/* * q_htb.c HTB. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * Authors: Martin Devera, devik@cdi.cz * */ #include #include #include #include #include #include #include #include #include "utils.h" #include "tc_util.h" #define HTB_TC_VER 0x30003 #if HTB_TC_VER >> 16 != TC_HTB_PROTOVER #error "Different kernel and TC HTB versions" #endif static void explain(void) { fprintf(stderr, "Usage: ... qdisc add ... htb [default N] [r2q N]\n" " [direct_qlen P]\n" " default minor id of class to which unclassified packets are sent {0}\n" " r2q DRR quantums are computed as rate in Bps/r2q {10}\n" " debug string of 16 numbers each 0-3 {0}\n\n" " direct_qlen Limit of the direct queue {in packets}\n" "... class add ... htb rate R1 [burst B1] [mpu B] [overhead O]\n" " [prio P] [slot S] [pslot PS]\n" " [ceil R2] [cburst B2] [mtu MTU] [quantum Q]\n" " rate rate allocated to this class (class can still borrow)\n" " burst max bytes burst which can be accumulated during idle period {computed}\n" " mpu minimum packet size used in rate computations\n" " overhead per-packet size overhead used in rate computations\n" " linklay adapting to a linklayer e.g. atm\n" " ceil definite upper class rate (no borrows) {rate}\n" " cburst burst but for ceil {computed}\n" " mtu max packet size we create rate map for {1600}\n" " prio priority of leaf; lower are served first {0}\n" " quantum how much bytes to serve from leaf at once {use r2q}\n" "\nTC HTB version %d.%d\n", HTB_TC_VER>>16, HTB_TC_VER&0xffff ); } static void explain1(char *arg) { fprintf(stderr, "Illegal \"%s\"\n", arg); explain(); } static int htb_parse_opt(struct qdisc_util *qu, int argc, char **argv, struct nlmsghdr *n, const char *dev) { unsigned int direct_qlen = ~0U; struct tc_htb_glob opt = { .rate2quantum = 10, .version = 3, }; struct rtattr *tail; unsigned int i; char *p; while (argc > 0) { if (matches(*argv, "r2q") == 0) { NEXT_ARG(); if (get_u32(&opt.rate2quantum, *argv, 10)) { explain1("r2q"); return -1; } } else if (matches(*argv, "default") == 0) { NEXT_ARG(); if (get_u32(&opt.defcls, *argv, 16)) { explain1("default"); return -1; } } else if (matches(*argv, "debug") == 0) { NEXT_ARG(); p = *argv; for (i = 0; i < 16; i++, p++) { if (*p < '0' || *p > '3') break; opt.debug |= (*p-'0')<<(2*i); } } else if (matches(*argv, "direct_qlen") == 0) { NEXT_ARG(); if (get_u32(&direct_qlen, *argv, 10)) { explain1("direct_qlen"); return -1; } } else { fprintf(stderr, "What is \"%s\"?\n", *argv); explain(); return -1; } argc--; argv++; } tail = addattr_nest(n, 1024, TCA_OPTIONS); addattr_l(n, 2024, TCA_HTB_INIT, &opt, NLMSG_ALIGN(sizeof(opt))); if (direct_qlen != ~0U) addattr_l(n, 2024, TCA_HTB_DIRECT_QLEN, &direct_qlen, sizeof(direct_qlen)); addattr_nest_end(n, tail); return 0; } static int htb_parse_class_opt(struct qdisc_util *qu, int argc, char **argv, struct nlmsghdr *n, const char *dev) { struct tc_htb_opt opt = {}; __u32 rtab[256], ctab[256]; unsigned buffer = 0, cbuffer = 0; int cell_log = -1, ccell_log = -1; unsigned int mtu = 1600; /* eth packet len */ unsigned short mpu = 0; unsigned short overhead = 0; unsigned int linklayer = LINKLAYER_ETHERNET; /* Assume ethernet */ struct rtattr *tail; __u64 ceil64 = 0, rate64 = 0; while (argc > 0) { if (matches(*argv, "prio") == 0) { NEXT_ARG(); if (get_u32(&opt.prio, *argv, 10)) { explain1("prio"); return -1; } } else if (matches(*argv, "mtu") == 0) { NEXT_ARG(); if (get_u32(&mtu, *argv, 10)) { explain1("mtu"); return -1; } } else if (matches(*argv, "mpu") == 0) { NEXT_ARG(); if (get_u16(&mpu, *argv, 10)) { explain1("mpu"); return -1; } } else if (matches(*argv, "overhead") == 0) { NEXT_ARG(); if (get_u16(&overhead, *argv, 10)) { explain1("overhead"); return -1; } } else if (matches(*argv, "linklayer") == 0) { NEXT_ARG(); if (get_linklayer(&linklayer, *argv)) { explain1("linklayer"); return -1; } } else if (matches(*argv, "quantum") == 0) { NEXT_ARG(); if (get_u32(&opt.quantum, *argv, 10)) { explain1("quantum"); return -1; } } else if (matches(*argv, "burst") == 0 || strcmp(*argv, "buffer") == 0 || strcmp(*argv, "maxburst") == 0) { NEXT_ARG(); if (get_size_and_cell(&buffer, &cell_log, *argv) < 0) { explain1("buffer"); return -1; } } else if (matches(*argv, "cburst") == 0 || strcmp(*argv, "cbuffer") == 0 || strcmp(*argv, "cmaxburst") == 0) { NEXT_ARG(); if (get_size_and_cell(&cbuffer, &ccell_log, *argv) < 0) { explain1("cbuffer"); return -1; } } else if (strcmp(*argv, "ceil") == 0) { NEXT_ARG(); if (ceil64) { fprintf(stderr, "Double \"ceil\" spec\n"); return -1; } if (strchr(*argv, '%')) { if (get_percent_rate64(&ceil64, *argv, dev)) { explain1("ceil"); return -1; } } else if (get_rate64(&ceil64, *argv)) { explain1("ceil"); return -1; } } else if (strcmp(*argv, "rate") == 0) { NEXT_ARG(); if (rate64) { fprintf(stderr, "Double \"rate\" spec\n"); return -1; } if (strchr(*argv, '%')) { if (get_percent_rate64(&rate64, *argv, dev)) { explain1("rate"); return -1; } } else if (get_rate64(&rate64, *argv)) { explain1("rate"); return -1; } } else if (strcmp(*argv, "help") == 0) { explain(); return -1; } else { fprintf(stderr, "What is \"%s\"?\n", *argv); explain(); return -1; } argc--; argv++; } if (!rate64) { fprintf(stderr, "\"rate\" is required.\n"); return -1; } /* if ceil params are missing, use the same as rate */ if (!ceil64) ceil64 = rate64; opt.rate.rate = (rate64 >= (1ULL << 32)) ? ~0U : rate64; opt.ceil.rate = (ceil64 >= (1ULL << 32)) ? ~0U : ceil64; /* compute minimal allowed burst from rate; mtu is added here to make sute that buffer is larger than mtu and to have some safeguard space */ if (!buffer) buffer = rate64 / get_hz() + mtu; if (!cbuffer) cbuffer = ceil64 / get_hz() + mtu; opt.ceil.overhead = overhead; opt.rate.overhead = overhead; opt.ceil.mpu = mpu; opt.rate.mpu = mpu; if (tc_calc_rtable(&opt.rate, rtab, cell_log, mtu, linklayer) < 0) { fprintf(stderr, "htb: failed to calculate rate table.\n"); return -1; } opt.buffer = tc_calc_xmittime(rate64, buffer); if (tc_calc_rtable(&opt.ceil, ctab, ccell_log, mtu, linklayer) < 0) { fprintf(stderr, "htb: failed to calculate ceil rate table.\n"); return -1; } opt.cbuffer = tc_calc_xmittime(ceil64, cbuffer); tail = addattr_nest(n, 1024, TCA_OPTIONS); if (rate64 >= (1ULL << 32)) addattr_l(n, 1124, TCA_HTB_RATE64, &rate64, sizeof(rate64)); if (ceil64 >= (1ULL << 32)) addattr_l(n, 1224, TCA_HTB_CEIL64, &ceil64, sizeof(ceil64)); addattr_l(n, 2024, TCA_HTB_PARMS, &opt, sizeof(opt)); addattr_l(n, 3024, TCA_HTB_RTAB, rtab, 1024); addattr_l(n, 4024, TCA_HTB_CTAB, ctab, 1024); addattr_nest_end(n, tail); return 0; } static int htb_print_opt(struct qdisc_util *qu, FILE *f, struct rtattr *opt) { struct rtattr *tb[TCA_HTB_MAX + 1]; struct tc_htb_opt *hopt; struct tc_htb_glob *gopt; double buffer, cbuffer; unsigned int linklayer; __u64 rate64, ceil64; SPRINT_BUF(b1); SPRINT_BUF(b2); SPRINT_BUF(b3); if (opt == NULL) return 0; parse_rtattr_nested(tb, TCA_HTB_MAX, opt); if (tb[TCA_HTB_PARMS]) { hopt = RTA_DATA(tb[TCA_HTB_PARMS]); if (RTA_PAYLOAD(tb[TCA_HTB_PARMS]) < sizeof(*hopt)) return -1; if (!hopt->level) { print_int(PRINT_ANY, "prio", "prio %d ", (int)hopt->prio); if (show_details) print_int(PRINT_ANY, "quantum", "quantum %d ", (int)hopt->quantum); } rate64 = hopt->rate.rate; if (tb[TCA_HTB_RATE64] && RTA_PAYLOAD(tb[TCA_HTB_RATE64]) >= sizeof(rate64)) { rate64 = rta_getattr_u64(tb[TCA_HTB_RATE64]); } ceil64 = hopt->ceil.rate; if (tb[TCA_HTB_CEIL64] && RTA_PAYLOAD(tb[TCA_HTB_CEIL64]) >= sizeof(ceil64)) ceil64 = rta_getattr_u64(tb[TCA_HTB_CEIL64]); fprintf(f, "rate %s ", sprint_rate(rate64, b1)); if (hopt->rate.overhead) fprintf(f, "overhead %u ", hopt->rate.overhead); buffer = tc_calc_xmitsize(rate64, hopt->buffer); fprintf(f, "ceil %s ", sprint_rate(ceil64, b1)); cbuffer = tc_calc_xmitsize(ceil64, hopt->cbuffer); linklayer = (hopt->rate.linklayer & TC_LINKLAYER_MASK); if (linklayer > TC_LINKLAYER_ETHERNET || show_details) fprintf(f, "linklayer %s ", sprint_linklayer(linklayer, b3)); if (show_details) { fprintf(f, "burst %s/%u mpu %s ", sprint_size(buffer, b1), 1<rate.cell_log, sprint_size(hopt->rate.mpu, b2)); fprintf(f, "cburst %s/%u mpu %s ", sprint_size(cbuffer, b1), 1<ceil.cell_log, sprint_size(hopt->ceil.mpu, b2)); fprintf(f, "level %d ", (int)hopt->level); } else { fprintf(f, "burst %s ", sprint_size(buffer, b1)); fprintf(f, "cburst %s ", sprint_size(cbuffer, b1)); } if (show_raw) fprintf(f, "buffer [%08x] cbuffer [%08x] ", hopt->buffer, hopt->cbuffer); } if (tb[TCA_HTB_INIT]) { gopt = RTA_DATA(tb[TCA_HTB_INIT]); if (RTA_PAYLOAD(tb[TCA_HTB_INIT]) < sizeof(*gopt)) return -1; print_int(PRINT_ANY, "r2q", "r2q %d", gopt->rate2quantum); print_0xhex(PRINT_ANY, "default", " default %x", gopt->defcls); print_uint(PRINT_ANY, "direct_packets_stat", " direct_packets_stat %u", gopt->direct_pkts); if (show_details) { sprintf(b1, "%d.%d", gopt->version >> 16, gopt->version & 0xffff); print_string(PRINT_ANY, "ver", " ver %s", b1); } } if (tb[TCA_HTB_DIRECT_QLEN] && RTA_PAYLOAD(tb[TCA_HTB_DIRECT_QLEN]) >= sizeof(__u32)) { __u32 direct_qlen = rta_getattr_u32(tb[TCA_HTB_DIRECT_QLEN]); print_uint(PRINT_ANY, "direct_qlen", " direct_qlen %u", direct_qlen); } return 0; } static int htb_print_xstats(struct qdisc_util *qu, FILE *f, struct rtattr *xstats) { struct tc_htb_xstats *st; if (xstats == NULL) return 0; if (RTA_PAYLOAD(xstats) < sizeof(*st)) return -1; st = RTA_DATA(xstats); fprintf(f, " lended: %u borrowed: %u giants: %u\n", st->lends, st->borrows, st->giants); fprintf(f, " tokens: %d ctokens: %d\n", st->tokens, st->ctokens); return 0; } struct qdisc_util htb_qdisc_util = { .id = "htb", .parse_qopt = htb_parse_opt, .print_qopt = htb_print_opt, .print_xstats = htb_print_xstats, .parse_copt = htb_parse_class_opt, .print_copt = htb_print_opt, };