> 2) typedef struct { BPCM_ID_REG id_reg; // offset = 0x00, actual offset = 0 BPCM_CAPABILITES_REG capabilities; // offset = 0x04, actual offset = 1 uint32_t reserved0[2]; // offset = 0x08..0x0c, actual offset 2..3 PLL_CTRL_REG resets; // offset = 0x10, actual offset = 4 PLL_CFG0_REG cfg0; // offset = 0x14, actual offset = 5 PLL_CFG1_REG cfg1; // offset = 0x18, actual offset = 6 PLL_NDIV_REG ndiv; // offset = 0x1c, actual offset = 7 PLL_PDIV_REG pdiv; // offset = 0x20, actual offset = 8 PLL_LOOP0_REG loop0; // offset = 0x24, actual offset = 9 PLL_LOOP1_REG loop1; // offset = 0x28, actual offset = a PLL_CHCFG_REG ch01_cfg; // offset = 0x2c, actual offset = b PLL_CHCFG_REG ch23_cfg; // offset = 0x30, actual offset = c PLL_CHCFG_REG ch45_cfg; // offset = 0x34, actual offset = d PLL_OCTRL_REG octrl; // offset = 0x38, actual offset = e PLL_STAT_REG stat; // offset = 0x3c, actual offset = f uint32_t strap; // offset = 0x40, actual offset = 0x10 PLL_DECNDIV_REG decndiv; // offset = 0x44, actual offset = 0x11 PLL_DECPDIV_REG decpdiv; // offset = 0x48, actual offset = 0x12 PLL_DECCH25_REG decch25; // offset = 0x4c, actual offset = 0x13 } PLL_BPCM_REGS; #define PLLBPCMOffset(reg) offsetof(PLL_BPCM_REGS,reg) #define PLLBPCMRegOffset(reg) (PLLBPCMOffset(reg) >> 2) typedef union { struct { uint32_t dac_data:10; // [09:00] uint32_t vavs_minb0:1; // [10:10] - R/O iVDDC <= Vmin0 uint32_t vavs_minb1:1; // [11:11] - R/O iVDDC <= Vmin1 uint32_t vavs_warnb0:1; // [12:12] - R/O iVDDC <= Vwarn0 uint32_t vavs_warnb1:1; // [13:13] - R/O iVDDC <= Vwarn1 uint32_t vavs_maxb0:1; // [14:14] - R/O iVDDC <= Vmax0 uint32_t vavs_maxb1:1; // [15:15] - R/O iVDDC <= Vmax1 uint32_t adc_data:10; // [25:16] - R/O ADC output data in offset binary format uint32_t adc_data_valid:1; // [26:26] - R/O uint32_t reserved:5; // [31:27] - R/O } Bits; uint32_t Reg32; } APVTMON_DATA_REG; typedef union { struct { uint32_t threshold_low : 10; // [09:00] uint32_t reserved : 6; // [10:15] uint32_t threshold_hi : 10; // [25:16] uint32_t reserved1 : 6; // [31:26] } Bits; uint32_t Reg32; } APVTMON_AVS_THESHOLD_REG; typedef union { struct { uint32_t lock_addr : 8; // [07:00] uint32_t lock_bit : 1; // [08:08] uint32_t lock_mode : 1; // [09:09] uint32_t reserved : 22; // [31:10] } Bits; uint32_t Reg32; } APVTMON_AVS_LOCK_REG; typedef union { // little endian - from page 5 of "ANA_VTMON_TS16FF_S0 & ANA_VTMON_PAD_TS16FF_Sx Module Specification" // defaut value = 0x00000001 struct { uint32_t bg_adj:3; // [02:00] - default = 1 uint32_t vtest_sel:4; // [06:03] - VTest = i_VDCC * (+1)/20, default = 0 uint32_t rmon_sel:3; // [09:07] uint32_t mode:3; // [12:10] uint32_t adc_insel:2; // [14:13] - only used in expert mode (mode = 0b111) uint32_t dac_en:1; // [15:15] - only used in expert mode (mode = 0b111) uint32_t con_pad:1; // [16:16] - only used in expert mode (mode = 0b111) uint32_t burnin_en:1; // [17:17] - only used in expert mode (mode = 0b111) uint32_t reserved:1; // [18:18] uint32_t vdccmon_refadj_max1:1; // [19:19] uint32_t vdccmon_refadj_min0:4; // [23:20] uint32_t vdccmon_refadj_min1:3; // [26:24] uint32_t dac_reset:1; // [27:27] uint32_t dac_set:1; // [28:28] uint32_t vdccmon_refadj_max0:3; // [31:29] } Bits; uint32_t Reg32; } APVTMON_CONTROL_REG; typedef union { struct { uint32_t rstb:1; // [00:00] - low active. default = 0 (i.e. in reset) uint32_t pwr_dn:1; // [01:01] - high-active. default = 1 (i.e. powered down) uint32_t clk_en:1; // [02:02] uint32_t reserved0:1; // [03:03] uint32_t sel:3; // [06:04] - see enum below - reset value = 0 uint32_t reserved1:1; // [07:07] uint32_t clk_div:5; // [12:08] - value needed to divide pm_clk by (2*clk_div) to generate a 5MHz clock uint32_t reserved2:19; // [31:13] } Bits; uint32_t Reg32; } APVTMON_CONFIG_STATUS_REG; typedef union { struct { uint32_t accum_en:1; // [00:00] uint32_t round_en:1; // [01:01] defaults to 1 (rounding enabled) uint32_t reserved1:6; // [07:02] uint32_t skip_len:4; // [11:08] how many samples to skip prior to starting averaging, default = 3 uint32_t reserved0:20; // [31:12] } Bits; uint32_t Reg32; } APVTMON_ACQ_CONFIG_REG; typedef union { struct { uint32_t warn_threshold:10; // [09:00] - in ADC counts uint32_t warn_en:1; // [10:10] uint32_t reserved0:3; // [13:11] uint32_t clear_warn:1; // [14:14] - Write only uint32_t warn:1; // [15:15] - Read only uint32_t reset_threshold:10; // [25:16] - in ADC counts uint32_t reset_en:1; // [26:26] uint32_t reserved1:3; // [29:27] uint32_t clear_reset:1; // [30:30] - Write only uint32_t reset:1; // [31:31] - Read only } Bits; uint32_t Reg32; } APVTMON_TEMP_WARN_RESET_REG; typedef union { struct { uint32_t reset_value:10; // [09:00] uint32_t reserved:22; // [31:10] } Bits; uint32_t Reg32; } APVTMON_RESET_TEMP_REG; typedef union { struct { uint32_t value:10; // [09:00] - there are fractional bits uint32_t reserved0:8; // [17:10] uint32_t valid:1; // [18:18] uint32_t busy:1; // [19:19] uint32_t reserved1:4; // [23:20] uint32_t meas_len:3; // [26:24] #samples = 2^ uint32_t reserved2:4; // [30:27] uint32_t enable:1; // [31:31] } Bits; uint32_t Reg32; } APVTMON_ACCUM_REG; typedef union { struct { uint32_t sel:6; // [05:00] - ring oscillator select (0..35) uint32_t reserved2:2; // [07:06] uint32_t srm_ind_en:1; // [08:08] uint32_t srm_ind_od:1; // [09:09] uint32_t srm_ind_sel:2; // [11:10] uint32_t reserved1:4; // [15:12] uint32_t out:1; // [16:16] uint32_t all_idl_low_oscs:1; // [17:17] uint32_t all_idl_hi_oscs:1; // [18:18] uint32_t reserved0:13; // [31:19] } Bits; uint32_t Reg32; } ROSC_CTRL_STS_REG; typedef union { struct { uint32_t count:16; // [15:00] uint32_t valid:1; // [16:16] uint32_t too_lo:1; // [17:17] - count <= thresh_lo (only when THRESH_EN == 1) uint32_t too_hi:1; // [18:18] - count <= thresh_hi (only when THRESH_EN == 1) uint32_t reserved0:5; // [23:19] uint32_t continuous:1; // [24:24] uint32_t thresh_en:1; // [25:25] - enable threshold detection uint32_t ectr_en:1; // [26:26] - enable counter uint32_t src_en:1; // [27:27] - enable event source (may not do anything???) uint32_t meas_len:4; // [31:28] - interval = 2^(+1) } Bits; uint32_t Reg32; } ECTR_CTRL_STS_REG; typedef union { struct { uint32_t thresh_lo:16; // [15:00] uint32_t thresh_hi:16; // [31:16] } Bits; uint32_t Reg32; } ECTR_THRESH_REG; typedef struct { ECTR_CTRL_STS_REG count_reg; ECTR_THRESH_REG thresh_reg; } ROSC_REGS; typedef struct { BPCM_ID_REG id_reg; // offset 0x00, PMB reg index 0 BPCM_CAPABILITES_REG capabilities; // offset 0x04, PMB reg index 1 uint32_t reserved0[2]; // offset 0x08, PMB reg index 2/3 uint32_t reserved1[12]; // offset 0x10, PMB reg index 4-15 (future proofing ) APVTMON_CONTROL_REG control; // offset 0x40, PMB reg index 16 APVTMON_CONFIG_STATUS_REG config; // offset 0x44, PMB reg index 17 APVTMON_DATA_REG adc_data; // offset 0x48, PMB reg index 18 APVTMON_AVS_LOCK_REG avs_lock; // offset 0x4c, PMB reg index 19 APVTMON_ACQ_CONFIG_REG accum_config; // offset 0x50, PMB reg index 20 APVTMON_TEMP_WARN_RESET_REG warn_rst; // offset 0x54, PMB reg index 21 APVTMON_AVS_THESHOLD_REG avs_threshold; // offset 0x58, PMB reg index 22 uint32_t reserved3; // offset 0x5c, PMB reg index 23 APVTMON_ACCUM_REG acq_accum_regs[8]; // offset 0x60, PMB reg index 24-31 ROSC_CTRL_STS_REG rosc_ctrl_sts; // offset 0x80, PMB reg index 32 uint32_t rosc_en_lo; // offset 0x84, PMB reg index 33 uint32_t rosc_en_hi; // offset 0x88, PMB reg index 34 uint32_t rosc_idle_lo; // offset 0x8c, PMB reg index 35 uint32_t rosc_idle_hi; // offset 0x90, PMB reg index 36 uint32_t reserved4[3]; // offset 0x94, PMB reg index 37-39 ROSC_REGS ectr_regs; // offset 0xa0, PMB reg index 40/41 } PVTMON_REGS; // retrieves the BYTE offset of a PVTMON register: #define PVTMON_OFFSET(reg) (offsetof(PVTMON_REGS,reg)>>2) typedef struct { // PMB-slave BPCM_ID_REG id_reg; // offset 0x00, PMB reg index 0 BPCM_CAPABILITES_REG capabilities; // offset 0x04, PMB reg index 1 uint32_t reserved0[6]; // offset 0x08, PMB reg index 2-7 // ROSC registers BPCM_AVS_ROSC_CONTROL_REG rosc_control; // offset 0x20, PMB reg index 8 BPCM_AVS_ROSC_THRESHOLD rosc_thresh_h; // offset 0x24, PMB reg index 9 BPCM_AVS_ROSC_THRESHOLD rosc_thresh_s; // offset 0x28, PMB reg index 10 BPCM_AVS_ROSC_COUNT rosc_count; // offset 0x2c, PMB reg index 11 BPCM_AVS_PWD_CONTROL pwd_ctrl; // offset 0x30, PMB reg index 12 BPCM_PWD_ACCUM_CONTROL pwd_accum; // offset 0x34, PMB reg index 13 } ARS_REGS; // retrieves the BYTE offset of an ARS register: #define ARS_OFFSET(reg) (offsetof(ARS_REGS, reg)>>2) typedef struct { BPCM_UBUS_ID_REG id_reg; /* offset = 0x00, actual offset = 0 */ BPCM_UBUS_CAPABILITES_REG capabilities; /* offset = 0x04, actual offset = 1 */ uint32_t reserved0; /* offset = 0x08, actual offset = 2 */ BPCM_UBUS_CTRL_REG ctrl; /* offset = 0x0c, actual offset = 3 */ BPCM_UBUS_CFG_REG cfg[4]; /* offset = 0x10..0x2c, actual offset = 4..11 */ } BPCM_UBUS_REG; #define UBUSBPCMOffset(reg) offsetof(BPCM_UBUS_REG,reg) #define UBUSBPCMRegOffset(reg) (UBUSBPCMOffset(reg) >> 2) typedef struct { BPCM_ID_REG id_reg; // offset = 0x00, actual offset = 0 BPCM_CAPABILITES_REG capabilities; // offset = 0x04, actual offset = 1 uint32_t control; // offset = 0x08, actual offset = 2 BPCM_STATUS_REG status; // offset = 0x0c, actual offset = 3 BPCM_AVS_ROSC_CONTROL_REG rosc_control; // offset = 0x10, actual offset = 4 BPCM_AVS_ROSC_THRESHOLD rosc_thresh_h; // offset = 0x14, actual offset = 5 BPCM_AVS_ROSC_THRESHOLD rosc_thresh_s; // offset = 0x18, actual offset = 6 BPCM_AVS_ROSC_COUNT rosc_count; // offset = 0x1c, actual offset = 7 BPCM_AVS_PWD_CONTROL pwd_control; // offset = 0x20, actual offset = 8 uint32_t reserved0; // offset = 0x24, actual offset = 9 BPCM_SR_CONTROL sr_control; // offset = 0x28, actual offset = 10 uint32_t reserved1; // offset = 0x2c, actual offset = 11 uint32_t clkrst_cfg; // offset = 0x30, actual offset = 12 uint32_t clkrst_control; // offset = 0x34, actual offset = 13 uint32_t xtal_control; // offset = 0x38, actual offset = 14 uint32_t clkrst_stat; // offset = 0x3c, actual offset = 15 } BPCM_CLKRST_REGS; #define CLKRSTBPCMOffset(reg) offsetof(BPCM_CLKRST_REGS, reg) #define CLKRSTBPCMRegOffset(reg) (CLKRSTBPCMOffset(reg) >> 2) // *************************** macros ****************************** #ifndef offsetof #define offsetof(TYPE, MEMBER) ((unsigned long) &((TYPE *)0)->MEMBER) #endif #endif