#if (defined(CONFIG_BCM_KF_MIPS_BCM963XX) && defined(CONFIG_MIPS_BCM963XX)) /* get_user_pages_fast() is not working properly on BMIPS4350, some times wrong * data is seen when the pages returned by this fucntion are used. The problem might * be related to cache flushing. Disabling this architure related function, and * the kernel will fallback to use of get_user_pages(), see mm/util.c */ #else /* * Lockless get_user_pages_fast for MIPS * * Copyright (C) 2008 Nick Piggin * Copyright (C) 2008 Novell Inc. * Copyright (C) 2011 Ralf Baechle */ #include #include #include #include #include #include #include #include static inline pte_t gup_get_pte(pte_t *ptep) { #if defined(CONFIG_PHYS_ADDR_T_64BIT) && defined(CONFIG_CPU_MIPS32) pte_t pte; retry: pte.pte_low = ptep->pte_low; smp_rmb(); pte.pte_high = ptep->pte_high; smp_rmb(); if (unlikely(pte.pte_low != ptep->pte_low)) goto retry; return pte; #else return READ_ONCE(*ptep); #endif } static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end, int write, struct page **pages, int *nr) { pte_t *ptep = pte_offset_map(&pmd, addr); do { pte_t pte = gup_get_pte(ptep); struct page *page; if (!pte_present(pte) || pte_special(pte) || (write && !pte_write(pte))) { pte_unmap(ptep); return 0; } VM_BUG_ON(!pfn_valid(pte_pfn(pte))); page = pte_page(pte); get_page(page); SetPageReferenced(page); pages[*nr] = page; (*nr)++; } while (ptep++, addr += PAGE_SIZE, addr != end); pte_unmap(ptep - 1); return 1; } static inline void get_head_page_multiple(struct page *page, int nr) { VM_BUG_ON(page != compound_head(page)); VM_BUG_ON(page_count(page) == 0); atomic_add(nr, &page->_count); SetPageReferenced(page); } static int gup_huge_pmd(pmd_t pmd, unsigned long addr, unsigned long end, int write, struct page **pages, int *nr) { pte_t pte = *(pte_t *)&pmd; struct page *head, *page; int refs; if (write && !pte_write(pte)) return 0; /* hugepages are never "special" */ VM_BUG_ON(pte_special(pte)); VM_BUG_ON(!pfn_valid(pte_pfn(pte))); refs = 0; head = pte_page(pte); page = head + ((addr & ~PMD_MASK) >> PAGE_SHIFT); do { VM_BUG_ON(compound_head(page) != head); pages[*nr] = page; if (PageTail(page)) get_huge_page_tail(page); (*nr)++; page++; refs++; } while (addr += PAGE_SIZE, addr != end); get_head_page_multiple(head, refs); return 1; } static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end, int write, struct page **pages, int *nr) { unsigned long next; pmd_t *pmdp; pmdp = pmd_offset(&pud, addr); do { pmd_t pmd = *pmdp; next = pmd_addr_end(addr, end); /* * The pmd_trans_splitting() check below explains why * pmdp_splitting_flush has to flush the tlb, to stop * this gup-fast code from running while we set the * splitting bit in the pmd. Returning zero will take * the slow path that will call wait_split_huge_page() * if the pmd is still in splitting state. gup-fast * can't because it has irq disabled and * wait_split_huge_page() would never return as the * tlb flush IPI wouldn't run. */ if (pmd_none(pmd) || pmd_trans_splitting(pmd)) return 0; if (unlikely(pmd_huge(pmd))) { if (!gup_huge_pmd(pmd, addr, next, write, pages,nr)) return 0; } else { if (!gup_pte_range(pmd, addr, next, write, pages,nr)) return 0; } } while (pmdp++, addr = next, addr != end); return 1; } static int gup_huge_pud(pud_t pud, unsigned long addr, unsigned long end, int write, struct page **pages, int *nr) { pte_t pte = *(pte_t *)&pud; struct page *head, *page; int refs; if (write && !pte_write(pte)) return 0; /* hugepages are never "special" */ VM_BUG_ON(pte_special(pte)); VM_BUG_ON(!pfn_valid(pte_pfn(pte))); refs = 0; head = pte_page(pte); page = head + ((addr & ~PUD_MASK) >> PAGE_SHIFT); do { VM_BUG_ON(compound_head(page) != head); pages[*nr] = page; if (PageTail(page)) get_huge_page_tail(page); (*nr)++; page++; refs++; } while (addr += PAGE_SIZE, addr != end); get_head_page_multiple(head, refs); return 1; } static int gup_pud_range(pgd_t pgd, unsigned long addr, unsigned long end, int write, struct page **pages, int *nr) { unsigned long next; pud_t *pudp; pudp = pud_offset(&pgd, addr); do { pud_t pud = *pudp; next = pud_addr_end(addr, end); if (pud_none(pud)) return 0; if (unlikely(pud_huge(pud))) { if (!gup_huge_pud(pud, addr, next, write, pages,nr)) return 0; } else { if (!gup_pmd_range(pud, addr, next, write, pages,nr)) return 0; } } while (pudp++, addr = next, addr != end); return 1; } /* * Like get_user_pages_fast() except its IRQ-safe in that it won't fall * back to the regular GUP. */ int __get_user_pages_fast(unsigned long start, int nr_pages, int write, struct page **pages) { struct mm_struct *mm = current->mm; unsigned long addr, len, end; unsigned long next; unsigned long flags; pgd_t *pgdp; int nr = 0; start &= PAGE_MASK; addr = start; len = (unsigned long) nr_pages << PAGE_SHIFT; end = start + len; if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ, (void __user *)start, len))) return 0; /* * XXX: batch / limit 'nr', to avoid large irq off latency * needs some instrumenting to determine the common sizes used by * important workloads (eg. DB2), and whether limiting the batch * size will decrease performance. * * It seems like we're in the clear for the moment. Direct-IO is * the main guy that batches up lots of get_user_pages, and even * they are limited to 64-at-a-time which is not so many. */ /* * This doesn't prevent pagetable teardown, but does prevent * the pagetables and pages from being freed. * * So long as we atomically load page table pointers versus teardown, * we can follow the address down to the page and take a ref on it. */ local_irq_save(flags); pgdp = pgd_offset(mm, addr); do { pgd_t pgd = *pgdp; next = pgd_addr_end(addr, end); if (pgd_none(pgd)) break; if (!gup_pud_range(pgd, addr, next, write, pages, &nr)) break; } while (pgdp++, addr = next, addr != end); local_irq_restore(flags); return nr; } /** * get_user_pages_fast() - pin user pages in memory * @start: starting user address * @nr_pages: number of pages from start to pin * @write: whether pages will be written to * @pages: array that receives pointers to the pages pinned. * Should be at least nr_pages long. * * Attempt to pin user pages in memory without taking mm->mmap_sem. * If not successful, it will fall back to taking the lock and * calling get_user_pages(). * * Returns number of pages pinned. This may be fewer than the number * requested. If nr_pages is 0 or negative, returns 0. If no pages * were pinned, returns -errno. */ int get_user_pages_fast(unsigned long start, int nr_pages, int write, struct page **pages) { struct mm_struct *mm = current->mm; unsigned long addr, len, end; unsigned long next; pgd_t *pgdp; int ret, nr = 0; start &= PAGE_MASK; addr = start; len = (unsigned long) nr_pages << PAGE_SHIFT; end = start + len; if (end < start || cpu_has_dc_aliases) goto slow_irqon; /* XXX: batch / limit 'nr' */ local_irq_disable(); pgdp = pgd_offset(mm, addr); do { pgd_t pgd = *pgdp; next = pgd_addr_end(addr, end); if (pgd_none(pgd)) goto slow; if (!gup_pud_range(pgd, addr, next, write, pages, &nr)) goto slow; } while (pgdp++, addr = next, addr != end); local_irq_enable(); VM_BUG_ON(nr != (end - start) >> PAGE_SHIFT); return nr; slow: local_irq_enable(); slow_irqon: /* Try to get the remaining pages with get_user_pages */ start += nr << PAGE_SHIFT; pages += nr; ret = get_user_pages_unlocked(current, mm, start, (end - start) >> PAGE_SHIFT, write, 0, pages); /* Have to be a bit careful with return values */ if (nr > 0) { if (ret < 0) ret = nr; else ret += nr; } return ret; } #endif