/* Copyright (C) 2010 by Ronnie Sahlberg This program is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this program; if not, see . */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #ifdef AROS #include "aros_compat.h" #endif #ifdef WIN32 #include "win32_compat.h" #endif #ifdef HAVE_ARPA_INET_H #include #endif #ifdef HAVE_POLL_H #include #endif #ifdef HAVE_UNISTD_H #include #endif #ifdef HAVE_SYS_IOCTL_H #include #endif #ifdef HAVE_SYS_SOCKET_H #include #endif #ifdef HAVE_NETINET_IN_H #include #endif #ifdef HAVE_NETINET_TCP_H #include #endif #ifdef HAVE_NETDB_H #include #endif #ifdef HAVE_SYS_FILIO_H #include #endif #ifdef HAVE_SYS_SOCKIO_H #include #endif #include #include #include #include #include #include #include #include #include "libnfs-zdr.h" #include "libnfs.h" #include "libnfs-raw.h" #include "libnfs-private.h" #include "slist.h" #ifdef WIN32 //has to be included after stdlib!! #include "win32_errnowrapper.h" #endif static int rpc_reconnect_requeue(struct rpc_context *rpc); static int rpc_connect_sockaddr_async(struct rpc_context *rpc, struct sockaddr_storage *s); static void set_nonblocking(int fd) { int v = 0; #if defined(WIN32) long nonblocking=1; v = ioctl(fd, FIONBIO, &nonblocking); #else v = fcntl(fd, F_GETFL, 0); fcntl(fd, F_SETFL, v | O_NONBLOCK); #endif //FIXME } static void set_nolinger(int fd) { struct linger lng; lng.l_onoff = 1; lng.l_linger = 0; setsockopt(fd, SOL_SOCKET, SO_LINGER, &lng, sizeof(lng)); } #ifdef HAVE_NETINET_TCP_H static int set_tcp_sockopt(int sockfd, int optname, int value) { int level; #if defined(__FreeBSD__) || defined(__sun) || (defined(__APPLE__) && defined(__MACH__)) struct protoent *buf; if ((buf = getprotobyname("tcp")) != NULL) level = buf->p_proto; else return -1; #else level = SOL_TCP; #endif return setsockopt(sockfd, level, optname, (char *)&value, sizeof(value)); } #endif int rpc_get_fd(struct rpc_context *rpc) { assert(rpc->magic == RPC_CONTEXT_MAGIC); if (rpc->old_fd) { return rpc->old_fd; } return rpc->fd; } static int rpc_has_queue(struct rpc_queue *q) { return q->head != NULL; } int rpc_which_events(struct rpc_context *rpc) { int events; assert(rpc->magic == RPC_CONTEXT_MAGIC); events = rpc->is_connected ? POLLIN : POLLOUT; if (rpc->is_udp != 0) { /* for udp sockets we only wait for pollin */ return POLLIN; } if (rpc_has_queue(&rpc->outqueue)) { events |= POLLOUT; } return events; } static int rpc_write_to_socket(struct rpc_context *rpc) { int32_t count; struct rpc_pdu *pdu; assert(rpc->magic == RPC_CONTEXT_MAGIC); if (rpc->fd == -1) { rpc_set_error(rpc, "trying to write but not connected"); return -1; } while ((pdu = rpc->outqueue.head) != NULL) { int64_t total; total = pdu->outdata.size; count = send(rpc->fd, pdu->outdata.data + pdu->written, total - pdu->written, 0); if (count == -1) { if (errno == EAGAIN || errno == EWOULDBLOCK) { return 0; } rpc_set_error(rpc, "Error when writing to socket :%s(%d)", strerror(errno), errno); return -1; } pdu->written += count; if (pdu->written == total) { unsigned int hash; rpc->outqueue.head = pdu->next; if (pdu->next == NULL) rpc->outqueue.tail = NULL; hash = rpc_hash_xid(pdu->xid); rpc_enqueue(&rpc->waitpdu[hash], pdu); } } return 0; } #define MAX_UDP_SIZE 65536 static int rpc_read_from_socket(struct rpc_context *rpc) { int size; int pdu_size; int32_t count; assert(rpc->magic == RPC_CONTEXT_MAGIC); if (rpc->is_udp) { char *buf; socklen_t socklen = sizeof(rpc->udp_src); buf = malloc(MAX_UDP_SIZE); if (buf == NULL) { rpc_set_error(rpc, "Failed to malloc buffer for recvfrom"); return -1; } count = recvfrom(rpc->fd, buf, MAX_UDP_SIZE, MSG_DONTWAIT, (struct sockaddr *)&rpc->udp_src, &socklen); if (count == -1) { free(buf); if (errno == EINTR || errno == EAGAIN) { return 0; } rpc_set_error(rpc, "Failed recvfrom: %s", strerror(errno)); return -1; } if (rpc_process_pdu(rpc, buf, count) != 0) { rpc_set_error(rpc, "Invalid/garbage pdu received from server. Ignoring PDU"); free(buf); return -1; } free(buf); return 0; } /* read record marker, 4 bytes at the beginning of every pdu */ if (rpc->inbuf == NULL) { rpc->insize = 4; rpc->inbuf = malloc(rpc->insize); if (rpc->inbuf == NULL) { rpc_set_error(rpc, "Failed to allocate buffer for record marker, errno:%d. Closing socket.", errno); return -1; } } if (rpc->inpos < 4) { size = 4 - rpc->inpos; count = recv(rpc->fd, rpc->inbuf + rpc->inpos, size, MSG_DONTWAIT); if (count == -1) { if (errno == EINTR || errno == EAGAIN) { return 0; } rpc_set_error(rpc, "Read from socket failed, errno:%d. Closing socket.", errno); return -1; } rpc->inpos += count; if (rpc->inpos < 4) { return 0; } } pdu_size = rpc_get_pdu_size(rpc->inbuf); if (pdu_size > NFS_MAX_XFER_SIZE + 4096) { rpc_set_error(rpc, "Incoming PDU exceeds limit of %d bytes.", NFS_MAX_XFER_SIZE + 4096); return -1; } if (rpc->insize < pdu_size) { rpc->inbuf = realloc(rpc->inbuf, pdu_size); if (rpc->inbuf == NULL) { rpc_set_error(rpc, "Failed to allocate buffer of %d bytes for pdu, errno:%d. Closing socket.", pdu_size, errno); return -1; } rpc->insize = pdu_size; } size = rpc->insize - rpc->inpos; count = recv(rpc->fd, rpc->inbuf + rpc->inpos, size, MSG_DONTWAIT); if (count == -1) { if (errno == EINTR || errno == EAGAIN) { return 0; } rpc_set_error(rpc, "Read from socket failed, errno:%d. Closing socket.", errno); return -1; } if (count == 0) { /* remote side has closed the socket. Reconnect. */ return -1; } rpc->inpos += count; if (rpc->inpos == rpc->insize) { char *buf = rpc->inbuf; rpc->inbuf = NULL; rpc->insize = 0; rpc->inpos = 0; if (rpc_process_pdu(rpc, buf, pdu_size) != 0) { rpc_set_error(rpc, "Invalid/garbage pdu received from server. Closing socket"); return -1; } free(buf); } return 0; } static void maybe_call_connect_cb(struct rpc_context *rpc, int status) { rpc_cb tmp_cb = rpc->connect_cb; if (rpc->connect_cb == NULL) { return; } rpc->connect_cb = NULL; tmp_cb(rpc, status, rpc->error_string, rpc->connect_data); } int rpc_service(struct rpc_context *rpc, int revents) { assert(rpc->magic == RPC_CONTEXT_MAGIC); if (revents & (POLLERR|POLLHUP)) { if (revents & POLLERR) { #ifdef WIN32 char err = 0; #else int err = 0; #endif socklen_t err_size = sizeof(err); if (getsockopt(rpc->fd, SOL_SOCKET, SO_ERROR, (char *)&err, &err_size) != 0 || err != 0) { if (err == 0) { err = errno; } rpc_set_error(rpc, "rpc_service: socket error " "%s(%d).", strerror(err), err); } else { rpc_set_error(rpc, "rpc_service: POLLERR, " "Unknown socket error."); } } if (revents & POLLHUP) { rpc_set_error(rpc, "Socket failed with POLLHUP"); } if (rpc->auto_reconnect) { return rpc_reconnect_requeue(rpc); } maybe_call_connect_cb(rpc, RPC_STATUS_ERROR); return -1; } if (rpc->is_connected == 0 && rpc->fd != -1 && revents&POLLOUT) { int err = 0; socklen_t err_size = sizeof(err); if (getsockopt(rpc->fd, SOL_SOCKET, SO_ERROR, (char *)&err, &err_size) != 0 || err != 0) { if (err == 0) { err = errno; } rpc_set_error(rpc, "rpc_service: socket error " "%s(%d) while connecting.", strerror(err), err); maybe_call_connect_cb(rpc, RPC_STATUS_ERROR); return -1; } rpc->is_connected = 1; RPC_LOG(rpc, 2, "connection established on fd %d", rpc->fd); maybe_call_connect_cb(rpc, RPC_STATUS_SUCCESS); return 0; } if (revents & POLLIN) { if (rpc_read_from_socket(rpc) != 0) { return rpc_reconnect_requeue(rpc); } } if (revents & POLLOUT && rpc_has_queue(&rpc->outqueue)) { if (rpc_write_to_socket(rpc) != 0) { return rpc_reconnect_requeue(rpc); } } return 0; } void rpc_set_autoreconnect(struct rpc_context *rpc) { assert(rpc->magic == RPC_CONTEXT_MAGIC); rpc->auto_reconnect = 1; } void rpc_unset_autoreconnect(struct rpc_context *rpc) { assert(rpc->magic == RPC_CONTEXT_MAGIC); rpc->auto_reconnect = 0; } void rpc_set_tcp_syncnt(struct rpc_context *rpc, int v) { assert(rpc->magic == RPC_CONTEXT_MAGIC); rpc->tcp_syncnt = v; } #ifndef TCP_SYNCNT #define TCP_SYNCNT 7 #endif static int rpc_connect_sockaddr_async(struct rpc_context *rpc, struct sockaddr_storage *s) { int socksize; assert(rpc->magic == RPC_CONTEXT_MAGIC); switch (s->ss_family) { case AF_INET: socksize = sizeof(struct sockaddr_in); rpc->fd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); #ifdef HAVE_NETINET_TCP_H if (rpc->tcp_syncnt != RPC_PARAM_UNDEFINED) { set_tcp_sockopt(rpc->fd, TCP_SYNCNT, rpc->tcp_syncnt); } #endif break; case AF_INET6: socksize = sizeof(struct sockaddr_in6); rpc->fd = socket(AF_INET6, SOCK_STREAM, IPPROTO_TCP); #ifdef HAVE_NETINET_TCP_H if (rpc->tcp_syncnt != RPC_PARAM_UNDEFINED) { set_tcp_sockopt(rpc->fd, TCP_SYNCNT, rpc->tcp_syncnt); } #endif break; default: rpc_set_error(rpc, "Can not handle AF_FAMILY:%d", s->ss_family); return -1; } if (rpc->fd == -1) { rpc_set_error(rpc, "Failed to open socket"); return -1; } if (rpc->old_fd) { if (dup2(rpc->fd, rpc->old_fd) == -1) { return -1; } close(rpc->fd); rpc->fd = rpc->old_fd; } /* Some systems allow you to set capabilities on an executable * to allow the file to be executed with privilege to bind to * privileged system ports, even if the user is not root. * * Opportunistically try to bind the socket to a low numbered * system port in the hope that the user is either root or the * executable has the CAP_NET_BIND_SERVICE. * * As soon as we fail the bind() with EACCES we know we will never * be able to bind to a system port so we terminate the loop. * * On linux, use * sudo setcap 'cap_net_bind_service=+ep' /path/executable * to make the executable able to bind to a system port. * * On Windows, there is no concept of privileged ports. Thus * binding will usually succeed. */ { struct sockaddr_storage ss; static int portOfs = 0; const int firstPort = 512; /* >= 512 according to Sun docs */ const int portCount = IPPORT_RESERVED - firstPort; int startOfs, port, rc; if (portOfs == 0) { portOfs = time(NULL) % 400; } startOfs = portOfs; do { rc = -1; port = htons(firstPort + portOfs); portOfs = (portOfs + 1) % portCount; /* skip well-known ports */ if (!getservbyport(port, "tcp")) { memset(&ss, 0, sizeof(ss)); switch (s->ss_family) { case AF_INET: ((struct sockaddr_in *)&ss)->sin_port = port; ((struct sockaddr_in *)&ss)->sin_family = AF_INET; #ifdef HAVE_SOCKADDR_LEN ((struct sockaddr_in *)&ss)->sin_len = sizeof(struct sockaddr_in); #endif break; case AF_INET6: ((struct sockaddr_in6 *)&ss)->sin6_port = port; ((struct sockaddr_in6 *)&ss)->sin6_family = AF_INET6; #ifdef HAVE_SOCKADDR_LEN ((struct sockaddr_in6 *)&ss)->sin6_len = sizeof(struct sockaddr_in6); #endif break; } rc = bind(rpc->fd, (struct sockaddr *)&ss, socksize); #if !defined(WIN32) /* we got EACCES, so don't try again */ if (rc != 0 && errno == EACCES) break; #endif } } while (rc != 0 && portOfs != startOfs); } set_nonblocking(rpc->fd); set_nolinger(rpc->fd); if (connect(rpc->fd, (struct sockaddr *)s, socksize) != 0 && errno != EINPROGRESS) { rpc_set_error(rpc, "connect() to server failed. %s(%d)", strerror(errno), errno); return -1; } return 0; } int rpc_connect_async(struct rpc_context *rpc, const char *server, int port, rpc_cb cb, void *private_data) { struct addrinfo *ai = NULL; assert(rpc->magic == RPC_CONTEXT_MAGIC); if (rpc->fd != -1) { rpc_set_error(rpc, "Trying to connect while already connected"); return -1; } if (rpc->is_udp != 0) { rpc_set_error(rpc, "Trying to connect on UDP socket"); return -1; } rpc->auto_reconnect = 0; if (getaddrinfo(server, NULL, NULL, &ai) != 0) { rpc_set_error(rpc, "Invalid address:%s. " "Can not resolv into IPv4/v6 structure.", server); return -1; } switch (ai->ai_family) { case AF_INET: ((struct sockaddr_in *)&rpc->s)->sin_family = ai->ai_family; ((struct sockaddr_in *)&rpc->s)->sin_port = htons(port); ((struct sockaddr_in *)&rpc->s)->sin_addr = ((struct sockaddr_in *)(ai->ai_addr))->sin_addr; #ifdef HAVE_SOCKADDR_LEN ((struct sockaddr_in *)&rpc->s)->sin_len = sizeof(struct sockaddr_in); #endif break; case AF_INET6: ((struct sockaddr_in6 *)&rpc->s)->sin6_family = ai->ai_family; ((struct sockaddr_in6 *)&rpc->s)->sin6_port = htons(port); ((struct sockaddr_in6 *)&rpc->s)->sin6_addr = ((struct sockaddr_in6 *)(ai->ai_addr))->sin6_addr; #ifdef HAVE_SOCKADDR_LEN ((struct sockaddr_in6 *)&rpc->s)->sin6_len = sizeof(struct sockaddr_in6); #endif break; } rpc->connect_cb = cb; rpc->connect_data = private_data; freeaddrinfo(ai); if (rpc_connect_sockaddr_async(rpc, &rpc->s) != 0) { return -1; } return 0; } int rpc_disconnect(struct rpc_context *rpc, const char *error) { assert(rpc->magic == RPC_CONTEXT_MAGIC); rpc_unset_autoreconnect(rpc); if (rpc->fd != -1) { close(rpc->fd); } rpc->fd = -1; rpc->is_connected = 0; rpc_error_all_pdus(rpc, error); return 0; } static void reconnect_cb(struct rpc_context *rpc, int status, void *data _U_, void *private_data) { assert(rpc->magic == RPC_CONTEXT_MAGIC); if (status != RPC_STATUS_SUCCESS) { rpc_set_error(rpc, "Failed to reconnect async"); rpc_reconnect_requeue(rpc); return; } rpc->is_connected = 1; rpc->connect_cb = NULL; rpc->old_fd = 0; } /* disconnect but do not error all PDUs, just move pdus in-flight back to the outqueue and reconnect */ static int rpc_reconnect_requeue(struct rpc_context *rpc) { struct rpc_pdu *pdu, *next; unsigned int i; assert(rpc->magic == RPC_CONTEXT_MAGIC); if (rpc->fd != -1) { rpc->old_fd = rpc->fd; } rpc->fd = -1; rpc->is_connected = 0; if (rpc->outqueue.head) { rpc->outqueue.head->written = 0; } /* socket is closed so we will not get any replies to any commands * in flight. Move them all over from the waitpdu queue back to the out queue */ for (i = 0; i < HASHES; i++) { struct rpc_queue *q = &rpc->waitpdu[i]; for (pdu = q->head; pdu; pdu = next) { next = pdu->next; rpc_return_to_queue(&rpc->outqueue, pdu); /* we have to re-send the whole pdu again */ pdu->written = 0; } rpc_reset_queue(q); } if (rpc->auto_reconnect != 0) { rpc->connect_cb = reconnect_cb; RPC_LOG(rpc, 1, "reconnect initiated"); if (rpc_connect_sockaddr_async(rpc, &rpc->s) != 0) { rpc_error_all_pdus(rpc, "RPC ERROR: Failed to reconnect async"); return -1; } } else { RPC_LOG(rpc, 1, "reconnect NOT initiated, auto-reconnect is disabled"); return -1; } return 0; } int rpc_bind_udp(struct rpc_context *rpc, char *addr, int port) { struct addrinfo *ai = NULL; char service[6]; assert(rpc->magic == RPC_CONTEXT_MAGIC); if (rpc->is_udp == 0) { rpc_set_error(rpc, "Cant not bind UDP. Not UDP context"); return -1; } sprintf(service, "%d", port); if (getaddrinfo(addr, service, NULL, &ai) != 0) { rpc_set_error(rpc, "Invalid address:%s. " "Can not resolv into IPv4/v6 structure.", addr); return -1; } switch(ai->ai_family) { case AF_INET: rpc->fd = socket(ai->ai_family, SOCK_DGRAM, 0); if (rpc->fd == -1) { rpc_set_error(rpc, "Failed to create UDP socket: %s", strerror(errno)); freeaddrinfo(ai); return -1; } if (bind(rpc->fd, (struct sockaddr *)ai->ai_addr, sizeof(struct sockaddr_in)) != 0) { rpc_set_error(rpc, "Failed to bind to UDP socket: %s",strerror(errno)); freeaddrinfo(ai); return -1; } break; default: rpc_set_error(rpc, "Can not handle UPD sockets of family %d yet", ai->ai_family); freeaddrinfo(ai); return -1; } freeaddrinfo(ai); return 0; } int rpc_set_udp_destination(struct rpc_context *rpc, char *addr, int port, int is_broadcast) { struct addrinfo *ai = NULL; char service[6]; assert(rpc->magic == RPC_CONTEXT_MAGIC); if (rpc->is_udp == 0) { rpc_set_error(rpc, "Can not set destination sockaddr. Not UDP context"); return -1; } sprintf(service, "%d", port); if (getaddrinfo(addr, service, NULL, &ai) != 0) { rpc_set_error(rpc, "Invalid address:%s. " "Can not resolv into IPv4/v6 structure.", addr); return -1; } if (rpc->udp_dest) { free(rpc->udp_dest); rpc->udp_dest = NULL; } rpc->udp_dest = malloc(ai->ai_addrlen); if (rpc->udp_dest == NULL) { rpc_set_error(rpc, "Out of memory. Failed to allocate sockaddr structure"); freeaddrinfo(ai); return -1; } memcpy(rpc->udp_dest, ai->ai_addr, ai->ai_addrlen); freeaddrinfo(ai); rpc->is_broadcast = is_broadcast; setsockopt(rpc->fd, SOL_SOCKET, SO_BROADCAST, (char *)&is_broadcast, sizeof(is_broadcast)); return 0; } struct sockaddr *rpc_get_recv_sockaddr(struct rpc_context *rpc) { assert(rpc->magic == RPC_CONTEXT_MAGIC); return (struct sockaddr *)&rpc->udp_src; } int rpc_queue_length(struct rpc_context *rpc) { int i=0; struct rpc_pdu *pdu; unsigned int n; assert(rpc->magic == RPC_CONTEXT_MAGIC); for(pdu = rpc->outqueue.head; pdu; pdu = pdu->next) { i++; } for (n = 0; n < HASHES; n++) { struct rpc_queue *q = &rpc->waitpdu[n]; for(pdu = q->head; pdu; pdu = pdu->next) i++; } return i; } void rpc_set_fd(struct rpc_context *rpc, int fd) { assert(rpc->magic == RPC_CONTEXT_MAGIC); rpc->fd = fd; }