// SPDX-License-Identifier: ISC /* * Copyright (c) 2012-2017 Qualcomm Atheros, Inc. * Copyright (c) 2018-2019, The Linux Foundation. All rights reserved. */ #include #include #include #include #include "wil6210.h" #include "wmi.h" #include "ftm.h" #include "fw.h" #define WIL_MAX_ROC_DURATION_MS 5000 #define WIL_BRD_SUFFIX_CN "CN" #define WIL_BRD_SUFFIX_FCC "FCC" #define WIL_EDMG_CHANNEL_9_SUBCHANNELS (BIT(0) | BIT(1)) #define WIL_EDMG_CHANNEL_10_SUBCHANNELS (BIT(1) | BIT(2)) #define WIL_EDMG_CHANNEL_11_SUBCHANNELS (BIT(2) | BIT(3)) /* WIL_EDMG_BW_CONFIGURATION define the allowed channel bandwidth * configurations as defined by IEEE 802.11 section 9.4.2.251, Table 13. * The value 5 allowing CB1 and CB2 of adjacent channels. */ #define WIL_EDMG_BW_CONFIGURATION 5 /* WIL_EDMG_CHANNELS is a bitmap that indicates the 2.16 GHz channel(s) that * are allowed to be used for EDMG transmissions in the BSS as defined by * IEEE 802.11 section 9.4.2.251. */ #define WIL_EDMG_CHANNELS (BIT(0) | BIT(1) | BIT(2) | BIT(3)) enum wil_edmg_channel { WIL_EDMG_CHANNEL_9 = 9, WIL_EDMG_CHANNEL_10 = 10, WIL_EDMG_CHANNEL_11 = 11, WIL_EDMG_CHANNEL_12 = 12, WIL_EDMG_CHANNEL_13 = 13, }; bool disable_ap_sme; module_param(disable_ap_sme, bool, 0444); MODULE_PARM_DESC(disable_ap_sme, " let user space handle AP mode SME"); bool umac_mode; module_param(umac_mode, bool, 0444); MODULE_PARM_DESC(umac_mode, " enable driver engagement in AP mode SME (upper MAC), default - false"); #ifdef CONFIG_PM static struct wiphy_wowlan_support wil_wowlan_support = { .flags = WIPHY_WOWLAN_ANY | WIPHY_WOWLAN_DISCONNECT, }; #endif bool country_specific_board_file; module_param(country_specific_board_file, bool, 0444); MODULE_PARM_DESC(country_specific_board_file, " switch board file upon regulatory domain change (Default: false)"); static uint scan_dwell_time = WMI_SCAN_DWELL_TIME_MS; module_param(scan_dwell_time, uint, 0644); MODULE_PARM_DESC(scan_dwell_time, " Scan dwell time (msec)"); static uint scan_timeout = WIL6210_SCAN_TO_SEC; module_param(scan_timeout, uint, 0644); MODULE_PARM_DESC(scan_timeout, " Scan timeout (seconds)"); static unsigned short acs_ch_weight[4] = {120, 100, 100, 100}; module_param_array(acs_ch_weight, ushort, NULL, 0); MODULE_PARM_DESC(acs_ch_weight, " Channel weight in %. This is channel priority for ACS"); /* in case of channels' noise values all zero, applying weights will not work. * to avoid such a case, we will add some small positive value to * all channels' noise calculation */ #define ACS_CH_NOISE_INIT_VAL (100) #define ACS_DEFAULT_BEST_CHANNEL 2 static bool ignore_reg_hints; module_param(ignore_reg_hints, bool, 0444); MODULE_PARM_DESC(ignore_reg_hints, " Ignore OTA regulatory hints (Default: false)"); #define CHAN60G(_channel, _flags) { \ .band = IEEE80211_BAND_60GHZ, \ .center_freq = 56160 + (2160 * (_channel)), \ .hw_value = (_channel), \ .flags = (_flags), \ .max_antenna_gain = 0, \ .max_power = 40, \ } #define WIL_BRP_ANT_LIMIT_MIN (1) #define WIL_BRP_ANT_LIMIT_MAX (27) struct iface_combination_params { int num_different_channels; u8 radar_detect; int iftype_num[NUM_NL80211_IFTYPES]; u32 new_beacon_int; }; static struct ieee80211_channel wil_60ghz_channels[] = { CHAN60G(1, 0), CHAN60G(2, 0), CHAN60G(3, 0), CHAN60G(4, 0), }; /* this must be in sync with wil_60ghz_channels */ #define WIL_MAX_SINGLE_CHANNEL 4 /* Rx channel bonding mode */ enum wil_rx_cb_mode { WIL_RX_CB_MODE_DMG, WIL_RX_CB_MODE_EDMG, WIL_RX_CB_MODE_WIDE, }; static int wil_rx_cb_mode_to_n_bonded(u8 cb_mode) { switch (cb_mode) { case WIL_RX_CB_MODE_DMG: case WIL_RX_CB_MODE_EDMG: return 1; case WIL_RX_CB_MODE_WIDE: return 2; default: return 1; } } static int wil_tx_cb_mode_to_n_bonded(u8 cb_mode) { switch (cb_mode) { case WMI_TX_MODE_DMG: case WMI_TX_MODE_EDMG_CB1: return 1; case WMI_TX_MODE_EDMG_CB2: return 2; default: return 1; } } /* Note: The destination and source pointers should not overlap */ static void wil_memdup_ie(u8 **pdst, size_t *pdst_len, const u8 *src, size_t src_len) { kfree(*pdst); *pdst = NULL; *pdst_len = 0; if (src_len > 0) { *pdst = kmemdup(src, src_len, GFP_KERNEL); if (*pdst) *pdst_len = src_len; } } struct wil_regd_2_brd_suffix { const char regdomain[3]; /* alpha2 */ const char *brd_suffix; }; static struct wil_regd_2_brd_suffix wil_regd_2_brd_suffix_map[] = { {"BO", WIL_BRD_SUFFIX_FCC}, {"CN", WIL_BRD_SUFFIX_CN}, {"EC", WIL_BRD_SUFFIX_FCC}, {"GU", WIL_BRD_SUFFIX_FCC}, {"HN", WIL_BRD_SUFFIX_FCC}, {"JM", WIL_BRD_SUFFIX_FCC}, {"MX", WIL_BRD_SUFFIX_FCC}, {"NI", WIL_BRD_SUFFIX_FCC}, {"PY", WIL_BRD_SUFFIX_FCC}, {"TT", WIL_BRD_SUFFIX_FCC}, {"US", WIL_BRD_SUFFIX_FCC}, }; enum wil_nl_60g_cmd_type { NL_60G_CMD_FW_WMI, NL_60G_CMD_DEBUG, NL_60G_CMD_STATISTICS, NL_60G_CMD_REGISTER, }; enum wil_nl_60g_evt_type { NL_60G_EVT_DRIVER_ERROR, NL_60G_EVT_FW_ERROR, NL_60G_EVT_FW_WMI, NL_60G_EVT_DRIVER_SHUTOWN, NL_60G_EVT_DRIVER_DEBUG_EVENT, NL_60G_EVT_DRIVER_GENERIC, }; enum wil_nl_60g_generic_evt { NL_60G_GEN_EVT_FW_STATE, }; struct wil_nl_60g_generic_event { /* NL_60G_EVT_DRIVER_GENERIC */ u32 evt_id; /* wil_nl_60g_generic_evt */ } __packed; struct wil_nl_60g_fw_state_event { struct wil_nl_60g_generic_event hdr; u32 fw_state; /* wil_fw_state */ } __packed; enum wil_nl_60g_debug_cmd { NL_60G_DBG_FORCE_WMI_SEND, NL_60G_GEN_RADAR_ALLOC_BUFFER, NL_60G_GEN_FW_RESET, NL_60G_GEN_GET_DRIVER_CAPA, NL_60G_GEN_GET_FW_STATE, }; struct wil_nl_60g_send_receive_wmi { u32 cmd_id; /* enum wmi_command_id or enum wmi_event_id */ u8 reserved[2]; u8 dev_id; /* mid */ u16 buf_len; u8 buf[0]; } __packed; enum wil_nl_60g_driver_capa { NL_60G_DRIVER_CAPA_WMI_OVER_NL, /* NL command for WMI */ NL_60G_DRIVER_CAPA_FW_STATE, /* notifications of FW state changes */ /* ioctl to write to the device address space */ NL_60G_DRIVER_CAPA_IOCTL_WRITE, }; struct wil_nl_60g_driver_capabilities_reply { u32 drv_cap[0]; /* bit mask of wil_nl_60g_driver_capa */ } __packed; enum qca_wlan_vendor_driver_capa { QCA_WLAN_VENDOR_ATTR_DRIVER_CAPA, }; struct wil_nl_60g_event { u32 evt_type; /* wil_nl_60g_evt_type */ u32 buf_len; u8 reserved[9]; u8 buf[0]; } __packed; struct wil_nl_60g_debug { /* NL_60G_CMD_DEBUG */ u32 cmd_id; /* wil_nl_60g_debug_cmd */ } __packed; struct wil_nl_60g_debug_force_wmi { struct wil_nl_60g_debug hdr; u32 enable; } __packed; static int wil_num_supported_channels(struct wil6210_priv *wil) { int num_channels = ARRAY_SIZE(wil_60ghz_channels); if (!test_bit(WMI_FW_CAPABILITY_CHANNEL_4, wil->fw_capabilities)) num_channels--; return num_channels; } void update_supported_bands(struct wil6210_priv *wil) { struct wiphy *wiphy = wil_to_wiphy(wil); wil_dbg_misc(wil, "update supported bands"); wiphy->bands[NL80211_BAND_60GHZ]->n_channels = wil_num_supported_channels(wil); if (test_bit(WMI_FW_CAPABILITY_CHANNEL_BONDING, wil->fw_capabilities)) { wiphy->bands[NL80211_BAND_60GHZ]->edmg_cap.channels = WIL_EDMG_CHANNELS; wiphy->bands[NL80211_BAND_60GHZ]->edmg_cap.bw_config = WIL_EDMG_BW_CONFIGURATION; } } /* Vendor id to be used in vendor specific command and events * to user space. * NOTE: The authoritative place for definition of QCA_NL80211_VENDOR_ID, * vendor subcmd definitions prefixed with QCA_NL80211_VENDOR_SUBCMD, and * qca_wlan_vendor_attr is open source file src/common/qca-vendor.h in * git://w1.fi/srv/git/hostap.git; the values here are just a copy of that */ #define QCA_NL80211_VENDOR_ID 0x001374 enum qca_wlan_vendor_attr_acs_offload { QCA_WLAN_VENDOR_ATTR_ACS_CHANNEL_INVALID = 0, QCA_WLAN_VENDOR_ATTR_ACS_PRIMARY_CHANNEL = 1, QCA_WLAN_VENDOR_ATTR_ACS_SECONDARY_CHANNEL = 2, QCA_WLAN_VENDOR_ATTR_ACS_HW_MODE = 3, QCA_WLAN_VENDOR_ATTR_ACS_HT_ENABLED = 4, QCA_WLAN_VENDOR_ATTR_ACS_HT40_ENABLED = 5, QCA_WLAN_VENDOR_ATTR_ACS_VHT_ENABLED = 6, QCA_WLAN_VENDOR_ATTR_ACS_CHWIDTH = 7, QCA_WLAN_VENDOR_ATTR_ACS_CH_LIST = 8, QCA_WLAN_VENDOR_ATTR_ACS_VHT_SEG0_CENTER_CHANNEL = 9, QCA_WLAN_VENDOR_ATTR_ACS_VHT_SEG1_CENTER_CHANNEL = 10, QCA_WLAN_VENDOR_ATTR_ACS_FREQ_LIST = 11, QCA_WLAN_VENDOR_ATTR_ACS_PRIMARY_FREQUENCY = 12, QCA_WLAN_VENDOR_ATTR_ACS_SECONDARY_FREQUENCY = 13, QCA_WLAN_VENDOR_ATTR_ACS_VHT_SEG0_CENTER_FREQUENCY = 14, QCA_WLAN_VENDOR_ATTR_ACS_VHT_SEG1_CENTER_FREQUENCY = 15, QCA_WLAN_VENDOR_ATTR_ACS_EDMG_ENABLED = 16, QCA_WLAN_VENDOR_ATTR_ACS_EDMG_CHANNEL = 17, /* keep last */ QCA_WLAN_VENDOR_ATTR_ACS_AFTER_LAST, QCA_WLAN_VENDOR_ATTR_ACS_MAX = QCA_WLAN_VENDOR_ATTR_ACS_AFTER_LAST - 1 }; enum qca_wlan_vendor_acs_hw_mode { QCA_ACS_MODE_IEEE80211B, QCA_ACS_MODE_IEEE80211G, QCA_ACS_MODE_IEEE80211A, QCA_ACS_MODE_IEEE80211AD, }; static const struct nla_policy qca_wlan_acs_vendor_attr[QCA_WLAN_VENDOR_ATTR_ACS_MAX + 1] = { [QCA_WLAN_VENDOR_ATTR_ACS_HW_MODE] = { .type = NLA_U8 }, [QCA_WLAN_VENDOR_ATTR_ACS_EDMG_ENABLED] = { .type = NLA_FLAG }, [QCA_WLAN_VENDOR_ATTR_ACS_EDMG_CHANNEL] = { .type = NLA_U8 }, }; #define WIL_MAX_RF_SECTORS (128) #define WIL_CID_ALL (0xff) enum qca_wlan_vendor_attr_wil { QCA_ATTR_MAC_ADDR = 6, QCA_ATTR_FEATURE_FLAGS = 7, QCA_ATTR_TEST = 8, QCA_ATTR_PAD = 13, QCA_ATTR_TSF = 29, QCA_ATTR_DMG_RF_SECTOR_INDEX = 30, QCA_ATTR_DMG_RF_SECTOR_TYPE = 31, QCA_ATTR_DMG_RF_MODULE_MASK = 32, QCA_ATTR_DMG_RF_SECTOR_CFG = 33, QCA_ATTR_BRP_ANT_LIMIT_MODE = 38, QCA_ATTR_BRP_ANT_NUM_LIMIT = 39, QCA_ATTR_WIL_MAX, }; #define WIL_ATTR_60G_CMD_TYPE QCA_ATTR_FEATURE_FLAGS #define WIL_ATTR_60G_BUF QCA_ATTR_TEST enum qca_wlan_vendor_attr_dmg_rf_sector_type { QCA_ATTR_DMG_RF_SECTOR_TYPE_RX, QCA_ATTR_DMG_RF_SECTOR_TYPE_TX, QCA_ATTR_DMG_RF_SECTOR_TYPE_MAX }; enum qca_wlan_vendor_attr_dmg_rf_sector_cfg { QCA_ATTR_DMG_RF_SECTOR_CFG_INVALID = 0, QCA_ATTR_DMG_RF_SECTOR_CFG_MODULE_INDEX, QCA_ATTR_DMG_RF_SECTOR_CFG_ETYPE0, QCA_ATTR_DMG_RF_SECTOR_CFG_ETYPE1, QCA_ATTR_DMG_RF_SECTOR_CFG_ETYPE2, QCA_ATTR_DMG_RF_SECTOR_CFG_PSH_HI, QCA_ATTR_DMG_RF_SECTOR_CFG_PSH_LO, QCA_ATTR_DMG_RF_SECTOR_CFG_DTYPE_X16, /* keep last */ QCA_ATTR_DMG_RF_SECTOR_CFG_AFTER_LAST, QCA_ATTR_DMG_RF_SECTOR_CFG_MAX = QCA_ATTR_DMG_RF_SECTOR_CFG_AFTER_LAST - 1 }; enum qca_wlan_vendor_attr_brp_ant_limit_mode { QCA_WLAN_VENDOR_ATTR_BRP_ANT_LIMIT_MODE_DISABLE, QCA_WLAN_VENDOR_ATTR_BRP_ANT_LIMIT_MODE_EFFECTIVE, QCA_WLAN_VENDOR_ATTR_BRP_ANT_LIMIT_MODE_FORCE, QCA_WLAN_VENDOR_ATTR_BRP_ANT_LIMIT_MODES_NUM }; static const struct nla_policy wil_brp_ant_limit_policy[QCA_ATTR_WIL_MAX + 1] = { [QCA_ATTR_MAC_ADDR] = { .len = ETH_ALEN }, [QCA_ATTR_BRP_ANT_NUM_LIMIT] = { .type = NLA_U8 }, [QCA_ATTR_BRP_ANT_LIMIT_MODE] = { .type = NLA_U8 }, }; static const struct nla_policy wil_rf_sector_policy[QCA_ATTR_WIL_MAX + 1] = { [QCA_ATTR_MAC_ADDR] = { .len = ETH_ALEN }, [QCA_ATTR_DMG_RF_SECTOR_INDEX] = { .type = NLA_U16 }, [QCA_ATTR_DMG_RF_SECTOR_TYPE] = { .type = NLA_U8 }, [QCA_ATTR_DMG_RF_MODULE_MASK] = { .type = NLA_U32 }, [QCA_ATTR_DMG_RF_SECTOR_CFG] = { .type = NLA_NESTED }, }; static const struct nla_policy wil_rf_sector_cfg_policy[QCA_ATTR_DMG_RF_SECTOR_CFG_MAX + 1] = { [QCA_ATTR_DMG_RF_SECTOR_CFG_MODULE_INDEX] = { .type = NLA_U8 }, [QCA_ATTR_DMG_RF_SECTOR_CFG_ETYPE0] = { .type = NLA_U32 }, [QCA_ATTR_DMG_RF_SECTOR_CFG_ETYPE1] = { .type = NLA_U32 }, [QCA_ATTR_DMG_RF_SECTOR_CFG_ETYPE2] = { .type = NLA_U32 }, [QCA_ATTR_DMG_RF_SECTOR_CFG_PSH_HI] = { .type = NLA_U32 }, [QCA_ATTR_DMG_RF_SECTOR_CFG_PSH_LO] = { .type = NLA_U32 }, [QCA_ATTR_DMG_RF_SECTOR_CFG_DTYPE_X16] = { .type = NLA_U32 }, }; static const struct nla_policy wil_nl_60g_policy[QCA_ATTR_WIL_MAX + 1] = { [WIL_ATTR_60G_CMD_TYPE] = { .type = NLA_U32 }, [WIL_ATTR_60G_BUF] = { .type = NLA_BINARY }, }; enum qca_nl80211_vendor_subcmds { QCA_NL80211_VENDOR_SUBCMD_UNSPEC = 0, QCA_NL80211_VENDOR_SUBCMD_DO_ACS = 54, QCA_NL80211_VENDOR_SUBCMD_LOC_GET_CAPA = 128, QCA_NL80211_VENDOR_SUBCMD_FTM_START_SESSION = 129, QCA_NL80211_VENDOR_SUBCMD_FTM_ABORT_SESSION = 130, QCA_NL80211_VENDOR_SUBCMD_FTM_MEAS_RESULT = 131, QCA_NL80211_VENDOR_SUBCMD_FTM_SESSION_DONE = 132, QCA_NL80211_VENDOR_SUBCMD_FTM_CFG_RESPONDER = 133, QCA_NL80211_VENDOR_SUBCMD_AOA_MEAS = 134, QCA_NL80211_VENDOR_SUBCMD_AOA_ABORT_MEAS = 135, QCA_NL80211_VENDOR_SUBCMD_AOA_MEAS_RESULT = 136, QCA_NL80211_VENDOR_SUBCMD_DMG_RF_GET_SECTOR_CFG = 139, QCA_NL80211_VENDOR_SUBCMD_DMG_RF_SET_SECTOR_CFG = 140, QCA_NL80211_VENDOR_SUBCMD_DMG_RF_GET_SELECTED_SECTOR = 141, QCA_NL80211_VENDOR_SUBCMD_DMG_RF_SET_SELECTED_SECTOR = 142, QCA_NL80211_VENDOR_SUBCMD_BRP_SET_ANT_LIMIT = 153, }; static int wil_do_acs(struct wiphy *wiphy, struct wireless_dev *wdev, const void *data, int data_len); static int wil_rf_sector_get_cfg(struct wiphy *wiphy, struct wireless_dev *wdev, const void *data, int data_len); static int wil_rf_sector_set_cfg(struct wiphy *wiphy, struct wireless_dev *wdev, const void *data, int data_len); static int wil_rf_sector_get_selected(struct wiphy *wiphy, struct wireless_dev *wdev, const void *data, int data_len); static int wil_rf_sector_set_selected(struct wiphy *wiphy, struct wireless_dev *wdev, const void *data, int data_len); static int wil_brp_set_ant_limit(struct wiphy *wiphy, struct wireless_dev *wdev, const void *data, int data_len); static int wil_nl_60g_handle_cmd(struct wiphy *wiphy, struct wireless_dev *wdev, const void *data, int data_len); /* vendor specific commands */ static const struct wiphy_vendor_command wil_nl80211_vendor_commands[] = { { .info.vendor_id = QCA_NL80211_VENDOR_ID, .info.subcmd = QCA_NL80211_VENDOR_SUBCMD_DO_ACS, .flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV | WIPHY_VENDOR_CMD_NEED_RUNNING, .doit = wil_do_acs }, { .info.vendor_id = QCA_NL80211_VENDOR_ID, .info.subcmd = QCA_NL80211_VENDOR_SUBCMD_LOC_GET_CAPA, .flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_RUNNING, .doit = wil_ftm_get_capabilities }, { .info.vendor_id = QCA_NL80211_VENDOR_ID, .info.subcmd = QCA_NL80211_VENDOR_SUBCMD_FTM_START_SESSION, .flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_RUNNING, .doit = wil_ftm_start_session }, { .info.vendor_id = QCA_NL80211_VENDOR_ID, .info.subcmd = QCA_NL80211_VENDOR_SUBCMD_FTM_ABORT_SESSION, .flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_RUNNING, .doit = wil_ftm_abort_session }, { .info.vendor_id = QCA_NL80211_VENDOR_ID, .info.subcmd = QCA_NL80211_VENDOR_SUBCMD_FTM_CFG_RESPONDER, .flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_RUNNING, .doit = wil_ftm_configure_responder }, { .info.vendor_id = QCA_NL80211_VENDOR_ID, .info.subcmd = QCA_NL80211_VENDOR_SUBCMD_AOA_MEAS, .flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_RUNNING, .doit = wil_aoa_start_measurement }, { .info.vendor_id = QCA_NL80211_VENDOR_ID, .info.subcmd = QCA_NL80211_VENDOR_SUBCMD_AOA_ABORT_MEAS, .flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_RUNNING, .doit = wil_aoa_abort_measurement }, { .info.vendor_id = QCA_NL80211_VENDOR_ID, .info.subcmd = QCA_NL80211_VENDOR_SUBCMD_DMG_RF_GET_SECTOR_CFG, .flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_RUNNING, .doit = wil_rf_sector_get_cfg }, { .info.vendor_id = QCA_NL80211_VENDOR_ID, .info.subcmd = QCA_NL80211_VENDOR_SUBCMD_DMG_RF_SET_SECTOR_CFG, .flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_RUNNING, .doit = wil_rf_sector_set_cfg }, { .info.vendor_id = QCA_NL80211_VENDOR_ID, .info.subcmd = QCA_NL80211_VENDOR_SUBCMD_DMG_RF_GET_SELECTED_SECTOR, .flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_RUNNING, .doit = wil_rf_sector_get_selected }, { .info.vendor_id = QCA_NL80211_VENDOR_ID, .info.subcmd = QCA_NL80211_VENDOR_SUBCMD_DMG_RF_SET_SELECTED_SECTOR, .flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_RUNNING, .doit = wil_rf_sector_set_selected }, { .info.vendor_id = QCA_NL80211_VENDOR_ID, .info.subcmd = QCA_NL80211_VENDOR_SUBCMD_BRP_SET_ANT_LIMIT, .flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_RUNNING, .doit = wil_brp_set_ant_limit }, { .info.vendor_id = QCA_NL80211_VENDOR_ID, .info.subcmd = QCA_NL80211_VENDOR_SUBCMD_UNSPEC, .flags = WIPHY_VENDOR_CMD_NEED_WDEV | WIPHY_VENDOR_CMD_NEED_NETDEV, .doit = wil_nl_60g_handle_cmd }, }; /* vendor specific events */ static const struct nl80211_vendor_cmd_info wil_nl80211_vendor_events[] = { [QCA_NL80211_VENDOR_EVENT_DO_ACS_INDEX] = { .vendor_id = QCA_NL80211_VENDOR_ID, .subcmd = QCA_NL80211_VENDOR_SUBCMD_DO_ACS }, [QCA_NL80211_VENDOR_EVENT_FTM_MEAS_RESULT_INDEX] = { .vendor_id = QCA_NL80211_VENDOR_ID, .subcmd = QCA_NL80211_VENDOR_SUBCMD_FTM_MEAS_RESULT }, [QCA_NL80211_VENDOR_EVENT_FTM_SESSION_DONE_INDEX] = { .vendor_id = QCA_NL80211_VENDOR_ID, .subcmd = QCA_NL80211_VENDOR_SUBCMD_FTM_SESSION_DONE }, [QCA_NL80211_VENDOR_EVENT_AOA_MEAS_RESULT_INDEX] = { .vendor_id = QCA_NL80211_VENDOR_ID, .subcmd = QCA_NL80211_VENDOR_SUBCMD_AOA_MEAS_RESULT }, [QCA_NL80211_VENDOR_EVENT_UNSPEC_INDEX] = { .vendor_id = QCA_NL80211_VENDOR_ID, .subcmd = QCA_NL80211_VENDOR_SUBCMD_UNSPEC }, }; static struct ieee80211_supported_band wil_band_60ghz = { .channels = wil_60ghz_channels, .n_channels = ARRAY_SIZE(wil_60ghz_channels), .ht_cap = { .ht_supported = true, .cap = 0, /* TODO */ .ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K, /* TODO */ .ampdu_density = IEEE80211_HT_MPDU_DENSITY_8, /* TODO */ .mcs = { /* MCS 1..12 - SC PHY */ .rx_mask = {0xfe, 0x1f}, /* 1..12 */ .tx_params = IEEE80211_HT_MCS_TX_DEFINED, /* TODO */ }, }, }; static const struct ieee80211_txrx_stypes wil_mgmt_stypes[NUM_NL80211_IFTYPES] = { [NL80211_IFTYPE_STATION] = { .tx = BIT(IEEE80211_STYPE_ACTION >> 4) | BIT(IEEE80211_STYPE_PROBE_RESP >> 4), .rx = BIT(IEEE80211_STYPE_ACTION >> 4) | BIT(IEEE80211_STYPE_PROBE_REQ >> 4) }, [NL80211_IFTYPE_AP] = { .tx = BIT(IEEE80211_STYPE_ACTION >> 4) | BIT(IEEE80211_STYPE_PROBE_RESP >> 4) | BIT(IEEE80211_STYPE_ASSOC_RESP >> 4) | BIT(IEEE80211_STYPE_DISASSOC >> 4) | BIT(IEEE80211_STYPE_AUTH >> 4) | BIT(IEEE80211_STYPE_REASSOC_RESP >> 4), .rx = BIT(IEEE80211_STYPE_ACTION >> 4) | BIT(IEEE80211_STYPE_PROBE_REQ >> 4) | BIT(IEEE80211_STYPE_ASSOC_REQ >> 4) | BIT(IEEE80211_STYPE_DISASSOC >> 4) | BIT(IEEE80211_STYPE_AUTH >> 4) | BIT(IEEE80211_STYPE_DEAUTH >> 4) | BIT(IEEE80211_STYPE_REASSOC_REQ >> 4) }, [NL80211_IFTYPE_P2P_CLIENT] = { .tx = BIT(IEEE80211_STYPE_ACTION >> 4) | BIT(IEEE80211_STYPE_PROBE_RESP >> 4), .rx = BIT(IEEE80211_STYPE_ACTION >> 4) | BIT(IEEE80211_STYPE_PROBE_REQ >> 4) }, [NL80211_IFTYPE_P2P_GO] = { .tx = BIT(IEEE80211_STYPE_ACTION >> 4) | BIT(IEEE80211_STYPE_PROBE_RESP >> 4), .rx = BIT(IEEE80211_STYPE_ACTION >> 4) | BIT(IEEE80211_STYPE_PROBE_REQ >> 4) }, [NL80211_IFTYPE_P2P_DEVICE] = { .tx = BIT(IEEE80211_STYPE_ACTION >> 4) | BIT(IEEE80211_STYPE_PROBE_RESP >> 4), .rx = BIT(IEEE80211_STYPE_ACTION >> 4) | BIT(IEEE80211_STYPE_PROBE_REQ >> 4) }, }; static const u32 wil_cipher_suites[] = { WLAN_CIPHER_SUITE_GCMP, }; static const char * const key_usage_str[] = { [WMI_KEY_USE_PAIRWISE] = "PTK", [WMI_KEY_USE_RX_GROUP] = "RX_GTK", [WMI_KEY_USE_TX_GROUP] = "TX_GTK", }; int wil_iftype_nl2wmi(enum nl80211_iftype type) { static const struct { enum nl80211_iftype nl; enum wmi_network_type wmi; } __nl2wmi[] = { {NL80211_IFTYPE_ADHOC, WMI_NETTYPE_ADHOC}, {NL80211_IFTYPE_STATION, WMI_NETTYPE_INFRA}, {NL80211_IFTYPE_AP, WMI_NETTYPE_AP}, {NL80211_IFTYPE_P2P_CLIENT, WMI_NETTYPE_P2P}, {NL80211_IFTYPE_P2P_GO, WMI_NETTYPE_P2P}, {NL80211_IFTYPE_MONITOR, WMI_NETTYPE_ADHOC}, /* FIXME */ }; uint i; for (i = 0; i < ARRAY_SIZE(__nl2wmi); i++) { if (__nl2wmi[i].nl == type) return __nl2wmi[i].wmi; } return -EOPNOTSUPP; } int wil_spec2wmi_ch(u8 spec_ch, u8 *wmi_ch) { switch (spec_ch) { case 1: *wmi_ch = WMI_CHANNEL_1; break; case 2: *wmi_ch = WMI_CHANNEL_2; break; case 3: *wmi_ch = WMI_CHANNEL_3; break; case 4: *wmi_ch = WMI_CHANNEL_4; break; case 5: *wmi_ch = WMI_CHANNEL_5; break; case 6: *wmi_ch = WMI_CHANNEL_6; break; case 9: *wmi_ch = WMI_CHANNEL_9; break; case 10: *wmi_ch = WMI_CHANNEL_10; break; case 11: *wmi_ch = WMI_CHANNEL_11; break; case 12: *wmi_ch = WMI_CHANNEL_12; break; default: return -EINVAL; } return 0; } int wil_wmi2spec_ch(u8 wmi_ch, u8 *spec_ch) { switch (wmi_ch) { case WMI_CHANNEL_1: *spec_ch = 1; break; case WMI_CHANNEL_2: *spec_ch = 2; break; case WMI_CHANNEL_3: *spec_ch = 3; break; case WMI_CHANNEL_4: *spec_ch = 4; break; case WMI_CHANNEL_5: *spec_ch = 5; break; case WMI_CHANNEL_6: *spec_ch = 6; break; case WMI_CHANNEL_9: *spec_ch = 9; break; case WMI_CHANNEL_10: *spec_ch = 10; break; case WMI_CHANNEL_11: *spec_ch = 11; break; case WMI_CHANNEL_12: *spec_ch = 12; break; default: return -EINVAL; } return 0; } int wil_cid_fill_sinfo(struct wil6210_vif *vif, int cid, struct station_info *sinfo) { struct wil6210_priv *wil = vif_to_wil(vif); struct wmi_notify_req_cmd cmd = { .cid = cid, .interval_usec = 0, }; struct { struct wmi_cmd_hdr wmi; struct wmi_notify_req_done_event evt; } __packed reply; struct wil_net_stats *stats = &wil->sta[cid].stats; int rc; u8 rate_flag = RATE_INFO_FLAGS_DMG; memset(&reply, 0, sizeof(reply)); rc = wmi_call(wil, WMI_NOTIFY_REQ_CMDID, vif->mid, &cmd, sizeof(cmd), WMI_NOTIFY_REQ_DONE_EVENTID, &reply, sizeof(reply), WIL_WMI_CALL_GENERAL_TO_MS); if (rc) return rc; wil_dbg_wmi(wil, "Link status for CID %d MID %d: {\n" " MCS %d TSF 0x%016llx\n" " BF status 0x%08x RSSI %d SQI %d%%\n" " Tx Tpt %d goodput %d Rx goodput %d\n" " Sectors(rx:tx) my %d:%d peer %d:%d\n" " Tx mode %d}\n", cid, vif->mid, le16_to_cpu(reply.evt.bf_mcs), le64_to_cpu(reply.evt.tsf), reply.evt.status, reply.evt.rssi, reply.evt.sqi, le32_to_cpu(reply.evt.tx_tpt), le32_to_cpu(reply.evt.tx_goodput), le32_to_cpu(reply.evt.rx_goodput), le16_to_cpu(reply.evt.my_rx_sector), le16_to_cpu(reply.evt.my_tx_sector), le16_to_cpu(reply.evt.other_rx_sector), le16_to_cpu(reply.evt.other_tx_sector), reply.evt.tx_mode); sinfo->generation = wil->sinfo_gen; sinfo->filled = BIT(NL80211_STA_INFO_RX_BYTES) | BIT(NL80211_STA_INFO_TX_BYTES) | BIT(NL80211_STA_INFO_RX_PACKETS) | BIT(NL80211_STA_INFO_TX_PACKETS) | BIT(NL80211_STA_INFO_RX_BITRATE) | BIT(NL80211_STA_INFO_TX_BITRATE) | BIT(NL80211_STA_INFO_RX_DROP_MISC) | BIT(NL80211_STA_INFO_TX_FAILED); if (wil->use_enhanced_dma_hw && reply.evt.tx_mode != WMI_TX_MODE_DMG) rate_flag = RATE_INFO_FLAGS_EDMG; rate_flag |= RATE_INFO_FLAGS_MCS; sinfo->txrate.flags = rate_flag; sinfo->rxrate.flags = rate_flag; sinfo->txrate.mcs = le16_to_cpu(reply.evt.bf_mcs); sinfo->rxrate.mcs = stats->last_mcs_rx; sinfo->txrate.n_bonded_ch = wil_tx_cb_mode_to_n_bonded(reply.evt.tx_mode); sinfo->rxrate.n_bonded_ch = wil_rx_cb_mode_to_n_bonded(stats->last_cb_mode_rx); sinfo->rx_bytes = stats->rx_bytes; sinfo->rx_packets = stats->rx_packets; sinfo->rx_dropped_misc = stats->rx_dropped; sinfo->tx_bytes = stats->tx_bytes; sinfo->tx_packets = stats->tx_packets; sinfo->tx_failed = stats->tx_errors; if (test_bit(wil_vif_fwconnected, vif->status)) { sinfo->filled |= BIT(NL80211_STA_INFO_SIGNAL); if (test_bit(WMI_FW_CAPABILITY_RSSI_REPORTING, wil->fw_capabilities)) sinfo->signal = reply.evt.rssi; else sinfo->signal = reply.evt.sqi; } return rc; } static int wil_cfg80211_get_station(struct wiphy *wiphy, struct net_device *ndev, const u8 *mac, struct station_info *sinfo) { struct wil6210_vif *vif = ndev_to_vif(ndev); struct wil6210_priv *wil = wiphy_to_wil(wiphy); int rc; int cid = wil_find_cid(wil, vif->mid, mac); wil_dbg_misc(wil, "get_station: %pM CID %d MID %d\n", mac, cid, vif->mid); if (!wil_cid_valid(cid)) return -ENOENT; rc = wil_cid_fill_sinfo(vif, cid, sinfo); return rc; } /* * Find @idx-th active STA for specific MID for station dump. */ static int wil_find_cid_by_idx(struct wil6210_priv *wil, u8 mid, int idx) { int i; for (i = 0; i < ARRAY_SIZE(wil->sta); i++) { if (wil->sta[i].status == wil_sta_unused) continue; if (wil->sta[i].mid != mid) continue; if (idx == 0) return i; idx--; } return -ENOENT; } static int wil_cfg80211_dump_station(struct wiphy *wiphy, struct net_device *dev, int idx, u8 *mac, struct station_info *sinfo) { struct wil6210_vif *vif = ndev_to_vif(dev); struct wil6210_priv *wil = wiphy_to_wil(wiphy); int rc; int cid = wil_find_cid_by_idx(wil, vif->mid, idx); if (!wil_cid_valid(cid)) return -ENOENT; ether_addr_copy(mac, wil->sta[cid].addr); wil_dbg_misc(wil, "dump_station: %pM CID %d MID %d\n", mac, cid, vif->mid); rc = wil_cid_fill_sinfo(vif, cid, sinfo); return rc; } static int wil_cfg80211_start_p2p_device(struct wiphy *wiphy, struct wireless_dev *wdev) { struct wil6210_priv *wil = wiphy_to_wil(wiphy); wil_dbg_misc(wil, "start_p2p_device: entered\n"); wil->p2p_dev_started = 1; return 0; } static void wil_cfg80211_stop_p2p_device(struct wiphy *wiphy, struct wireless_dev *wdev) { struct wil6210_priv *wil = wiphy_to_wil(wiphy); if (!wil->p2p_dev_started) return; wil_dbg_misc(wil, "stop_p2p_device: entered\n"); mutex_lock(&wil->mutex); mutex_lock(&wil->vif_mutex); wil_p2p_stop_radio_operations(wil); wil->p2p_dev_started = 0; mutex_unlock(&wil->vif_mutex); mutex_unlock(&wil->mutex); } static int wil_cfg80211_validate_add_iface(struct wil6210_priv *wil, enum nl80211_iftype new_type) { int i; struct wireless_dev *wdev; struct iface_combination_params params = { .num_different_channels = 1, }; for (i = 0; i < GET_MAX_VIFS(wil); i++) { if (wil->vifs[i]) { wdev = vif_to_wdev(wil->vifs[i]); params.iftype_num[wdev->iftype]++; } } params.iftype_num[new_type]++; return cfg80211_check_combinations(wil->wiphy, params.num_different_channels, params.radar_detect, params.iftype_num); } static int wil_cfg80211_validate_change_iface(struct wil6210_priv *wil, struct wil6210_vif *vif, enum nl80211_iftype new_type) { int i, ret = 0; struct wireless_dev *wdev; struct iface_combination_params params = { .num_different_channels = 1, }; bool check_combos = false; for (i = 0; i < GET_MAX_VIFS(wil); i++) { struct wil6210_vif *vif_pos = wil->vifs[i]; if (vif_pos && vif != vif_pos) { wdev = vif_to_wdev(vif_pos); params.iftype_num[wdev->iftype]++; check_combos = true; } } if (check_combos) { params.iftype_num[new_type]++; ret = cfg80211_check_combinations(wil->wiphy, params.num_different_channels, params.radar_detect, params.iftype_num); } return ret; } static struct wireless_dev * wil_cfg80211_add_iface(struct wiphy *wiphy, const char *name, unsigned char name_assign_type, enum nl80211_iftype type, u32 *flags, struct vif_params *params) { struct wil6210_priv *wil = wiphy_to_wil(wiphy); struct net_device *ndev_main = wil->main_ndev, *ndev; struct wil6210_vif *vif; struct wireless_dev *p2p_wdev, *wdev; int rc; wil_dbg_misc(wil, "add_iface, type %d\n", type); /* P2P device is not a real virtual interface, it is a management-only * interface that shares the main interface. * Skip concurrency checks here. */ if (type == NL80211_IFTYPE_P2P_DEVICE) { if (wil->p2p_wdev) { wil_err(wil, "P2P_DEVICE interface already created\n"); return ERR_PTR(-EINVAL); } p2p_wdev = kzalloc(sizeof(*p2p_wdev), GFP_KERNEL); if (!p2p_wdev) return ERR_PTR(-ENOMEM); p2p_wdev->iftype = type; p2p_wdev->wiphy = wiphy; /* use our primary ethernet address */ ether_addr_copy(p2p_wdev->address, ndev_main->perm_addr); wil->p2p_wdev = p2p_wdev; return p2p_wdev; } if (!wil->wiphy->n_iface_combinations) { wil_err(wil, "virtual interfaces not supported\n"); return ERR_PTR(-EINVAL); } rc = wil_cfg80211_validate_add_iface(wil, type); if (rc) { wil_err(wil, "iface validation failed, err=%d\n", rc); return ERR_PTR(rc); } vif = wil_vif_alloc(wil, name, name_assign_type, type); if (IS_ERR(vif)) return ERR_CAST(vif); ndev = vif_to_ndev(vif); ether_addr_copy(ndev->perm_addr, ndev_main->perm_addr); if (is_valid_ether_addr(params->macaddr)) { ether_addr_copy(ndev->dev_addr, params->macaddr); } else { ether_addr_copy(ndev->dev_addr, ndev_main->perm_addr); ndev->dev_addr[0] = (ndev->dev_addr[0] ^ (1 << vif->mid)) | 0x2; /* locally administered */ } wdev = vif_to_wdev(vif); ether_addr_copy(wdev->address, ndev->dev_addr); rc = wil_vif_add(wil, vif); if (rc) goto out; wil_info(wil, "added VIF, mid %d iftype %d MAC %pM\n", vif->mid, type, wdev->address); return wdev; out: wil_vif_free(vif); return ERR_PTR(rc); } int wil_vif_prepare_stop(struct wil6210_vif *vif) { struct wil6210_priv *wil = vif_to_wil(vif); struct wireless_dev *wdev = vif_to_wdev(vif); struct net_device *ndev; int rc; if (wdev->iftype != NL80211_IFTYPE_AP) return 0; ndev = vif_to_ndev(vif); if (netif_carrier_ok(ndev)) { rc = wmi_pcp_stop(vif); if (rc) { wil_info(wil, "failed to stop AP, status %d\n", rc); /* continue */ } wil_bcast_fini(vif); netif_carrier_off(ndev); } return 0; } static int wil_cfg80211_del_iface(struct wiphy *wiphy, struct wireless_dev *wdev) { struct wil6210_priv *wil = wiphy_to_wil(wiphy); struct wil6210_vif *vif = wdev_to_vif(wil, wdev); int rc; wil_dbg_misc(wil, "del_iface\n"); if (wdev->iftype == NL80211_IFTYPE_P2P_DEVICE) { if (wdev != wil->p2p_wdev) { wil_err(wil, "delete of incorrect interface 0x%p\n", wdev); return -EINVAL; } wil_cfg80211_stop_p2p_device(wiphy, wdev); wil_p2p_wdev_free(wil); return 0; } if (vif->mid == 0) { wil_err(wil, "cannot remove the main interface\n"); return -EINVAL; } rc = wil_vif_prepare_stop(vif); if (rc) goto out; wil_info(wil, "deleted VIF, mid %d iftype %d MAC %pM\n", vif->mid, wdev->iftype, wdev->address); wil_vif_remove(wil, vif->mid); out: return rc; } static bool wil_is_safe_switch(enum nl80211_iftype from, enum nl80211_iftype to) { if (from == NL80211_IFTYPE_STATION && to == NL80211_IFTYPE_P2P_CLIENT) return true; return false; } static int wil_cfg80211_change_iface(struct wiphy *wiphy, struct net_device *ndev, enum nl80211_iftype type, u32 *flags, struct vif_params *params) { struct wil6210_priv *wil = wiphy_to_wil(wiphy); struct wil6210_vif *vif = ndev_to_vif(ndev); struct wireless_dev *wdev = vif_to_wdev(vif); int rc; bool fw_reset = false; wil_dbg_misc(wil, "change_iface: type=%d\n", type); if (wiphy->n_iface_combinations) { rc = wil_cfg80211_validate_change_iface(wil, vif, type); if (rc) { wil_err(wil, "iface validation failed, err=%d\n", rc); return rc; } } /* do not reset FW when there are active VIFs, * because it can cause significant disruption */ if (!wil_has_other_active_ifaces(wil, ndev, true, false) && netif_running(ndev) && !wil_is_recovery_blocked(wil) && !wil_is_safe_switch(wdev->iftype, type)) { wil_dbg_misc(wil, "interface is up. resetting...\n"); mutex_lock(&wil->mutex); __wil_down(wil); rc = __wil_up(wil); mutex_unlock(&wil->mutex); if (rc) return rc; fw_reset = true; } switch (type) { case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_AP: case NL80211_IFTYPE_P2P_CLIENT: case NL80211_IFTYPE_P2P_GO: break; case NL80211_IFTYPE_MONITOR: if (flags) wil->monitor_flags = *flags; else wil->monitor_flags = 0; break; default: return -EOPNOTSUPP; } if (vif->mid != 0 && wil_has_active_ifaces(wil, true, false)) { if (!fw_reset) wil_vif_prepare_stop(vif); rc = wmi_port_delete(wil, vif->mid); if (rc) return rc; rc = wmi_port_allocate(wil, vif->mid, ndev->dev_addr, type); if (rc) return rc; } wdev->iftype = type; return 0; } static int wil_cfg80211_scan(struct wiphy *wiphy, struct cfg80211_scan_request *request) { struct wil6210_priv *wil = wiphy_to_wil(wiphy); struct wireless_dev *wdev = request->wdev; struct wil6210_vif *vif = wdev_to_vif(wil, wdev); struct { struct wmi_start_scan_cmd cmd; u16 chnl[4]; } __packed cmd; uint i, n; int rc; wil_dbg_misc(wil, "scan: wdev=0x%p iftype=%d\n", wdev, wdev->iftype); /* scan is supported on client interfaces and on AP interface */ switch (wdev->iftype) { case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_P2P_CLIENT: case NL80211_IFTYPE_P2P_DEVICE: case NL80211_IFTYPE_AP: break; default: return -EOPNOTSUPP; } /* FW don't support scan after connection attempt */ if (test_bit(wil_status_dontscan, wil->status)) { wil_err(wil, "Can't scan now\n"); return -EBUSY; } mutex_lock(&wil->mutex); mutex_lock(&wil->vif_mutex); if (vif->scan_request || vif->p2p.discovery_started) { wil_err(wil, "Already scanning\n"); mutex_unlock(&wil->vif_mutex); rc = -EAGAIN; goto out; } mutex_unlock(&wil->vif_mutex); if (wdev->iftype == NL80211_IFTYPE_P2P_DEVICE) { if (!wil->p2p_dev_started) { wil_err(wil, "P2P search requested on stopped P2P device\n"); rc = -EIO; goto out; } /* social scan on P2P_DEVICE is handled as p2p search */ if (wil_p2p_is_social_scan(request)) { vif->scan_request = request; if (vif->mid == 0) wil->radio_wdev = wdev; rc = wil_p2p_search(vif, request); if (rc) { if (vif->mid == 0) wil->radio_wdev = wil->main_ndev->ieee80211_ptr; vif->scan_request = NULL; } goto out; } } (void)wil_p2p_stop_discovery(vif); wil_dbg_misc(wil, "Start scan_request 0x%p, dwell_time %dms, timeout %dsec, SSID count %d\n", request, scan_dwell_time, scan_timeout, request->n_ssids); for (i = 0; i < request->n_ssids; i++) { wil_dbg_misc(wil, "SSID[%d]", i); wil_hex_dump_misc("SSID ", DUMP_PREFIX_OFFSET, 16, 1, request->ssids[i].ssid, request->ssids[i].ssid_len, true); } if (request->n_ssids) rc = wmi_set_ssid(vif, request->ssids[0].ssid_len, request->ssids[0].ssid); else rc = wmi_set_ssid(vif, 0, NULL); if (rc) { wil_err(wil, "set SSID for scan request failed: %d\n", rc); goto out; } vif->scan_request = request; mod_timer(&vif->scan_timer, jiffies + msecs_to_jiffies(1000U * scan_timeout)); memset(&cmd, 0, sizeof(cmd)); cmd.cmd.scan_type = WMI_ACTIVE_SCAN; cmd.cmd.dwell_time = cpu_to_le32(scan_dwell_time); cmd.cmd.num_channels = 0; n = min(request->n_channels, 4U); for (i = 0; i < n; i++) { int ch = request->channels[i]->hw_value; if (ch == 0) { wil_err(wil, "Scan requested for unknown frequency %dMhz\n", request->channels[i]->center_freq); continue; } /* 0-based channel indexes */ cmd.cmd.channel_list[cmd.cmd.num_channels++].channel = ch - 1; wil_dbg_misc(wil, "Scan for ch %d : %d MHz\n", ch, request->channels[i]->center_freq); } if (request->ie_len) wil_hex_dump_misc("Scan IE ", DUMP_PREFIX_OFFSET, 16, 1, request->ie, request->ie_len, true); else wil_dbg_misc(wil, "Scan has no IE's\n"); rc = wmi_set_ie(vif, WMI_FRAME_PROBE_REQ, request->ie_len, request->ie); if (rc) goto out_restore; if (wil->discovery_mode && cmd.cmd.scan_type == WMI_ACTIVE_SCAN) { cmd.cmd.discovery_mode = 1; wil_dbg_misc(wil, "active scan with discovery_mode=1\n"); } if (vif->mid == 0) wil->radio_wdev = wdev; rc = wmi_send(wil, WMI_START_SCAN_CMDID, vif->mid, &cmd, sizeof(cmd.cmd) + cmd.cmd.num_channels * sizeof(cmd.cmd.channel_list[0])); out_restore: if (rc) { del_timer_sync(&vif->scan_timer); if (vif->mid == 0) wil->radio_wdev = wil->main_ndev->ieee80211_ptr; vif->scan_request = NULL; } out: mutex_unlock(&wil->mutex); return rc; } static void wil_cfg80211_abort_scan(struct wiphy *wiphy, struct wireless_dev *wdev) { struct wil6210_priv *wil = wiphy_to_wil(wiphy); struct wil6210_vif *vif = wdev_to_vif(wil, wdev); wil_dbg_misc(wil, "wdev=0x%p iftype=%d\n", wdev, wdev->iftype); mutex_lock(&wil->mutex); mutex_lock(&wil->vif_mutex); if (!vif->scan_request) goto out; if (wdev != vif->scan_request->wdev) { wil_dbg_misc(wil, "abort scan was called on the wrong iface\n"); goto out; } if (wdev == wil->p2p_wdev && wil->radio_wdev == wil->p2p_wdev) wil_p2p_stop_radio_operations(wil); else wil_abort_scan(vif, true); out: mutex_unlock(&wil->vif_mutex); mutex_unlock(&wil->mutex); } static void wil_print_crypto(struct wil6210_priv *wil, struct cfg80211_crypto_settings *c) { int i, n; wil_dbg_misc(wil, "WPA versions: 0x%08x cipher group 0x%08x\n", c->wpa_versions, c->cipher_group); wil_dbg_misc(wil, "Pairwise ciphers [%d] {\n", c->n_ciphers_pairwise); n = min_t(int, c->n_ciphers_pairwise, ARRAY_SIZE(c->ciphers_pairwise)); for (i = 0; i < n; i++) wil_dbg_misc(wil, " [%d] = 0x%08x\n", i, c->ciphers_pairwise[i]); wil_dbg_misc(wil, "}\n"); wil_dbg_misc(wil, "AKM suites [%d] {\n", c->n_akm_suites); n = min_t(int, c->n_akm_suites, ARRAY_SIZE(c->akm_suites)); for (i = 0; i < n; i++) wil_dbg_misc(wil, " [%d] = 0x%08x\n", i, c->akm_suites[i]); wil_dbg_misc(wil, "}\n"); wil_dbg_misc(wil, "Control port : %d, eth_type 0x%04x no_encrypt %d\n", c->control_port, be16_to_cpu(c->control_port_ethertype), c->control_port_no_encrypt); } static const char * wil_get_auth_type_name(enum nl80211_auth_type auth_type) { switch (auth_type) { case NL80211_AUTHTYPE_OPEN_SYSTEM: return "OPEN_SYSTEM"; case NL80211_AUTHTYPE_SHARED_KEY: return "SHARED_KEY"; case NL80211_AUTHTYPE_FT: return "FT"; case NL80211_AUTHTYPE_NETWORK_EAP: return "NETWORK_EAP"; case NL80211_AUTHTYPE_SAE: return "SAE"; case NL80211_AUTHTYPE_AUTOMATIC: return "AUTOMATIC"; default: return "unknown"; } } static void wil_print_connect_params(struct wil6210_priv *wil, struct cfg80211_connect_params *sme) { wil_info(wil, "Connecting to:\n"); if (sme->channel) { wil_info(wil, " Channel: %d freq %d\n", sme->channel->hw_value, sme->channel->center_freq); } if (sme->bssid) wil_info(wil, " BSSID: %pM\n", sme->bssid); if (sme->ssid) print_hex_dump(KERN_INFO, " SSID: ", DUMP_PREFIX_OFFSET, 16, 1, sme->ssid, sme->ssid_len, true); wil_info(wil, " Auth Type: %s\n", wil_get_auth_type_name(sme->auth_type)); wil_info(wil, " Privacy: %s\n", sme->privacy ? "secure" : "open"); wil_info(wil, " PBSS: %d\n", sme->pbss); wil_print_crypto(wil, &sme->crypto); } static int wil_ft_connect(struct wiphy *wiphy, struct net_device *ndev, struct cfg80211_connect_params *sme) { struct wil6210_priv *wil = wiphy_to_wil(wiphy); struct wil6210_vif *vif = ndev_to_vif(ndev); struct wmi_ft_auth_cmd auth_cmd; int rc; if (!test_bit(WMI_FW_CAPABILITY_FT_ROAMING, wil->fw_capabilities)) { wil_err(wil, "FT: FW does not support FT roaming\n"); return -EOPNOTSUPP; } if (!test_bit(wil_vif_fwconnected, vif->status)) { wil_err(wil, "FT: roam while not connected\n"); return -EINVAL; } if (vif->privacy != sme->privacy) { wil_err(wil, "FT: privacy mismatch, current (%d) roam (%d)\n", vif->privacy, sme->privacy); return -EINVAL; } if (sme->pbss) { wil_err(wil, "FT: roam is not valid for PBSS\n"); return -EINVAL; } memset(&auth_cmd, 0, sizeof(auth_cmd)); auth_cmd.channel = sme->channel->hw_value - 1; ether_addr_copy(auth_cmd.bssid, sme->bssid); if (test_bit(WMI_FW_CAPABILITY_CHANNEL_BONDING, wil->fw_capabilities)) if (wil->force_edmg_channel) { rc = wil_spec2wmi_ch(wil->force_edmg_channel, &auth_cmd.channel); if (rc) wil_err(wil, "FT: wmi channel for channel %d not found", wil->force_edmg_channel); } wil_info(wil, "FT: roaming\n"); set_bit(wil_vif_ft_roam, vif->status); rc = wmi_send(wil, WMI_FT_AUTH_CMDID, vif->mid, &auth_cmd, sizeof(auth_cmd)); if (rc == 0) mod_timer(&vif->connect_timer, jiffies + msecs_to_jiffies(5000)); else clear_bit(wil_vif_ft_roam, vif->status); return rc; } static int wil_get_wmi_edmg_channel(struct wil6210_priv *wil, u8 edmg_bw_config, u8 edmg_channels, u8 *wmi_ch) { if (!edmg_bw_config) { *wmi_ch = 0; return 0; } else if (edmg_bw_config == WIL_EDMG_BW_CONFIGURATION) { /* convert from edmg channel bitmap into edmg channel number */ switch (edmg_channels) { case WIL_EDMG_CHANNEL_9_SUBCHANNELS: return wil_spec2wmi_ch(9, wmi_ch); case WIL_EDMG_CHANNEL_10_SUBCHANNELS: return wil_spec2wmi_ch(10, wmi_ch); case WIL_EDMG_CHANNEL_11_SUBCHANNELS: return wil_spec2wmi_ch(11, wmi_ch); default: wil_err(wil, "Unsupported edmg channel bitmap 0x%x\n", edmg_channels); return -EINVAL; } } else { wil_err(wil, "Unsupported EDMG BW configuration %d\n", edmg_bw_config); return -EINVAL; } } static int wil_cfg80211_connect(struct wiphy *wiphy, struct net_device *ndev, struct cfg80211_connect_params *sme) { struct wil6210_priv *wil = wiphy_to_wil(wiphy); struct wil6210_vif *vif = ndev_to_vif(ndev); struct cfg80211_bss *bss; struct wmi_connect_cmd conn; const u8 *ssid_eid; const u8 *rsn_eid; int ch; int rc = 0; bool is_ft_roam = false; u8 network_type; enum ieee80211_bss_type bss_type = IEEE80211_BSS_TYPE_ESS; wil_dbg_misc(wil, "connect, mid=%d\n", vif->mid); wil_print_connect_params(wil, sme); if (sme->auth_type == NL80211_AUTHTYPE_FT) is_ft_roam = true; if (sme->auth_type == NL80211_AUTHTYPE_AUTOMATIC && test_bit(wil_vif_fwconnected, vif->status)) is_ft_roam = true; if (!is_ft_roam) if (test_bit(wil_vif_fwconnecting, vif->status) || test_bit(wil_vif_fwconnected, vif->status)) return -EALREADY; if (sme->ie_len > WMI_MAX_IE_LEN) { wil_err(wil, "IE too large (%td bytes)\n", sme->ie_len); return -ERANGE; } rsn_eid = sme->ie ? cfg80211_find_ie(WLAN_EID_RSN, sme->ie, sme->ie_len) : NULL; if (sme->privacy && !rsn_eid) { wil_info(wil, "WSC connection\n"); if (is_ft_roam) { wil_err(wil, "No WSC with FT roam\n"); return -EINVAL; } } if (sme->pbss) bss_type = IEEE80211_BSS_TYPE_PBSS; bss = cfg80211_get_bss(wiphy, sme->channel, sme->bssid, sme->ssid, sme->ssid_len, bss_type, IEEE80211_PRIVACY_ANY); if (!bss) { wil_err(wil, "Unable to find BSS\n"); return -ENOENT; } ssid_eid = ieee80211_bss_get_ie(bss, WLAN_EID_SSID); if (!ssid_eid) { wil_err(wil, "No SSID\n"); rc = -ENOENT; goto out; } vif->privacy = sme->privacy; vif->pbss = sme->pbss; rc = wmi_set_ie(vif, WMI_FRAME_ASSOC_REQ, sme->ie_len, sme->ie); if (rc) goto out; switch (bss->capability & WLAN_CAPABILITY_DMG_TYPE_MASK) { case WLAN_CAPABILITY_DMG_TYPE_AP: network_type = WMI_NETTYPE_INFRA; break; case WLAN_CAPABILITY_DMG_TYPE_PBSS: network_type = WMI_NETTYPE_P2P; break; default: wil_err(wil, "Unsupported BSS type, capability= 0x%04x\n", bss->capability); rc = -EINVAL; goto out; } ch = bss->channel->hw_value; if (ch == 0) { wil_err(wil, "BSS at unknown frequency %dMhz\n", bss->channel->center_freq); rc = -EOPNOTSUPP; goto out; } if (is_ft_roam) { if (network_type != WMI_NETTYPE_INFRA) { wil_err(wil, "FT: Unsupported BSS type, capability= 0x%04x\n", bss->capability); rc = -EINVAL; goto out; } rc = wil_ft_connect(wiphy, ndev, sme); if (rc == 0) vif->bss = bss; goto out; } if (vif->privacy) { /* For secure assoc, remove old keys */ rc = wmi_del_cipher_key(vif, 0, bss->bssid, WMI_KEY_USE_PAIRWISE); if (rc) { wil_err(wil, "WMI_DELETE_CIPHER_KEY_CMD(PTK) failed\n"); goto out; } rc = wmi_del_cipher_key(vif, 0, bss->bssid, WMI_KEY_USE_RX_GROUP); if (rc) { wil_err(wil, "WMI_DELETE_CIPHER_KEY_CMD(GTK) failed\n"); goto out; } } /* WMI_CONNECT_CMD */ memset(&conn, 0, sizeof(conn)); conn.network_type = network_type; if (vif->privacy) { if (rsn_eid) { /* regular secure connection */ conn.dot11_auth_mode = WMI_AUTH11_SHARED; conn.auth_mode = WMI_AUTH_WPA2_PSK; conn.pairwise_crypto_type = WMI_CRYPT_AES_GCMP; conn.pairwise_crypto_len = 16; conn.group_crypto_type = WMI_CRYPT_AES_GCMP; conn.group_crypto_len = 16; } else { /* WSC */ conn.dot11_auth_mode = WMI_AUTH11_WSC; conn.auth_mode = WMI_AUTH_NONE; } } else { /* insecure connection */ conn.dot11_auth_mode = WMI_AUTH11_OPEN; conn.auth_mode = WMI_AUTH_NONE; } conn.ssid_len = min_t(u8, ssid_eid[1], 32); memcpy(conn.ssid, ssid_eid+2, conn.ssid_len); conn.channel = ch - 1; if (test_bit(WMI_FW_CAPABILITY_CHANNEL_BONDING, wil->fw_capabilities)) { if (wil->force_edmg_channel) { rc = wil_spec2wmi_ch(wil->force_edmg_channel, &conn.edmg_channel); if (rc) wil_err(wil, "wmi channel for channel %d not found", wil->force_edmg_channel); } else { rc = wil_get_wmi_edmg_channel(wil, sme->edmg.bw_config, sme->edmg.channels, &conn.edmg_channel); if (rc < 0) return rc; } } ether_addr_copy(conn.bssid, bss->bssid); ether_addr_copy(conn.dst_mac, bss->bssid); set_bit(wil_vif_fwconnecting, vif->status); rc = wmi_send(wil, WMI_CONNECT_CMDID, vif->mid, &conn, sizeof(conn)); if (rc == 0) { netif_carrier_on(ndev); if (!wil_has_other_active_ifaces(wil, ndev, false, true)) { if (wil->force_edmg_channel) wil6210_bus_request(wil, WIL_11AY_BUS_REQUEST_KBPS); else wil6210_bus_request(wil, WIL_11AD_BUS_REQUEST_KBPS); } vif->bss = bss; /* Connect can take lots of time */ mod_timer(&vif->connect_timer, jiffies + msecs_to_jiffies(5000)); } else { clear_bit(wil_vif_fwconnecting, vif->status); } out: cfg80211_put_bss(wiphy, bss); return rc; } static int wil_cfg80211_disconnect(struct wiphy *wiphy, struct net_device *ndev, u16 reason_code) { int rc; struct wil6210_priv *wil = wiphy_to_wil(wiphy); struct wil6210_vif *vif = ndev_to_vif(ndev); wil_dbg_misc(wil, "disconnect: reason=%d, mid=%d\n", reason_code, vif->mid); if (!(test_bit(wil_vif_fwconnecting, vif->status) || test_bit(wil_vif_fwconnected, vif->status))) { wil_err(wil, "Disconnect was called while disconnected\n"); return 0; } vif->locally_generated_disc = true; rc = wmi_call(wil, WMI_DISCONNECT_CMDID, vif->mid, NULL, 0, WMI_DISCONNECT_EVENTID, NULL, 0, WIL6210_DISCONNECT_TO_MS); if (rc) wil_err(wil, "disconnect error %d\n", rc); return rc; } static int wil_cfg80211_set_wiphy_params(struct wiphy *wiphy, u32 changed) { struct wil6210_priv *wil = wiphy_to_wil(wiphy); int rc; /* these parameters are explicitly not supported */ if (changed & (WIPHY_PARAM_RETRY_LONG | WIPHY_PARAM_FRAG_THRESHOLD | WIPHY_PARAM_RTS_THRESHOLD)) return -ENOTSUPP; if (changed & WIPHY_PARAM_RETRY_SHORT) { rc = wmi_set_mgmt_retry(wil, wiphy->retry_short); if (rc) return rc; } return 0; } static int wil_umac_rop_mgmt_tx(void *driver_vap_ctx, const u8 *frame, size_t len) { struct wil6210_vif *vif = driver_vap_ctx; return wmi_mgmt_tx(vif, frame, len); } static int wil_umac_rop_add_station(void *driver_vap_ctx, const u8 *mac, u8 aid) { struct wil6210_vif *vif = driver_vap_ctx; return wmi_new_sta(vif, mac, aid); } static void wil_umac_rop_del_station(void *driver_vap_ctx, const u8 *mac, u16 reason) { struct wil6210_vif *vif = driver_vap_ctx; struct wil6210_priv *wil = vif_to_wil(vif); mutex_lock(&wil->mutex); wil6210_disconnect(vif, mac, reason); mutex_unlock(&wil->mutex); } void *wil_umac_register(struct wil6210_priv *wil) { wil->umac_rops.mgmt_tx = wil_umac_rop_mgmt_tx; wil->umac_rops.add_station = wil_umac_rop_add_station; wil->umac_rops.del_station = wil_umac_rop_del_station; return wil_umac_init(wil, wil->main_ndev->perm_addr, WIL_MAX_VIFS, max_assoc_sta, disable_ap_sme, &wil->umac_ops, &wil->umac_rops); } void wil_umac_unregister(struct wil6210_priv *wil) { if (!wil->umac_handle) return; wil->umac_ops.uninit(wil->umac_handle); wil->umac_handle = NULL; } int wil_cfg80211_mgmt_tx(struct wiphy *wiphy, struct wireless_dev *wdev, struct cfg80211_mgmt_tx_params *params, u64 *cookie) { const u8 *buf = params->buf; size_t len = params->len; struct wil6210_priv *wil = wiphy_to_wil(wiphy); struct wil6210_vif *vif = wdev_to_vif(wil, wdev); int rc; bool tx_status; wil_dbg_misc(wil, "mgmt_tx: channel %d offchan %d, wait %d\n", params->chan ? params->chan->hw_value : -1, params->offchan, params->wait); /* Note, currently we support the "wait" parameter only on AP mode. * In other modes, user-space must call remain_on_channel before * mgmt_tx or listen on a channel other than active one. */ if (params->chan && params->chan->hw_value == 0) { wil_err(wil, "invalid channel\n"); return -EINVAL; } if (vif->umac_vap) { rc = wil->umac_ops.mgmt_tx(vif->umac_vap, buf, len); if (rc != WIL_UMAC_FRAME_NOT_HANDLED) goto out; } if (wdev->iftype != NL80211_IFTYPE_AP) { wil_dbg_misc(wil, "send WMI_SW_TX_REQ_CMDID on non-AP interfaces\n"); rc = wmi_mgmt_tx(vif, buf, len); goto out; } if (!params->chan || params->chan->hw_value == vif->channel) { wil_dbg_misc(wil, "send WMI_SW_TX_REQ_CMDID for on-channel\n"); rc = wmi_mgmt_tx(vif, buf, len); goto out; } if (params->offchan == 0) { wil_err(wil, "invalid channel params: current %d requested %d, off-channel not allowed\n", vif->channel, params->chan->hw_value); return -EBUSY; } /* use the wmi_mgmt_tx_ext only on AP mode and off-channel */ rc = wmi_mgmt_tx_ext(vif, buf, len, params->chan->hw_value, params->wait); out: /* when the sent packet was not acked by receiver(ACK=0), rc will * be -EAGAIN. In this case this function needs to return success, * the ACK=0 will be reflected in tx_status. */ tx_status = (rc == 0); rc = (rc == -EAGAIN) ? 0 : rc; cfg80211_mgmt_tx_status(wdev, cookie ? *cookie : 0, buf, len, tx_status, GFP_KERNEL); return rc; } static int wil_cfg80211_set_channel(struct wiphy *wiphy, struct cfg80211_chan_def *chandef) { struct wil6210_priv *wil = wiphy_to_wil(wiphy); wil->monitor_chandef = *chandef; return 0; } static enum wmi_key_usage wil_detect_key_usage(struct wireless_dev *wdev, bool pairwise) { struct wil6210_priv *wil = wdev_to_wil(wdev); enum wmi_key_usage rc; if (pairwise) { rc = WMI_KEY_USE_PAIRWISE; } else { switch (wdev->iftype) { case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_P2P_CLIENT: rc = WMI_KEY_USE_RX_GROUP; break; case NL80211_IFTYPE_AP: case NL80211_IFTYPE_P2P_GO: rc = WMI_KEY_USE_TX_GROUP; break; default: /* TODO: Rx GTK or Tx GTK? */ wil_err(wil, "Can't determine GTK type\n"); rc = WMI_KEY_USE_RX_GROUP; break; } } wil_dbg_misc(wil, "detect_key_usage: -> %s\n", key_usage_str[rc]); return rc; } static struct wil_sta_info * wil_find_sta_by_key_usage(struct wil6210_priv *wil, u8 mid, enum wmi_key_usage key_usage, const u8 *mac_addr) { int cid = -EINVAL; if (key_usage == WMI_KEY_USE_TX_GROUP) return NULL; /* not needed */ /* supplicant provides Rx group key in STA mode with NULL MAC address */ if (mac_addr) cid = wil_find_cid(wil, mid, mac_addr); else if (key_usage == WMI_KEY_USE_RX_GROUP) cid = wil_find_cid_by_idx(wil, mid, 0); if (cid < 0) { wil_err(wil, "No CID for %pM %s\n", mac_addr, key_usage_str[key_usage]); return ERR_PTR(cid); } return &wil->sta[cid]; } void wil_set_crypto_rx(u8 key_index, enum wmi_key_usage key_usage, struct wil_sta_info *cs, struct key_params *params) { struct wil_tid_crypto_rx_single *cc; int tid; if (!cs) return; switch (key_usage) { case WMI_KEY_USE_PAIRWISE: for (tid = 0; tid < WIL_STA_TID_NUM; tid++) { cc = &cs->tid_crypto_rx[tid].key_id[key_index]; if (params->seq) memcpy(cc->pn, params->seq, IEEE80211_GCMP_PN_LEN); else memset(cc->pn, 0, IEEE80211_GCMP_PN_LEN); cc->key_set = true; } break; case WMI_KEY_USE_RX_GROUP: cc = &cs->group_crypto_rx.key_id[key_index]; if (params->seq) memcpy(cc->pn, params->seq, IEEE80211_GCMP_PN_LEN); else memset(cc->pn, 0, IEEE80211_GCMP_PN_LEN); cc->key_set = true; break; default: break; } } static void wil_del_rx_key(u8 key_index, enum wmi_key_usage key_usage, struct wil_sta_info *cs) { struct wil_tid_crypto_rx_single *cc; int tid; if (!cs) return; switch (key_usage) { case WMI_KEY_USE_PAIRWISE: for (tid = 0; tid < WIL_STA_TID_NUM; tid++) { cc = &cs->tid_crypto_rx[tid].key_id[key_index]; cc->key_set = false; } break; case WMI_KEY_USE_RX_GROUP: cc = &cs->group_crypto_rx.key_id[key_index]; cc->key_set = false; break; default: break; } } static int wil_cfg80211_add_key(struct wiphy *wiphy, struct net_device *ndev, u8 key_index, bool pairwise, const u8 *mac_addr, struct key_params *params) { int rc; struct wil6210_vif *vif = ndev_to_vif(ndev); struct wil6210_priv *wil = wiphy_to_wil(wiphy); struct wireless_dev *wdev = vif_to_wdev(vif); enum wmi_key_usage key_usage = wil_detect_key_usage(wdev, pairwise); struct wil_sta_info *cs = wil_find_sta_by_key_usage(wil, vif->mid, key_usage, mac_addr); if (!params) { wil_err(wil, "NULL params\n"); return -EINVAL; } wil_dbg_misc(wil, "add_key: %pM %s[%d] PN %*phN\n", mac_addr, key_usage_str[key_usage], key_index, params->seq_len, params->seq); if (IS_ERR(cs)) { /* in FT, sta info may not be available as add_key may be * sent by host before FW sends WMI_CONNECT_EVENT */ if (!test_bit(wil_vif_ft_roam, vif->status)) { wil_err(wil, "Not connected, %pM %s[%d] PN %*phN\n", mac_addr, key_usage_str[key_usage], key_index, params->seq_len, params->seq); return -EINVAL; } } if (!IS_ERR(cs)) wil_del_rx_key(key_index, key_usage, cs); if (params->seq && params->seq_len != IEEE80211_GCMP_PN_LEN) { wil_err(wil, "Wrong PN len %d, %pM %s[%d] PN %*phN\n", params->seq_len, mac_addr, key_usage_str[key_usage], key_index, params->seq_len, params->seq); return -EINVAL; } if (vif->umac_vap) { rc = wil->umac_ops.add_key(vif->umac_vap, key_index, pairwise, mac_addr); if (rc) return rc; } rc = wmi_add_cipher_key(vif, key_index, mac_addr, params->key_len, params->key, key_usage); if (rc) { if (vif->umac_vap) wil->umac_ops.del_key(vif->umac_vap, key_index, pairwise, mac_addr); } else if (!IS_ERR(cs)) { /* update local storage used for AP recovery */ if (key_usage == WMI_KEY_USE_TX_GROUP && params->key && params->key_len <= WMI_MAX_KEY_LEN) { vif->gtk_index = key_index; memcpy(vif->gtk, params->key, params->key_len); vif->gtk_len = params->key_len; } /* in FT set crypto will take place upon receiving * WMI_RING_EN_EVENTID event */ wil_set_crypto_rx(key_index, key_usage, cs, params); } return rc; } static int wil_cfg80211_del_key(struct wiphy *wiphy, struct net_device *ndev, u8 key_index, bool pairwise, const u8 *mac_addr) { struct wil6210_vif *vif = ndev_to_vif(ndev); struct wil6210_priv *wil = wiphy_to_wil(wiphy); struct wireless_dev *wdev = vif_to_wdev(vif); enum wmi_key_usage key_usage = wil_detect_key_usage(wdev, pairwise); struct wil_sta_info *cs = wil_find_sta_by_key_usage(wil, vif->mid, key_usage, mac_addr); wil_dbg_misc(wil, "del_key: %pM %s[%d]\n", mac_addr, key_usage_str[key_usage], key_index); if (IS_ERR(cs)) wil_info(wil, "Not connected, %pM %s[%d]\n", mac_addr, key_usage_str[key_usage], key_index); if (!IS_ERR_OR_NULL(cs)) wil_del_rx_key(key_index, key_usage, cs); if (vif->umac_vap) wil->umac_ops.del_key(vif->umac_vap, key_index, pairwise, mac_addr); return wmi_del_cipher_key(vif, key_index, mac_addr, key_usage); } /* Need to be present or wiphy_new() will WARN */ static int wil_cfg80211_set_default_key(struct wiphy *wiphy, struct net_device *ndev, u8 key_index, bool unicast, bool multicast) { struct wil6210_priv *wil = wiphy_to_wil(wiphy); wil_dbg_misc(wil, "set_default_key: entered\n"); return 0; } static int wil_remain_on_channel(struct wiphy *wiphy, struct wireless_dev *wdev, struct ieee80211_channel *chan, unsigned int duration, u64 *cookie) { struct wil6210_priv *wil = wiphy_to_wil(wiphy); int rc; wil_dbg_misc(wil, "remain_on_channel: center_freq=%d, duration=%d iftype=%d\n", chan->center_freq, duration, wdev->iftype); rc = wil_p2p_listen(wil, wdev, duration, chan, cookie); return rc; } static int wil_cancel_remain_on_channel(struct wiphy *wiphy, struct wireless_dev *wdev, u64 cookie) { struct wil6210_priv *wil = wiphy_to_wil(wiphy); struct wil6210_vif *vif = wdev_to_vif(wil, wdev); wil_dbg_misc(wil, "cancel_remain_on_channel\n"); return wil_p2p_cancel_listen(vif, cookie); } /** * find a specific IE in a list of IEs * return a pointer to the beginning of IE in the list * or NULL if not found */ static const u8 *_wil_cfg80211_find_ie(const u8 *ies, u16 ies_len, const u8 *ie, u16 ie_len) { struct ieee80211_vendor_ie *vie; u32 oui; /* IE tag at offset 0, length at offset 1 */ if (ie_len < 2 || 2 + ie[1] > ie_len) return NULL; if (ie[0] != WLAN_EID_VENDOR_SPECIFIC) return cfg80211_find_ie(ie[0], ies, ies_len); /* make sure there is room for 3 bytes OUI + 1 byte OUI type */ if (ie[1] < 4) return NULL; vie = (struct ieee80211_vendor_ie *)ie; oui = vie->oui[0] << 16 | vie->oui[1] << 8 | vie->oui[2]; return cfg80211_find_vendor_ie(oui, vie->oui_type, ies, ies_len); } /** * merge the IEs in two lists into a single list. * do not include IEs from the second list which exist in the first list. * add only vendor specific IEs from second list to keep * the merged list sorted (since vendor-specific IE has the * highest tag number) * caller must free the allocated memory for merged IEs */ static int _wil_cfg80211_merge_extra_ies(const u8 *ies1, u16 ies1_len, const u8 *ies2, u16 ies2_len, u8 **merged_ies, u16 *merged_len) { u8 *buf, *dpos; const u8 *spos; if (!ies1) ies1_len = 0; if (!ies2) ies2_len = 0; if (ies1_len == 0 && ies2_len == 0) { *merged_ies = NULL; *merged_len = 0; return 0; } buf = kmalloc(ies1_len + ies2_len, GFP_KERNEL); if (!buf) return -ENOMEM; if (ies1) memcpy(buf, ies1, ies1_len); dpos = buf + ies1_len; spos = ies2; while (spos && (spos + 1 < ies2 + ies2_len)) { /* IE tag at offset 0, length at offset 1 */ u16 ielen = 2 + spos[1]; if (spos + ielen > ies2 + ies2_len) break; if (spos[0] == WLAN_EID_VENDOR_SPECIFIC && (!ies1 || !_wil_cfg80211_find_ie(ies1, ies1_len, spos, ielen))) { memcpy(dpos, spos, ielen); dpos += ielen; } spos += ielen; } *merged_ies = buf; *merged_len = dpos - buf; return 0; } static void wil_print_bcon_data(struct cfg80211_beacon_data *b) { wil_hex_dump_misc("head ", DUMP_PREFIX_OFFSET, 16, 1, b->head, b->head_len, true); wil_hex_dump_misc("tail ", DUMP_PREFIX_OFFSET, 16, 1, b->tail, b->tail_len, true); wil_hex_dump_misc("BCON IE ", DUMP_PREFIX_OFFSET, 16, 1, b->beacon_ies, b->beacon_ies_len, true); wil_hex_dump_misc("PROBE ", DUMP_PREFIX_OFFSET, 16, 1, b->probe_resp, b->probe_resp_len, true); wil_hex_dump_misc("PROBE IE ", DUMP_PREFIX_OFFSET, 16, 1, b->proberesp_ies, b->proberesp_ies_len, true); wil_hex_dump_misc("ASSOC IE ", DUMP_PREFIX_OFFSET, 16, 1, b->assocresp_ies, b->assocresp_ies_len, true); } /* internal functions for device reset and starting AP */ static u8 * _wil_cfg80211_get_proberesp_ies(const u8 *proberesp, u16 proberesp_len, u16 *ies_len) { u8 *ies = NULL; if (proberesp) { struct ieee80211_mgmt *f = (struct ieee80211_mgmt *)proberesp; size_t hlen = offsetof(struct ieee80211_mgmt, u.probe_resp.variable); ies = f->u.probe_resp.variable; if (ies_len) *ies_len = proberesp_len - hlen; } return ies; } static int _wil_cfg80211_set_ies(struct wil6210_vif *vif, struct cfg80211_beacon_data *bcon) { int rc; struct wil6210_priv *wil = vif_to_wil(vif); u16 len = 0, proberesp_len = 0; u8 *ies = NULL, *proberesp; /* update local storage used for AP recovery */ wil_memdup_ie(&vif->proberesp, &vif->proberesp_len, bcon->probe_resp, bcon->probe_resp_len); wil_memdup_ie(&vif->proberesp_ies, &vif->proberesp_ies_len, bcon->proberesp_ies, bcon->proberesp_ies_len); wil_memdup_ie(&vif->assocresp_ies, &vif->assocresp_ies_len, bcon->assocresp_ies, bcon->assocresp_ies_len); proberesp = _wil_cfg80211_get_proberesp_ies(bcon->probe_resp, bcon->probe_resp_len, &proberesp_len); rc = _wil_cfg80211_merge_extra_ies(proberesp, proberesp_len, bcon->proberesp_ies, bcon->proberesp_ies_len, &ies, &len); if (rc) goto out; rc = wmi_set_ie(vif, WMI_FRAME_PROBE_RESP, len, ies); if (rc) goto out; if (bcon->assocresp_ies) rc = wmi_set_ie(vif, WMI_FRAME_ASSOC_RESP, bcon->assocresp_ies_len, bcon->assocresp_ies); else rc = wmi_set_ie(vif, WMI_FRAME_ASSOC_RESP, len, ies); if (rc) goto out; if (vif->umac_vap) { rc = wil->umac_ops.vap_set_ie(vif->umac_vap, IEEE80211_STYPE_PROBE_RESP, ies, len); if (rc) goto out; if (bcon->assocresp_ies) rc = wil->umac_ops.vap_set_ie(vif->umac_vap, IEEE80211_STYPE_ASSOC_RESP, bcon->assocresp_ies, bcon->assocresp_ies_len); else rc = wil->umac_ops.vap_set_ie(vif->umac_vap, IEEE80211_STYPE_ASSOC_RESP, ies, len); } #if 0 /* to use beacon IE's, remove this #if 0 */ if (rc) goto out; rc = wmi_set_ie(vif, WMI_FRAME_BEACON, bcon->tail_len, bcon->tail); #endif out: kfree(ies); return rc; } static int _wil_cfg80211_start_ap(struct wiphy *wiphy, struct net_device *ndev, const u8 *ssid, size_t ssid_len, u32 privacy, int bi, u8 chan, u8 wmi_edmg_channel, struct cfg80211_beacon_data *bcon, u8 hidden_ssid, u32 pbss) { struct wil6210_priv *wil = wiphy_to_wil(wiphy); struct wil6210_vif *vif = ndev_to_vif(ndev); int rc; struct wireless_dev *wdev = ndev->ieee80211_ptr; u8 wmi_nettype = wil_iftype_nl2wmi(wdev->iftype); u8 is_go = (wdev->iftype == NL80211_IFTYPE_P2P_GO); u16 proberesp_len = 0; u8 *proberesp; bool ft = false; if (pbss) wmi_nettype = WMI_NETTYPE_P2P; wil_dbg_misc(wil, "start_ap: mid=%d, is_go=%d\n", vif->mid, is_go); if (is_go && !pbss) { wil_err(wil, "P2P GO must be in PBSS\n"); return -ENOTSUPP; } wil_set_recovery_state(wil, fw_recovery_idle); proberesp = _wil_cfg80211_get_proberesp_ies( bcon->probe_resp, bcon->probe_resp_len, &proberesp_len); /* check that the probe response IEs has a MDE */ if ((proberesp && proberesp_len > 0 && cfg80211_find_ie(WLAN_EID_MOBILITY_DOMAIN, proberesp, proberesp_len))) ft = true; if (ft) { if (!test_bit(WMI_FW_CAPABILITY_FT_ROAMING, wil->fw_capabilities)) { wil_err(wil, "FW does not support FT roaming\n"); return -ENOTSUPP; } set_bit(wil_vif_ft_roam, vif->status); } mutex_lock(&wil->mutex); if (!wil_has_other_active_ifaces(wil, ndev, true, false)) { __wil_down(wil); rc = __wil_up(wil); if (rc) goto out; } rc = wmi_set_ssid(vif, ssid_len, ssid); if (rc) goto out; rc = _wil_cfg80211_set_ies(vif, bcon); if (rc) goto out; vif->privacy = privacy; vif->channel = chan; vif->wmi_edmg_channel = wmi_edmg_channel; vif->hidden_ssid = hidden_ssid; vif->pbss = pbss; vif->bi = bi; memcpy(vif->ssid, ssid, ssid_len); vif->ssid_len = ssid_len; if (vif->umac_vap) { struct wil_umac_vap_params vap_params; wil->umac_ops.stop_ap(vif->umac_vap); vap_params.channel = chan; vap_params.ssid = ssid; vap_params.ssid_len = ssid_len; vap_params.bi = bi; vap_params.hidden_ssid = hidden_ssid; vap_params.privacy = privacy; vap_params.max_aid = max_assoc_sta; rc = wil->umac_ops.start_ap(vif->umac_vap, &vap_params); if (rc) goto out; } netif_carrier_on(ndev); if (!wil_has_other_active_ifaces(wil, ndev, false, true)) { if (wil->force_edmg_channel) wil6210_bus_request(wil, WIL_11AY_BUS_REQUEST_KBPS); else wil6210_bus_request(wil, WIL_11AD_BUS_REQUEST_KBPS); } rc = wmi_pcp_start(vif, bi, wmi_nettype, chan, wmi_edmg_channel, hidden_ssid, is_go); if (rc) goto err_pcp_start; rc = wil_bcast_init(vif); if (rc) goto err_bcast; if (q_per_sta) /* wake default net queue - used mainly for multicast */ wil_update_cid_net_queues_bh(wil, vif, max_assoc_sta, false); goto out; /* success */ err_bcast: wmi_pcp_stop(vif); err_pcp_start: netif_carrier_off(ndev); if (!wil_has_other_active_ifaces(wil, ndev, false, true)) wil6210_bus_request(wil, WIL_DEFAULT_BUS_REQUEST_KBPS); if (vif->umac_vap) wil->umac_ops.stop_ap(vif->umac_vap); out: mutex_unlock(&wil->mutex); return rc; } void wil_cfg80211_ap_recovery(struct wil6210_priv *wil) { int rc, i; struct wiphy *wiphy = wil_to_wiphy(wil); for (i = 0; i < GET_MAX_VIFS(wil); i++) { struct wil6210_vif *vif = wil->vifs[i]; struct net_device *ndev; struct cfg80211_beacon_data bcon = {}; struct key_params key_params = {}; if (!vif || vif->ssid_len == 0) continue; ndev = vif_to_ndev(vif); bcon.proberesp_ies = vif->proberesp_ies; bcon.assocresp_ies = vif->assocresp_ies; bcon.probe_resp = vif->proberesp; bcon.proberesp_ies_len = vif->proberesp_ies_len; bcon.assocresp_ies_len = vif->assocresp_ies_len; bcon.probe_resp_len = vif->proberesp_len; vif->proberesp = NULL; vif->proberesp_len = 0; vif->proberesp_ies = NULL; vif->proberesp_ies_len = 0; vif->assocresp_ies = NULL; vif->assocresp_ies_len = 0; wil_info(wil, "AP (vif %d) recovery: privacy %d, bi %d, channel %d, hidden %d, pbss %d\n", i, vif->privacy, vif->bi, vif->channel, vif->hidden_ssid, vif->pbss); wil_hex_dump_misc("SSID ", DUMP_PREFIX_OFFSET, 16, 1, vif->ssid, vif->ssid_len, true); rc = _wil_cfg80211_start_ap(wiphy, ndev, vif->ssid, vif->ssid_len, vif->privacy, vif->bi, vif->channel, vif->wmi_edmg_channel, &bcon, vif->hidden_ssid, vif->pbss); kfree(bcon.probe_resp); kfree(bcon.proberesp_ies); kfree(bcon.assocresp_ies); if (rc) { wil_err(wil, "vif %d recovery failed (%d)\n", i, rc); continue; } if (!vif->privacy || vif->gtk_len == 0) continue; key_params.key = vif->gtk; key_params.key_len = vif->gtk_len; key_params.seq_len = IEEE80211_GCMP_PN_LEN; rc = wil_cfg80211_add_key(wiphy, ndev, vif->gtk_index, false, NULL, &key_params); if (rc) wil_err(wil, "vif %d recovery add key failed (%d)\n", i, rc); } } static int wil_cfg80211_change_beacon(struct wiphy *wiphy, struct net_device *ndev, struct cfg80211_beacon_data *bcon) { struct wil6210_priv *wil = wiphy_to_wil(wiphy); struct wireless_dev *wdev = ndev->ieee80211_ptr; struct wil6210_vif *vif = ndev_to_vif(ndev); int rc; u32 privacy = 0; u16 len = 0, proberesp_len = 0; u8 *ies = NULL, *proberesp; bool ssid_changed = false; const u8 *ie; wil_dbg_misc(wil, "change_beacon, mid=%d\n", vif->mid); wil_print_bcon_data(bcon); if (bcon->tail && cfg80211_find_ie(WLAN_EID_RSN, bcon->tail, bcon->tail_len)) privacy = 1; memcpy(vif->ssid, wdev->ssid, wdev->ssid_len); vif->ssid_len = wdev->ssid_len; /* extract updated SSID from the probe response IE */ proberesp = _wil_cfg80211_get_proberesp_ies( bcon->probe_resp, bcon->probe_resp_len, &proberesp_len); rc = _wil_cfg80211_merge_extra_ies(proberesp, proberesp_len, bcon->proberesp_ies, bcon->proberesp_ies_len, &ies, &len); if (!rc) { ie = cfg80211_find_ie(WLAN_EID_SSID, ies, len); if (ie && (ie[1] <= IEEE80211_MAX_SSID_LEN)) { if ((ie[1] != vif->ssid_len) || memcmp(&ie[2], vif->ssid, ie[1])) { memcpy(vif->ssid, &ie[2], ie[1]); vif->ssid_len = ie[1]; ssid_changed = true; } } } /* in case privacy has changed, need to restart the AP */ if (vif->privacy != privacy) { wil_dbg_misc(wil, "privacy changed %d=>%d. Restarting AP\n", vif->privacy, privacy); rc = _wil_cfg80211_start_ap(wiphy, ndev, vif->ssid, vif->ssid_len, privacy, wdev->beacon_interval, vif->channel, vif->wmi_edmg_channel, bcon, vif->hidden_ssid, vif->pbss); } else { if (ssid_changed) { rc = wmi_set_ssid(vif, vif->ssid_len, vif->ssid); if (rc) goto out; } rc = _wil_cfg80211_set_ies(vif, bcon); } if (ssid_changed) { wdev->ssid_len = vif->ssid_len; memcpy(wdev->ssid, vif->ssid, vif->ssid_len); } out: return rc; } static int wil_cfg80211_start_ap(struct wiphy *wiphy, struct net_device *ndev, struct cfg80211_ap_settings *info) { int rc; struct wil6210_priv *wil = wiphy_to_wil(wiphy); struct ieee80211_channel *channel = info->chandef.chan; struct cfg80211_beacon_data *bcon = &info->beacon; struct cfg80211_crypto_settings *crypto = &info->crypto; u8 wmi_edmg_channel; u8 hidden_ssid; wil_dbg_misc(wil, "start_ap\n"); rc = wil_get_wmi_edmg_channel(wil, info->chandef.edmg.bw_config, info->chandef.edmg.channels, &wmi_edmg_channel); if (rc < 0) return rc; if (!channel) { wil_err(wil, "AP: No channel???\n"); return -EINVAL; } switch (info->hidden_ssid) { case NL80211_HIDDEN_SSID_NOT_IN_USE: hidden_ssid = WMI_HIDDEN_SSID_DISABLED; break; case NL80211_HIDDEN_SSID_ZERO_LEN: hidden_ssid = WMI_HIDDEN_SSID_SEND_EMPTY; break; case NL80211_HIDDEN_SSID_ZERO_CONTENTS: hidden_ssid = WMI_HIDDEN_SSID_CLEAR; break; default: wil_err(wil, "AP: Invalid hidden SSID %d\n", info->hidden_ssid); return -EOPNOTSUPP; } wil_dbg_misc(wil, "AP on Channel %d %d MHz, %s\n", channel->hw_value, channel->center_freq, info->privacy ? "secure" : "open"); wil_dbg_misc(wil, "Privacy: %d auth_type %d\n", info->privacy, info->auth_type); wil_dbg_misc(wil, "Hidden SSID mode: %d\n", info->hidden_ssid); wil_dbg_misc(wil, "BI %d DTIM %d\n", info->beacon_interval, info->dtim_period); wil_dbg_misc(wil, "PBSS %d\n", info->pbss); wil_hex_dump_misc("SSID ", DUMP_PREFIX_OFFSET, 16, 1, info->ssid, info->ssid_len, true); wil_print_bcon_data(bcon); wil_print_crypto(wil, crypto); rc = _wil_cfg80211_start_ap(wiphy, ndev, info->ssid, info->ssid_len, info->privacy, info->beacon_interval, channel->hw_value, wmi_edmg_channel, bcon, hidden_ssid, info->pbss); return rc; } static int wil_cfg80211_stop_ap(struct wiphy *wiphy, struct net_device *ndev) { struct wil6210_priv *wil = wiphy_to_wil(wiphy); struct wil6210_vif *vif = ndev_to_vif(ndev); bool last; wil_dbg_misc(wil, "stop_ap, mid=%d\n", vif->mid); netif_carrier_off(ndev); if (vif->umac_vap) wil->umac_ops.stop_ap(vif->umac_vap); last = !wil_has_other_active_ifaces(wil, ndev, false, true); if (last) { wil6210_bus_request(wil, WIL_DEFAULT_BUS_REQUEST_KBPS); wil_set_recovery_state(wil, fw_recovery_idle); set_bit(wil_status_resetting, wil->status); } mutex_lock(&wil->mutex); wmi_pcp_stop(vif); clear_bit(wil_vif_ft_roam, vif->status); vif->ssid_len = 0; wil_memdup_ie(&vif->proberesp, &vif->proberesp_len, NULL, 0); wil_memdup_ie(&vif->proberesp_ies, &vif->proberesp_ies_len, NULL, 0); wil_memdup_ie(&vif->assocresp_ies, &vif->assocresp_ies_len, NULL, 0); memset(vif->gtk, 0, WMI_MAX_KEY_LEN); vif->gtk_len = 0; if (q_per_sta) /* stop default net queue - used mainly for multicast */ wil_update_cid_net_queues_bh(wil, vif, max_assoc_sta, true); if (last) __wil_down(wil); else wil_bcast_fini(vif); mutex_unlock(&wil->mutex); return 0; } static int wil_cfg80211_add_station(struct wiphy *wiphy, struct net_device *dev, const u8 *mac, struct station_parameters *params) { struct wil6210_vif *vif = ndev_to_vif(dev); struct wil6210_priv *wil = wiphy_to_wil(wiphy); wil_dbg_misc(wil, "add station %pM aid %d mid %d mask 0x%x set 0x%x\n", mac, params->aid, vif->mid, params->sta_flags_mask, params->sta_flags_set); if (!disable_ap_sme) { wil_err(wil, "not supported with AP SME enabled\n"); return -EOPNOTSUPP; } if (params->aid > WIL_MAX_DMG_AID) { wil_err(wil, "invalid aid\n"); return -EINVAL; } return wmi_new_sta(vif, mac, params->aid); } static int wil_cfg80211_del_station(struct wiphy *wiphy, struct net_device *dev, struct station_del_parameters *params) { struct wil6210_vif *vif = ndev_to_vif(dev); struct wil6210_priv *wil = wiphy_to_wil(wiphy); wil_dbg_misc(wil, "del_station: %pM, reason=%d mid=%d\n", params->mac, params->reason_code, vif->mid); mutex_lock(&wil->mutex); wil6210_disconnect(vif, params->mac, params->reason_code); mutex_unlock(&wil->mutex); return 0; } static int wil_cfg80211_change_station(struct wiphy *wiphy, struct net_device *dev, const u8 *mac, struct station_parameters *params) { struct wil6210_vif *vif = ndev_to_vif(dev); struct wil6210_priv *wil = wiphy_to_wil(wiphy); int authorize; int cid, i; struct wil_ring_tx_data *txdata = NULL; wil_dbg_misc(wil, "change station %pM mask 0x%x set 0x%x mid %d\n", mac, params->sta_flags_mask, params->sta_flags_set, vif->mid); if (!disable_ap_sme) { wil_dbg_misc(wil, "not supported with AP SME enabled\n"); return -EOPNOTSUPP; } if (!(params->sta_flags_mask & BIT(NL80211_STA_FLAG_AUTHORIZED))) return 0; cid = wil_find_cid(wil, vif->mid, mac); if (cid < 0) { wil_err(wil, "station not found\n"); return -ENOLINK; } for (i = 0; i < ARRAY_SIZE(wil->ring2cid_tid); i++) if (wil->ring2cid_tid[i][0] == cid) { txdata = &wil->ring_tx_data[i]; break; } if (!txdata) { wil_err(wil, "ring data not found\n"); return -ENOLINK; } authorize = params->sta_flags_set & BIT(NL80211_STA_FLAG_AUTHORIZED); txdata->dot1x_open = authorize ? 1 : 0; wil_dbg_misc(wil, "cid %d ring %d authorize %d\n", cid, i, txdata->dot1x_open); return 0; } /* probe_client handling */ static void wil_probe_client_handle(struct wil6210_priv *wil, struct wil6210_vif *vif, struct wil_probe_client_req *req) { struct net_device *ndev = vif_to_ndev(vif); struct wil_sta_info *sta = &wil->sta[req->cid]; /* assume STA is alive if it is still connected, * else FW will disconnect it */ bool alive = (sta->status == wil_sta_connected); cfg80211_probe_status(ndev, sta->addr, req->cookie, alive, GFP_KERNEL); } static struct list_head *next_probe_client(struct wil6210_vif *vif) { struct list_head *ret = NULL; mutex_lock(&vif->probe_client_mutex); if (!list_empty(&vif->probe_client_pending)) { ret = vif->probe_client_pending.next; list_del(ret); } mutex_unlock(&vif->probe_client_mutex); return ret; } void wil_probe_client_worker(struct work_struct *work) { struct wil6210_vif *vif = container_of(work, struct wil6210_vif, probe_client_worker); struct wil6210_priv *wil = vif_to_wil(vif); struct wil_probe_client_req *req; struct list_head *lh; while ((lh = next_probe_client(vif)) != NULL) { req = list_entry(lh, struct wil_probe_client_req, list); wil_probe_client_handle(wil, vif, req); kfree(req); } } void wil_probe_client_flush(struct wil6210_vif *vif) { struct wil_probe_client_req *req, *t; struct wil6210_priv *wil = vif_to_wil(vif); wil_dbg_misc(wil, "probe_client_flush\n"); mutex_lock(&vif->probe_client_mutex); list_for_each_entry_safe(req, t, &vif->probe_client_pending, list) { list_del(&req->list); kfree(req); } mutex_unlock(&vif->probe_client_mutex); } static int wil_cfg80211_probe_client(struct wiphy *wiphy, struct net_device *dev, const u8 *peer, u64 *cookie) { struct wil6210_priv *wil = wiphy_to_wil(wiphy); struct wil6210_vif *vif = ndev_to_vif(dev); struct wil_probe_client_req *req; int cid = wil_find_cid(wil, vif->mid, peer); wil_dbg_misc(wil, "probe_client: %pM => CID %d MID %d\n", peer, cid, vif->mid); if (cid < 0) return -ENOLINK; req = kzalloc(sizeof(*req), GFP_KERNEL); if (!req) return -ENOMEM; req->cid = cid; req->cookie = cid; mutex_lock(&vif->probe_client_mutex); list_add_tail(&req->list, &vif->probe_client_pending); mutex_unlock(&vif->probe_client_mutex); *cookie = req->cookie; queue_work(wil->wq_service, &vif->probe_client_worker); return 0; } static int wil_cfg80211_change_bss(struct wiphy *wiphy, struct net_device *dev, struct bss_parameters *params) { struct wil6210_priv *wil = wiphy_to_wil(wiphy); struct wil6210_vif *vif = ndev_to_vif(dev); if (params->ap_isolate >= 0) { wil_dbg_misc(wil, "change_bss: ap_isolate MID %d, %d => %d\n", vif->mid, vif->ap_isolate, params->ap_isolate); vif->ap_isolate = params->ap_isolate; } return 0; } static int wil_cfg80211_set_power_mgmt(struct wiphy *wiphy, struct net_device *dev, bool enabled, int timeout) { struct wil6210_priv *wil = wiphy_to_wil(wiphy); enum wmi_ps_profile_type ps_profile; if (wil->vr_profile != WMI_VR_PROFILE_DISABLED) /* disallow in VR mode */ return -EINVAL; wil_dbg_misc(wil, "enabled=%d, timeout=%d\n", enabled, timeout); if (enabled) ps_profile = WMI_PS_PROFILE_TYPE_DEFAULT; else ps_profile = WMI_PS_PROFILE_TYPE_PS_DISABLED; return wil_ps_update(wil, ps_profile); } static int wil_cfg80211_suspend(struct wiphy *wiphy, struct cfg80211_wowlan *wow) { struct wil6210_priv *wil = wiphy_to_wil(wiphy); int rc; /* Setting the wakeup trigger based on wow is TBD */ if (test_bit(wil_status_suspended, wil->status)) { wil_dbg_pm(wil, "trying to suspend while suspended\n"); return 0; } rc = wil_can_suspend(wil, false); if (rc) goto out; wil_dbg_pm(wil, "suspending\n"); mutex_lock(&wil->mutex); mutex_lock(&wil->vif_mutex); wil_ftm_stop_operations(wil); wil_p2p_stop_radio_operations(wil); wil_abort_scan_all_vifs(wil, true); mutex_unlock(&wil->vif_mutex); mutex_unlock(&wil->mutex); out: return rc; } static int wil_cfg80211_resume(struct wiphy *wiphy) { struct wil6210_priv *wil = wiphy_to_wil(wiphy); wil_dbg_pm(wil, "resuming\n"); return 0; } static int wil_cfg80211_sched_scan_start(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_sched_scan_request *request) { struct wil6210_priv *wil = wiphy_to_wil(wiphy); struct wil6210_vif *vif = ndev_to_vif(dev); int i, rc; if (vif->mid != 0) return -EOPNOTSUPP; wil_dbg_misc(wil, "sched scan start: n_ssids %d, ie_len %zu, flags 0x%x\n", request->n_ssids, request->ie_len, request->flags); for (i = 0; i < request->n_ssids; i++) { wil_dbg_misc(wil, "SSID[%d]:", i); wil_hex_dump_misc("SSID ", DUMP_PREFIX_OFFSET, 16, 1, request->ssids[i].ssid, request->ssids[i].ssid_len, true); } wil_dbg_misc(wil, "channels:"); for (i = 0; i < request->n_channels; i++) wil_dbg_misc(wil, " %d%s", request->channels[i]->hw_value, i == request->n_channels - 1 ? "\n" : ""); wil_dbg_misc(wil, "n_match_sets %d, min_rssi_thold %d, delay %d\n", request->n_match_sets, request->min_rssi_thold, request->delay); for (i = 0; i < request->n_match_sets; i++) { struct cfg80211_match_set *ms = &request->match_sets[i]; wil_dbg_misc(wil, "MATCHSET[%d]: rssi_thold %d\n", i, ms->rssi_thold); wil_hex_dump_misc("SSID ", DUMP_PREFIX_OFFSET, 16, 1, ms->ssid.ssid, ms->ssid.ssid_len, true); } wil_dbg_misc(wil, "n_scan_plans %d\n", request->n_scan_plans); for (i = 0; i < request->n_scan_plans; i++) { struct cfg80211_sched_scan_plan *sp = &request->scan_plans[i]; wil_dbg_misc(wil, "SCAN PLAN[%d]: interval %d iterations %d\n", i, sp->interval, sp->iterations); } rc = wmi_set_ie(vif, WMI_FRAME_PROBE_REQ, request->ie_len, request->ie); if (rc) return rc; return wmi_start_sched_scan(wil, request); } static int wil_cfg80211_sched_scan_stop(struct wiphy *wiphy, struct net_device *dev) { struct wil6210_priv *wil = wiphy_to_wil(wiphy); struct wil6210_vif *vif = ndev_to_vif(dev); int rc; if (vif->mid != 0) return -EOPNOTSUPP; rc = wmi_stop_sched_scan(wil); /* device would return error if it thinks PNO is already stopped. * ignore the return code so user space and driver gets back in-sync */ wil_dbg_misc(wil, "sched scan stopped (%d)\n", rc); return 0; } static int wil_cfg80211_update_ft_ies(struct wiphy *wiphy, struct net_device *dev, struct cfg80211_update_ft_ies_params *ftie) { struct wil6210_priv *wil = wiphy_to_wil(wiphy); struct wil6210_vif *vif = ndev_to_vif(dev); struct cfg80211_bss *bss; struct wmi_ft_reassoc_cmd reassoc; int rc = 0; wil_dbg_misc(wil, "update ft ies, mid=%d\n", vif->mid); wil_hex_dump_misc("FT IE ", DUMP_PREFIX_OFFSET, 16, 1, ftie->ie, ftie->ie_len, true); if (!test_bit(WMI_FW_CAPABILITY_FT_ROAMING, wil->fw_capabilities)) { wil_err(wil, "FW does not support FT roaming\n"); return -EOPNOTSUPP; } rc = wmi_update_ft_ies(vif, ftie->ie_len, ftie->ie); if (rc) return rc; if (!test_bit(wil_vif_ft_roam, vif->status)) /* vif is not roaming */ return 0; /* wil_vif_ft_roam is set. wil_cfg80211_update_ft_ies is used as * a trigger for reassoc */ bss = vif->bss; if (!bss) { wil_err(wil, "FT: bss is NULL\n"); return -EINVAL; } memset(&reassoc, 0, sizeof(reassoc)); ether_addr_copy(reassoc.bssid, bss->bssid); rc = wmi_send(wil, WMI_FT_REASSOC_CMDID, vif->mid, &reassoc, sizeof(reassoc)); if (rc) wil_err(wil, "FT: reassoc failed (%d)\n", rc); return rc; } static void wil_get_brd_reg_suffix(struct wil6210_priv *wil, const u8 *new_regdomain, char *brd_reg_suffix, size_t len) { int i; struct wil_regd_2_brd_suffix *entry; for (i = 0; i < ARRAY_SIZE(wil_regd_2_brd_suffix_map); i++) { entry = &wil_regd_2_brd_suffix_map[i]; if (!memcmp(entry->regdomain, new_regdomain, 2)) { strlcpy(brd_reg_suffix, entry->brd_suffix, len); return; } } /* regdomain not found in our map, set suffix to none */ brd_reg_suffix[0] = '\0'; } static int wil_switch_board_file(struct wil6210_priv *wil, const u8 *new_regdomain) { int rc = 0; char brd_reg_suffix[WIL_BRD_SUFFIX_LEN]; if (!country_specific_board_file) return 0; wil_get_brd_reg_suffix(wil, new_regdomain, brd_reg_suffix, sizeof(brd_reg_suffix)); if (!strcmp(wil->board_file_reg_suffix, brd_reg_suffix)) return 0; wil_info(wil, "switch board file suffix '%s' => '%s'\n", wil->board_file_reg_suffix, brd_reg_suffix); strlcpy(wil->board_file_reg_suffix, brd_reg_suffix, sizeof(wil->board_file_reg_suffix)); /* need to switch board file - reset the device */ mutex_lock(&wil->mutex); if (!wil_has_active_ifaces(wil, true, false) || wil_is_recovery_blocked(wil)) /* new board file will be used in next FW load */ goto out; __wil_down(wil); rc = __wil_up(wil); out: mutex_unlock(&wil->mutex); return rc; } static void wil_cfg80211_reg_notify(struct wiphy *wiphy, struct regulatory_request *request) { struct wil6210_priv *wil = wiphy_to_wil(wiphy); int rc; wil_info(wil, "cfg reg_notify %c%c%s%s initiator %d hint_type %d\n", request->alpha2[0], request->alpha2[1], request->intersect ? " intersect" : "", request->processed ? " processed" : "", request->initiator, request->user_reg_hint_type); if (memcmp(wil->regdomain, request->alpha2, 2) == 0) /* reg domain did not change */ return; rc = wil_switch_board_file(wil, request->alpha2); if (rc) wil_err(wil, "switch board file failed %d\n", rc); memcpy(wil->regdomain, request->alpha2, 2); } static const struct cfg80211_ops wil_cfg80211_ops = { .add_virtual_intf = wil_cfg80211_add_iface, .del_virtual_intf = wil_cfg80211_del_iface, .scan = wil_cfg80211_scan, .abort_scan = wil_cfg80211_abort_scan, .connect = wil_cfg80211_connect, .disconnect = wil_cfg80211_disconnect, .set_wiphy_params = wil_cfg80211_set_wiphy_params, .change_virtual_intf = wil_cfg80211_change_iface, .get_station = wil_cfg80211_get_station, .dump_station = wil_cfg80211_dump_station, .remain_on_channel = wil_remain_on_channel, .cancel_remain_on_channel = wil_cancel_remain_on_channel, .mgmt_tx = wil_cfg80211_mgmt_tx, .set_monitor_channel = wil_cfg80211_set_channel, .add_key = wil_cfg80211_add_key, .del_key = wil_cfg80211_del_key, .set_default_key = wil_cfg80211_set_default_key, /* AP mode */ .change_beacon = wil_cfg80211_change_beacon, .start_ap = wil_cfg80211_start_ap, .stop_ap = wil_cfg80211_stop_ap, .add_station = wil_cfg80211_add_station, .del_station = wil_cfg80211_del_station, .change_station = wil_cfg80211_change_station, .probe_client = wil_cfg80211_probe_client, .change_bss = wil_cfg80211_change_bss, /* P2P device */ .start_p2p_device = wil_cfg80211_start_p2p_device, .stop_p2p_device = wil_cfg80211_stop_p2p_device, .set_power_mgmt = wil_cfg80211_set_power_mgmt, .suspend = wil_cfg80211_suspend, .resume = wil_cfg80211_resume, .sched_scan_start = wil_cfg80211_sched_scan_start, .sched_scan_stop = wil_cfg80211_sched_scan_stop, .update_ft_ies = wil_cfg80211_update_ft_ies, }; void wil_wiphy_init(struct wil6210_priv *wil) { struct wiphy *wiphy = wil_to_wiphy(wil); wiphy->max_scan_ssids = 1; wiphy->max_scan_ie_len = WMI_MAX_IE_LEN; wiphy->max_remain_on_channel_duration = WIL_MAX_ROC_DURATION_MS; wiphy->max_num_pmkids = 0 /* TODO: */; wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) | BIT(NL80211_IFTYPE_AP) | BIT(NL80211_IFTYPE_P2P_CLIENT) | BIT(NL80211_IFTYPE_P2P_GO) | BIT(NL80211_IFTYPE_P2P_DEVICE) | BIT(NL80211_IFTYPE_MONITOR); wiphy->flags |= WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL | WIPHY_FLAG_AP_PROBE_RESP_OFFLOAD | WIPHY_FLAG_PS_ON_BY_DEFAULT; if (!disable_ap_sme) wiphy->flags |= WIPHY_FLAG_HAVE_AP_SME; dev_dbg(wiphy_dev(wiphy), "%s : flags = 0x%08x\n", __func__, wiphy->flags); wiphy->probe_resp_offload = NL80211_PROBE_RESP_OFFLOAD_SUPPORT_WPS | NL80211_PROBE_RESP_OFFLOAD_SUPPORT_WPS2 | NL80211_PROBE_RESP_OFFLOAD_SUPPORT_P2P; wiphy->bands[IEEE80211_BAND_60GHZ] = &wil_band_60ghz; /* may change after reading FW capabilities */ wiphy->signal_type = CFG80211_SIGNAL_TYPE_UNSPEC; wiphy->cipher_suites = wil_cipher_suites; wiphy->n_cipher_suites = ARRAY_SIZE(wil_cipher_suites); wiphy->mgmt_stypes = wil_mgmt_stypes; wiphy->features |= NL80211_FEATURE_SK_TX_STATUS; wiphy->reg_notifier = wil_cfg80211_reg_notify; wiphy->n_vendor_commands = ARRAY_SIZE(wil_nl80211_vendor_commands); wiphy->vendor_commands = wil_nl80211_vendor_commands; wiphy->vendor_events = wil_nl80211_vendor_events; wiphy->n_vendor_events = ARRAY_SIZE(wil_nl80211_vendor_events); if (ignore_reg_hints) { wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS; wiphy->regulatory_flags |= REGULATORY_COUNTRY_IE_IGNORE; } #ifdef CONFIG_PM wiphy->wowlan = &wil_wowlan_support; #endif } int wil_cfg80211_iface_combinations_from_fw( struct wil6210_priv *wil, const struct wil_fw_record_concurrency *conc) { struct wiphy *wiphy = wil_to_wiphy(wil); u32 total_limits = 0; u16 n_combos; const struct wil_fw_concurrency_combo *combo; const struct wil_fw_concurrency_limit *limit; struct ieee80211_iface_combination *iface_combinations; struct ieee80211_iface_limit *iface_limit; int i, j; if (wiphy->iface_combinations) { wil_dbg_misc(wil, "iface_combinations already set, skipping\n"); return 0; } combo = conc->combos; n_combos = le16_to_cpu(conc->n_combos); for (i = 0; i < n_combos; i++) { total_limits += combo->n_limits; limit = combo->limits + combo->n_limits; combo = (struct wil_fw_concurrency_combo *)limit; } iface_combinations = kzalloc(n_combos * sizeof(struct ieee80211_iface_combination) + total_limits * sizeof(struct ieee80211_iface_limit), GFP_KERNEL); if (!iface_combinations) return -ENOMEM; iface_limit = (struct ieee80211_iface_limit *)(iface_combinations + n_combos); combo = conc->combos; for (i = 0; i < n_combos; i++) { iface_combinations[i].max_interfaces = combo->max_interfaces; iface_combinations[i].num_different_channels = combo->n_diff_channels; iface_combinations[i].beacon_int_infra_match = combo->same_bi; iface_combinations[i].n_limits = combo->n_limits; wil_dbg_misc(wil, "iface_combination %d: max_if %d, num_ch %d, bi_match %d\n", i, iface_combinations[i].max_interfaces, iface_combinations[i].num_different_channels, iface_combinations[i].beacon_int_infra_match); limit = combo->limits; for (j = 0; j < combo->n_limits; j++) { iface_limit[j].max = le16_to_cpu(limit[j].max); iface_limit[j].types = le16_to_cpu(limit[j].types); wil_dbg_misc(wil, "limit %d: max %d types 0x%x\n", j, iface_limit[j].max, iface_limit[j].types); } iface_combinations[i].limits = iface_limit; iface_limit += combo->n_limits; limit += combo->n_limits; combo = (struct wil_fw_concurrency_combo *)limit; } wil_dbg_misc(wil, "multiple VIFs supported, n_mids %d\n", conc->n_mids); wil->max_vifs = conc->n_mids + 1; /* including main interface */ if (wil->max_vifs > WIL_MAX_VIFS) { wil_info(wil, "limited number of VIFs supported(%d, FW %d)\n", WIL_MAX_VIFS, wil->max_vifs); wil->max_vifs = WIL_MAX_VIFS; } wiphy->n_iface_combinations = n_combos; wiphy->iface_combinations = iface_combinations; return 0; } struct wil6210_priv *wil_cfg80211_init(struct device *dev) { struct wiphy *wiphy; struct wil6210_priv *wil; struct ieee80211_channel *ch; dev_dbg(dev, "%s()\n", __func__); /* Note: the wireless_dev structure is no longer allocated here. * Instead, it is allocated as part of the net_device structure * for main interface and each VIF. */ wiphy = wiphy_new(&wil_cfg80211_ops, sizeof(struct wil6210_priv)); if (!wiphy) return ERR_PTR(-ENOMEM); set_wiphy_dev(wiphy, dev); wil = wiphy_to_wil(wiphy); wil->wiphy = wiphy; /* default monitor channel */ ch = wil_band_60ghz.channels; cfg80211_chandef_create(&wil->monitor_chandef, ch, NL80211_CHAN_NO_HT); return wil; } void wil_cfg80211_deinit(struct wil6210_priv *wil) { struct wiphy *wiphy = wil_to_wiphy(wil); dev_dbg(wil_to_dev(wil), "%s()\n", __func__); if (!wiphy) return; kfree(wiphy->iface_combinations); wiphy->iface_combinations = NULL; wiphy_free(wiphy); /* do not access wil6210_priv after returning from here */ } void wil_p2p_wdev_free(struct wil6210_priv *wil) { struct wireless_dev *p2p_wdev; mutex_lock(&wil->vif_mutex); p2p_wdev = wil->p2p_wdev; wil->p2p_wdev = NULL; wil->radio_wdev = wil->main_ndev->ieee80211_ptr; mutex_unlock(&wil->vif_mutex); if (p2p_wdev) { cfg80211_unregister_wdev(p2p_wdev); kfree(p2p_wdev); } } static int wil_start_acs_survey(struct wil6210_priv *wil, uint dwell_time, struct ieee80211_channel *channels, u8 num_channels) { struct wil6210_vif *vif = ndev_to_vif(wil->main_ndev); int rc, i; struct { struct wmi_start_scan_cmd cmd; struct { u8 channel; u8 reserved; } channel_list[4]; } __packed scan_cmd = { .cmd = { .scan_type = WMI_PASSIVE_SCAN, .dwell_time = cpu_to_le32(dwell_time), .num_channels = min_t(u8, num_channels, wil_num_supported_channels(wil)), }, }; wil->survey_ready = false; memset(&wil->survey_reply, 0, sizeof(wil->survey_reply)); for (i = 0; i < scan_cmd.cmd.num_channels; i++) { u8 ch = channels[i].hw_value; if (ch == 0) { wil_err(wil, "ACS requested for wrong channel\n"); return -EINVAL; } wil_dbg_misc(wil, "ACS channel %d : %d MHz\n", ch, channels[i].center_freq); scan_cmd.channel_list[i].channel = ch - 1; } /* send scan command with the requested channel and wait * for results */ rc = wmi_send(wil, WMI_START_SCAN_CMDID, vif->mid, &scan_cmd, sizeof(scan_cmd)); if (rc) { wil_err(wil, "ACS passive Scan failed (0x%08x)\n", rc); return rc; } if (wait_event_interruptible_timeout( wil->wq, wil->survey_ready, msecs_to_jiffies(WMI_SURVEY_TIMEOUT_MS)) < 0) { wil_err(wil, "ACS survey interrupted\n"); return -ERESTARTSYS; } if (!wil->survey_ready) { wil_err(wil, "ACS survey time out\n"); return -ETIME; } if (wil->survey_reply.evt.status != WMI_SCAN_SUCCESS) { wil_err(wil, "ACS survey failed, status (%d)\n", wil->survey_reply.evt.status); return -EINVAL; } /* The results in survey_reply */ wil_dbg_misc(wil, "ACS scan success, filled mask: 0x%08X\n", le16_to_cpu(wil->survey_reply.evt.filled)); return 0; } static int get_edmg_intersection(struct wil6210_priv *wil, u8 primary_channel) { int i, contiguous = 0; u8 num_channels = wil->survey_reply.evt.num_scanned_channels; u8 channel; for (i = 0; i < num_channels; i++) { channel = wil->survey_reply.ch_info[i].channel; if (channel == primary_channel - 1 || channel == primary_channel + 1) contiguous++; } return contiguous; } static int select_edmg_channel(struct wil6210_priv *wil, u8 best_channel, u64 *acs_calc_channel) { int i, edmg_channel; u8 num_channels = wil->survey_reply.evt.num_scanned_channels; /* Select the best EDMG channel given the selected channel */ edmg_channel = (WIL_EDMG_CHANNEL_9 + best_channel); switch (get_edmg_intersection(wil, best_channel)) { case 0: edmg_channel = 0; break; case 1: /* Check if the contiguous channel is on the left */ if (best_channel == 0) break; for (i = 0; i < num_channels; i++) { if (wil->survey_reply.ch_info[i].channel == best_channel - 1) { edmg_channel--; break; } } break; case 2: if (best_channel == 0 || best_channel >= WIL_MAX_SINGLE_CHANNEL) break; if (acs_calc_channel[best_channel - 1] < acs_calc_channel[best_channel + 1]) edmg_channel--; break; } return edmg_channel; } static int wil_acs_calc_channel(struct wil6210_priv *wil, int edmg_enabled, u8 *channel, u8 *edmg_channel) { u8 i, best_channel = ACS_DEFAULT_BEST_CHANNEL - 1; struct scan_acs_info *ch; u64 dwell_time = le32_to_cpu(wil->survey_reply.evt.dwell_time); u16 filled = le16_to_cpu(wil->survey_reply.evt.filled); u8 num_channels = wil->survey_reply.evt.num_scanned_channels; u64 busy_time, tx_time; u64 min_i_ch = (u64)-1, cur_i_ch; u8 p_min = 0, ch_noise; u64 acs_calc_channel[WIL_MAX_SINGLE_CHANNEL]; wil_dbg_misc(wil, "acs_calc_channel: filled info: 0x%04X, for %u channels\n", filled, num_channels); if (!num_channels) { wil_err(wil, "received results with no channel info\n"); return -EINVAL; } /* find P_min */ if (filled & WMI_ACS_INFO_BITMASK_NOISE) { p_min = wil->survey_reply.ch_info[0].noise; for (i = 1; i < num_channels; i++) p_min = min(p_min, wil->survey_reply.ch_info[i].noise); } wil_dbg_misc(wil, "acs_calc_channel: p_min is %u\n", p_min); /* Choosing channel according to the following formula: * 16 bit fixed point math * I_ch = { [ (T_busy - T_tx) << 16 ] / * (T_dwell - T_tx) } * 2^(P_rx - P_min) */ for (i = 0; i < num_channels; i++) { ch = &wil->survey_reply.ch_info[i]; if (ch->channel > 3) { wil_err(wil, "invalid channel number %d\n", ch->channel + 1); continue; } busy_time = filled & WMI_ACS_INFO_BITMASK_BUSY_TIME ? le16_to_cpu(ch->busy_time) : 0; tx_time = filled & WMI_ACS_INFO_BITMASK_TX_TIME ? le16_to_cpu(ch->tx_time) : 0; ch_noise = filled & WMI_ACS_INFO_BITMASK_NOISE ? ch->noise : 0; wil_dbg_misc(wil, "acs_calc_channel: Ch[%d]: busy %llu, tx %llu, noise %u, dwell %llu\n", ch->channel + 1, busy_time, tx_time, ch_noise, dwell_time); if (dwell_time == tx_time) { wil_err(wil, "Ch[%d] dwell_time == tx_time: %llu\n", ch->channel + 1, dwell_time); continue; } cur_i_ch = (busy_time - tx_time) << 16; do_div(cur_i_ch, ((dwell_time - tx_time) << (ch_noise - p_min))); /* Apply channel priority */ cur_i_ch = (cur_i_ch + ACS_CH_NOISE_INIT_VAL) * acs_ch_weight[ch->channel]; do_div(cur_i_ch, 100); wil_dbg_misc(wil, "acs_calc_channel: Ch[%d] w %u, I_ch %llu\n", ch->channel + 1, acs_ch_weight[ch->channel], cur_i_ch); acs_calc_channel[ch->channel] = cur_i_ch; if (i == 0 || cur_i_ch < min_i_ch) { min_i_ch = cur_i_ch; best_channel = ch->channel; } } *channel = best_channel; /* Select the best EDMG channel given the selected channel */ if (edmg_enabled) *edmg_channel = select_edmg_channel(wil, best_channel, acs_calc_channel); wil_dbg_misc(wil, "acs_calc_channel: best channel %d with I_ch of %llu edmg channel %d\n", best_channel + 1, min_i_ch, *edmg_channel); return 0; } static void wil_acs_report_channel(struct wil6210_priv *wil, int edmg_enabled) { struct sk_buff *vendor_event; int ret_val; struct nlattr *nla; u8 channel = 0; u8 edmg_channel = 0; if (wil_acs_calc_channel(wil, edmg_enabled, &channel, &edmg_channel)) { wil_err(wil, "wil_acs_calc_channel failed\n"); return; } vendor_event = cfg80211_vendor_event_alloc( wil_to_wiphy(wil), NULL, 2 * sizeof(u8) + 4 + NLMSG_HDRLEN, QCA_NL80211_VENDOR_EVENT_DO_ACS_INDEX, GFP_KERNEL); if (!vendor_event) { wil_err(wil, "cfg80211_vendor_event_alloc failed\n"); return; } /* Send the IF INDEX to differentiate the ACS event for each interface * TODO: To be update once cfg80211 APIs are updated to accept if_index */ nla_nest_cancel(vendor_event, ((void **)vendor_event->cb)[2]); /* Needs adaptation for multiple VIFs */ ret_val = nla_put_u32(vendor_event, NL80211_ATTR_IFINDEX, wil->main_ndev->ifindex); if (ret_val) { wil_err(wil, "NL80211_ATTR_IFINDEX put fail\n"); kfree_skb(vendor_event); return; } nla = nla_nest_start(vendor_event, NL80211_ATTR_VENDOR_DATA); ((void **)vendor_event->cb)[2] = nla; /* channel indices used by fw are zero based and those used upper * layers are 1 based: must add 1 */ ret_val = nla_put_u8(vendor_event, QCA_WLAN_VENDOR_ATTR_ACS_PRIMARY_CHANNEL, channel + 1); if (ret_val) { wil_err(wil, "QCA_WLAN_VENDOR_ATTR_ACS_PRIMARY_CHANNEL put fail\n"); kfree_skb(vendor_event); return; } /* must report secondary channel always, 0 is harmless*/ ret_val = nla_put_u8(vendor_event, QCA_WLAN_VENDOR_ATTR_ACS_SECONDARY_CHANNEL, 0); if (ret_val) { wil_err(wil, "QCA_WLAN_VENDOR_ATTR_ACS_SECONDARY_CHANNEL put fail\n"); kfree_skb(vendor_event); return; } /* report edmg channel */ if (edmg_channel) { ret_val = nla_put_u8(vendor_event, QCA_WLAN_VENDOR_ATTR_ACS_EDMG_CHANNEL, edmg_channel); if (ret_val) { wil_err(wil, "QCA_WLAN_VENDOR_ATTR_ACS_EDMG_CHANNEL put fail\n"); kfree_skb(vendor_event); return; } } cfg80211_vendor_event(vendor_event, GFP_KERNEL); } static int wil_do_acs(struct wiphy *wiphy, struct wireless_dev *wdev, const void *data, int data_len) { struct wil6210_priv *wil = wdev_to_wil(wdev); struct sk_buff *temp_skbuff; int rc; struct nlattr *tb[QCA_WLAN_VENDOR_ATTR_ACS_MAX + 1]; u8 hw_mode; u8 edmg_enabled = 0; struct ieee80211_channel reg_channels[ARRAY_SIZE(wil_60ghz_channels)]; int num_channels; const struct ieee80211_reg_rule *reg_rule; int i; rc = nla_parse(tb, QCA_WLAN_VENDOR_ATTR_ACS_MAX, data, data_len, qca_wlan_acs_vendor_attr); if (rc) { wil_err(wil, "Invalid ATTR\n"); goto out; } if (!tb[QCA_WLAN_VENDOR_ATTR_ACS_HW_MODE]) { wil_err(wil, "Attr hw_mode failed\n"); goto out; } hw_mode = nla_get_u8(tb[QCA_WLAN_VENDOR_ATTR_ACS_HW_MODE]); if (hw_mode != QCA_ACS_MODE_IEEE80211AD) { wil_err(wil, "Illegal HW mode (%d), must be %d (11AD)\n", hw_mode, QCA_ACS_MODE_IEEE80211AD); goto out; } if (tb[QCA_WLAN_VENDOR_ATTR_ACS_EDMG_ENABLED]) edmg_enabled = nla_get_flag(tb[QCA_WLAN_VENDOR_ATTR_ACS_EDMG_ENABLED]); /* get list of channels allowed by regulatory */ num_channels = 0; for (i = 0; i < wil_num_supported_channels(wil); i++) { u32 ch_center_freq = MHZ_TO_KHZ(wil_60ghz_channels[i].center_freq); reg_rule = freq_reg_info(wiphy, ch_center_freq); if (IS_ERR(reg_rule)) { wil_dbg_misc(wil, "do_acs: channel %d (%d) reg db err %ld\n", wil_60ghz_channels[i].hw_value, wil_60ghz_channels[i].center_freq, PTR_ERR(reg_rule)); continue; } /* we assume if active scan allowed, we can use the * channel to start AP on it */ if (!(reg_rule->flags & NL80211_RRF_PASSIVE_SCAN)) { reg_channels[num_channels] = wil_60ghz_channels[i]; num_channels++; wil_dbg_misc(wil, "do_acs: Adding ch %d to ACS scan\n", wil_60ghz_channels[i].hw_value); } else { wil_dbg_misc(wil, "do_acs: channel %d (%d) can't be used: 0x%08X\n", wil_60ghz_channels[i].hw_value, wil_60ghz_channels[i].center_freq, reg_rule->flags); } } if (!num_channels) { wil_err(wil, "ACS aborted. Couldn't find channels allowed by regulatory\n"); rc = -EPERM; goto out; } /* start acs survey*/ rc = wil_start_acs_survey(wil, scan_dwell_time, reg_channels, num_channels); if (!rc) wil_acs_report_channel(wil, edmg_enabled); out: if (!rc) { temp_skbuff = cfg80211_vendor_cmd_alloc_reply_skb(wiphy, NLMSG_HDRLEN); if (temp_skbuff) return cfg80211_vendor_cmd_reply(temp_skbuff); } return rc; } static int wil_rf_sector_status_to_rc(u8 status) { switch (status) { case WMI_RF_SECTOR_STATUS_SUCCESS: return 0; case WMI_RF_SECTOR_STATUS_BAD_PARAMETERS_ERROR: return -EINVAL; case WMI_RF_SECTOR_STATUS_BUSY_ERROR: return -EAGAIN; case WMI_RF_SECTOR_STATUS_NOT_SUPPORTED_ERROR: return -EOPNOTSUPP; default: return -EINVAL; } } static int wil_rf_sector_get_cfg(struct wiphy *wiphy, struct wireless_dev *wdev, const void *data, int data_len) { struct wil6210_priv *wil = wdev_to_wil(wdev); struct wil6210_vif *vif = wdev_to_vif(wil, wdev); int rc; struct nlattr *tb[QCA_ATTR_WIL_MAX + 1]; u16 sector_index; u8 sector_type; u32 rf_modules_vec; struct wmi_get_rf_sector_params_cmd cmd; struct { struct wmi_cmd_hdr wmi; struct wmi_get_rf_sector_params_done_event evt; } __packed reply = { .evt = {.status = WMI_RF_SECTOR_STATUS_NOT_SUPPORTED_ERROR}, }; struct sk_buff *msg; struct nlattr *nl_cfgs, *nl_cfg; u32 i; struct wmi_rf_sector_info *si; if (!test_bit(WMI_FW_CAPABILITY_RF_SECTORS, wil->fw_capabilities)) return -EOPNOTSUPP; rc = nla_parse(tb, QCA_ATTR_WIL_MAX, data, data_len, wil_rf_sector_policy); if (rc) { wil_err(wil, "Invalid rf sector ATTR\n"); return rc; } if (!tb[QCA_ATTR_DMG_RF_SECTOR_INDEX] || !tb[QCA_ATTR_DMG_RF_SECTOR_TYPE] || !tb[QCA_ATTR_DMG_RF_MODULE_MASK]) { wil_err(wil, "Invalid rf sector spec\n"); return -EINVAL; } sector_index = nla_get_u16( tb[QCA_ATTR_DMG_RF_SECTOR_INDEX]); if (sector_index >= WIL_MAX_RF_SECTORS) { wil_err(wil, "Invalid sector index %d\n", sector_index); return -EINVAL; } sector_type = nla_get_u8(tb[QCA_ATTR_DMG_RF_SECTOR_TYPE]); if (sector_type >= QCA_ATTR_DMG_RF_SECTOR_TYPE_MAX) { wil_err(wil, "Invalid sector type %d\n", sector_type); return -EINVAL; } rf_modules_vec = nla_get_u32( tb[QCA_ATTR_DMG_RF_MODULE_MASK]); if (rf_modules_vec >= BIT(WMI_MAX_RF_MODULES_NUM)) { wil_err(wil, "Invalid rf module mask 0x%x\n", rf_modules_vec); return -EINVAL; } cmd.sector_idx = cpu_to_le16(sector_index); cmd.sector_type = sector_type; cmd.rf_modules_vec = rf_modules_vec & 0xFF; rc = wmi_call(wil, WMI_GET_RF_SECTOR_PARAMS_CMDID, vif->mid, &cmd, sizeof(cmd), WMI_GET_RF_SECTOR_PARAMS_DONE_EVENTID, &reply, sizeof(reply), 500); if (rc) return rc; if (reply.evt.status) { wil_err(wil, "get rf sector cfg failed with status %d\n", reply.evt.status); return wil_rf_sector_status_to_rc(reply.evt.status); } msg = cfg80211_vendor_cmd_alloc_reply_skb( wiphy, 64 * WMI_MAX_RF_MODULES_NUM); if (!msg) return -ENOMEM; if (nla_put_u64(msg, QCA_ATTR_TSF, le64_to_cpu(reply.evt.tsf))) goto nla_put_failure; nl_cfgs = nla_nest_start(msg, QCA_ATTR_DMG_RF_SECTOR_CFG); if (!nl_cfgs) goto nla_put_failure; for (i = 0; i < WMI_MAX_RF_MODULES_NUM; i++) { if (!(rf_modules_vec & BIT(i))) continue; nl_cfg = nla_nest_start(msg, i); if (!nl_cfg) goto nla_put_failure; si = &reply.evt.sectors_info[i]; if (nla_put_u8(msg, QCA_ATTR_DMG_RF_SECTOR_CFG_MODULE_INDEX, i) || nla_put_u32(msg, QCA_ATTR_DMG_RF_SECTOR_CFG_ETYPE0, le32_to_cpu(si->etype0)) || nla_put_u32(msg, QCA_ATTR_DMG_RF_SECTOR_CFG_ETYPE1, le32_to_cpu(si->etype1)) || nla_put_u32(msg, QCA_ATTR_DMG_RF_SECTOR_CFG_ETYPE2, le32_to_cpu(si->etype2)) || nla_put_u32(msg, QCA_ATTR_DMG_RF_SECTOR_CFG_PSH_HI, le32_to_cpu(si->psh_hi)) || nla_put_u32(msg, QCA_ATTR_DMG_RF_SECTOR_CFG_PSH_LO, le32_to_cpu(si->psh_lo)) || nla_put_u32(msg, QCA_ATTR_DMG_RF_SECTOR_CFG_DTYPE_X16, le32_to_cpu(si->dtype_swch_off))) goto nla_put_failure; nla_nest_end(msg, nl_cfg); } nla_nest_end(msg, nl_cfgs); rc = cfg80211_vendor_cmd_reply(msg); return rc; nla_put_failure: kfree_skb(msg); return -ENOBUFS; } static int wil_rf_sector_set_cfg(struct wiphy *wiphy, struct wireless_dev *wdev, const void *data, int data_len) { struct wil6210_priv *wil = wdev_to_wil(wdev); struct wil6210_vif *vif = wdev_to_vif(wil, wdev); int rc, tmp; struct nlattr *tb[QCA_ATTR_WIL_MAX + 1]; struct nlattr *tb2[QCA_ATTR_DMG_RF_SECTOR_CFG_MAX + 1]; u16 sector_index, rf_module_index; u8 sector_type; u32 rf_modules_vec = 0; struct wmi_set_rf_sector_params_cmd cmd; struct { struct wmi_cmd_hdr wmi; struct wmi_set_rf_sector_params_done_event evt; } __packed reply = { .evt = {.status = WMI_RF_SECTOR_STATUS_NOT_SUPPORTED_ERROR}, }; struct nlattr *nl_cfg; struct wmi_rf_sector_info *si; if (!test_bit(WMI_FW_CAPABILITY_RF_SECTORS, wil->fw_capabilities)) return -EOPNOTSUPP; rc = nla_parse(tb, QCA_ATTR_WIL_MAX, data, data_len, wil_rf_sector_policy); if (rc) { wil_err(wil, "Invalid rf sector ATTR\n"); return rc; } if (!tb[QCA_ATTR_DMG_RF_SECTOR_INDEX] || !tb[QCA_ATTR_DMG_RF_SECTOR_TYPE] || !tb[QCA_ATTR_DMG_RF_SECTOR_CFG]) { wil_err(wil, "Invalid rf sector spec\n"); return -EINVAL; } sector_index = nla_get_u16( tb[QCA_ATTR_DMG_RF_SECTOR_INDEX]); if (sector_index >= WIL_MAX_RF_SECTORS) { wil_err(wil, "Invalid sector index %d\n", sector_index); return -EINVAL; } sector_type = nla_get_u8(tb[QCA_ATTR_DMG_RF_SECTOR_TYPE]); if (sector_type >= QCA_ATTR_DMG_RF_SECTOR_TYPE_MAX) { wil_err(wil, "Invalid sector type %d\n", sector_type); return -EINVAL; } memset(&cmd, 0, sizeof(cmd)); cmd.sector_idx = cpu_to_le16(sector_index); cmd.sector_type = sector_type; nla_for_each_nested(nl_cfg, tb[QCA_ATTR_DMG_RF_SECTOR_CFG], tmp) { rc = nla_parse_nested(tb2, QCA_ATTR_DMG_RF_SECTOR_CFG_MAX, nl_cfg, wil_rf_sector_cfg_policy); if (rc) { wil_err(wil, "invalid sector cfg\n"); return -EINVAL; } if (!tb2[QCA_ATTR_DMG_RF_SECTOR_CFG_MODULE_INDEX] || !tb2[QCA_ATTR_DMG_RF_SECTOR_CFG_ETYPE0] || !tb2[QCA_ATTR_DMG_RF_SECTOR_CFG_ETYPE1] || !tb2[QCA_ATTR_DMG_RF_SECTOR_CFG_ETYPE2] || !tb2[QCA_ATTR_DMG_RF_SECTOR_CFG_PSH_HI] || !tb2[QCA_ATTR_DMG_RF_SECTOR_CFG_PSH_LO] || !tb2[QCA_ATTR_DMG_RF_SECTOR_CFG_DTYPE_X16]) { wil_err(wil, "missing cfg params\n"); return -EINVAL; } rf_module_index = nla_get_u8( tb2[QCA_ATTR_DMG_RF_SECTOR_CFG_MODULE_INDEX]); if (rf_module_index >= WMI_MAX_RF_MODULES_NUM) { wil_err(wil, "invalid RF module index %d\n", rf_module_index); return -EINVAL; } rf_modules_vec |= BIT(rf_module_index); si = &cmd.sectors_info[rf_module_index]; si->etype0 = cpu_to_le32(nla_get_u32( tb2[QCA_ATTR_DMG_RF_SECTOR_CFG_ETYPE0])); si->etype1 = cpu_to_le32(nla_get_u32( tb2[QCA_ATTR_DMG_RF_SECTOR_CFG_ETYPE1])); si->etype2 = cpu_to_le32(nla_get_u32( tb2[QCA_ATTR_DMG_RF_SECTOR_CFG_ETYPE2])); si->psh_hi = cpu_to_le32(nla_get_u32( tb2[QCA_ATTR_DMG_RF_SECTOR_CFG_PSH_HI])); si->psh_lo = cpu_to_le32(nla_get_u32( tb2[QCA_ATTR_DMG_RF_SECTOR_CFG_PSH_LO])); si->dtype_swch_off = cpu_to_le32(nla_get_u32( tb2[QCA_ATTR_DMG_RF_SECTOR_CFG_DTYPE_X16])); } cmd.rf_modules_vec = rf_modules_vec & 0xFF; rc = wmi_call(wil, WMI_SET_RF_SECTOR_PARAMS_CMDID, vif->mid, &cmd, sizeof(cmd), WMI_SET_RF_SECTOR_PARAMS_DONE_EVENTID, &reply, sizeof(reply), 500); if (rc) return rc; return wil_rf_sector_status_to_rc(reply.evt.status); } static int wil_rf_sector_get_selected(struct wiphy *wiphy, struct wireless_dev *wdev, const void *data, int data_len) { struct wil6210_priv *wil = wdev_to_wil(wdev); struct wil6210_vif *vif = wdev_to_vif(wil, wdev); int rc; struct nlattr *tb[QCA_ATTR_WIL_MAX + 1]; u8 sector_type, mac_addr[ETH_ALEN]; int cid = 0; struct wmi_get_selected_rf_sector_index_cmd cmd; struct { struct wmi_cmd_hdr wmi; struct wmi_get_selected_rf_sector_index_done_event evt; } __packed reply = { .evt = {.status = WMI_RF_SECTOR_STATUS_NOT_SUPPORTED_ERROR}, }; struct sk_buff *msg; if (!test_bit(WMI_FW_CAPABILITY_RF_SECTORS, wil->fw_capabilities)) return -EOPNOTSUPP; rc = nla_parse(tb, QCA_ATTR_WIL_MAX, data, data_len, wil_rf_sector_policy); if (rc) { wil_err(wil, "Invalid rf sector ATTR\n"); return rc; } if (!tb[QCA_ATTR_DMG_RF_SECTOR_TYPE]) { wil_err(wil, "Invalid rf sector spec\n"); return -EINVAL; } sector_type = nla_get_u8(tb[QCA_ATTR_DMG_RF_SECTOR_TYPE]); if (sector_type >= QCA_ATTR_DMG_RF_SECTOR_TYPE_MAX) { wil_err(wil, "Invalid sector type %d\n", sector_type); return -EINVAL; } if (tb[QCA_ATTR_MAC_ADDR]) { ether_addr_copy(mac_addr, nla_data(tb[QCA_ATTR_MAC_ADDR])); cid = wil_find_cid(wil, vif->mid, mac_addr); if (cid < 0) { wil_err(wil, "invalid MAC address %pM\n", mac_addr); return -ENOENT; } } else { if (test_bit(wil_vif_fwconnected, vif->status)) { wil_err(wil, "must specify MAC address when connected\n"); return -EINVAL; } } memset(&cmd, 0, sizeof(cmd)); cmd.cid = (u8)cid; cmd.sector_type = sector_type; rc = wmi_call(wil, WMI_GET_SELECTED_RF_SECTOR_INDEX_CMDID, vif->mid, &cmd, sizeof(cmd), WMI_GET_SELECTED_RF_SECTOR_INDEX_DONE_EVENTID, &reply, sizeof(reply), 500); if (rc) return rc; if (reply.evt.status) { wil_err(wil, "get rf selected sector cfg failed with status %d\n", reply.evt.status); return wil_rf_sector_status_to_rc(reply.evt.status); } msg = cfg80211_vendor_cmd_alloc_reply_skb( wiphy, 64 * WMI_MAX_RF_MODULES_NUM); if (!msg) return -ENOMEM; if (nla_put_u64(msg, QCA_ATTR_TSF, le64_to_cpu(reply.evt.tsf)) || nla_put_u16(msg, QCA_ATTR_DMG_RF_SECTOR_INDEX, le16_to_cpu(reply.evt.sector_idx))) goto nla_put_failure; rc = cfg80211_vendor_cmd_reply(msg); return rc; nla_put_failure: kfree_skb(msg); return -ENOBUFS; } static int wil_rf_sector_wmi_set_selected(struct wil6210_priv *wil, u8 mid, u16 sector_index, u8 sector_type, u8 cid) { struct wmi_set_selected_rf_sector_index_cmd cmd; struct { struct wmi_cmd_hdr wmi; struct wmi_set_selected_rf_sector_index_done_event evt; } __packed reply = { .evt = {.status = WMI_RF_SECTOR_STATUS_NOT_SUPPORTED_ERROR}, }; int rc; memset(&cmd, 0, sizeof(cmd)); cmd.sector_idx = cpu_to_le16(sector_index); cmd.sector_type = sector_type; cmd.cid = (u8)cid; rc = wmi_call(wil, WMI_SET_SELECTED_RF_SECTOR_INDEX_CMDID, mid, &cmd, sizeof(cmd), WMI_SET_SELECTED_RF_SECTOR_INDEX_DONE_EVENTID, &reply, sizeof(reply), 500); if (rc) return rc; return wil_rf_sector_status_to_rc(reply.evt.status); } static int wil_rf_sector_set_selected(struct wiphy *wiphy, struct wireless_dev *wdev, const void *data, int data_len) { struct wil6210_priv *wil = wdev_to_wil(wdev); struct wil6210_vif *vif = wdev_to_vif(wil, wdev); int rc; struct nlattr *tb[QCA_ATTR_WIL_MAX + 1]; u16 sector_index; u8 sector_type, mac_addr[ETH_ALEN], i; int cid = 0; if (!test_bit(WMI_FW_CAPABILITY_RF_SECTORS, wil->fw_capabilities)) return -EOPNOTSUPP; rc = nla_parse(tb, QCA_ATTR_WIL_MAX, data, data_len, wil_rf_sector_policy); if (rc) { wil_err(wil, "Invalid rf sector ATTR\n"); return rc; } if (!tb[QCA_ATTR_DMG_RF_SECTOR_INDEX] || !tb[QCA_ATTR_DMG_RF_SECTOR_TYPE]) { wil_err(wil, "Invalid rf sector spec\n"); return -EINVAL; } sector_index = nla_get_u16( tb[QCA_ATTR_DMG_RF_SECTOR_INDEX]); if (sector_index >= WIL_MAX_RF_SECTORS && sector_index != WMI_INVALID_RF_SECTOR_INDEX) { wil_err(wil, "Invalid sector index %d\n", sector_index); return -EINVAL; } sector_type = nla_get_u8(tb[QCA_ATTR_DMG_RF_SECTOR_TYPE]); if (sector_type >= QCA_ATTR_DMG_RF_SECTOR_TYPE_MAX) { wil_err(wil, "Invalid sector type %d\n", sector_type); return -EINVAL; } if (tb[QCA_ATTR_MAC_ADDR]) { ether_addr_copy(mac_addr, nla_data(tb[QCA_ATTR_MAC_ADDR])); if (!is_broadcast_ether_addr(mac_addr)) { cid = wil_find_cid(wil, vif->mid, mac_addr); if (cid < 0) { wil_err(wil, "invalid MAC address %pM\n", mac_addr); return -ENOENT; } } else { if (sector_index != WMI_INVALID_RF_SECTOR_INDEX) { wil_err(wil, "broadcast MAC valid only with unlocking\n"); return -EINVAL; } cid = -1; } } else { if (test_bit(wil_vif_fwconnected, vif->status)) { wil_err(wil, "must specify MAC address when connected\n"); return -EINVAL; } /* otherwise, using cid=0 for unassociated station */ } if (cid >= 0) { rc = wil_rf_sector_wmi_set_selected(wil, vif->mid, sector_index, sector_type, cid); } else { /* unlock all cids */ rc = wil_rf_sector_wmi_set_selected( wil, vif->mid, WMI_INVALID_RF_SECTOR_INDEX, sector_type, WIL_CID_ALL); if (rc == -EINVAL) { for (i = 0; i < max_assoc_sta; i++) { if (wil->sta[i].mid != vif->mid) continue; rc = wil_rf_sector_wmi_set_selected( wil, vif->mid, WMI_INVALID_RF_SECTOR_INDEX, sector_type, i); /* the FW will silently ignore and return * success for unused cid, so abort the loop * on any other error */ if (rc) { wil_err(wil, "unlock cid %d failed with status %d\n", i, rc); break; } } } } return rc; } static int wil_brp_wmi_set_ant_limit(struct wil6210_priv *wil, u8 mid, u8 cid, u8 limit_mode, u8 antenna_num_limit) { int rc; struct wmi_brp_set_ant_limit_cmd cmd = { .cid = cid, .limit_mode = limit_mode, .ant_limit = antenna_num_limit, }; struct { struct wmi_cmd_hdr wmi; struct wmi_brp_set_ant_limit_event evt; } __packed reply; reply.evt.status = WMI_FW_STATUS_FAILURE; rc = wmi_call(wil, WMI_BRP_SET_ANT_LIMIT_CMDID, mid, &cmd, sizeof(cmd), WMI_BRP_SET_ANT_LIMIT_EVENTID, &reply, sizeof(reply), 250); if (rc) return rc; if (reply.evt.status != WMI_FW_STATUS_SUCCESS) { wil_err(wil, "brp set antenna limit failed with status %d\n", reply.evt.status); rc = -EINVAL; } return rc; } static int wil_brp_set_ant_limit(struct wiphy *wiphy, struct wireless_dev *wdev, const void *data, int data_len) { struct wil6210_priv *wil = wdev_to_wil(wdev); struct wil6210_vif *vif = wdev_to_vif(wil, wdev); struct nlattr *tb[QCA_ATTR_WIL_MAX + 1]; u8 mac_addr[ETH_ALEN]; u8 antenna_num_limit = 0; u8 limit_mode; int cid = 0; int rc; if (!test_bit(WMI_FW_CAPABILITY_RF_SECTORS, wil->fw_capabilities)) return -ENOTSUPP; rc = nla_parse(tb, QCA_ATTR_WIL_MAX, data, data_len, wil_brp_ant_limit_policy); if (rc) { wil_err(wil, "Invalid ant limit ATTR\n"); return rc; } if (!tb[QCA_ATTR_BRP_ANT_LIMIT_MODE] || !tb[QCA_ATTR_MAC_ADDR]) { wil_err(wil, "Invalid antenna limit spec\n"); return -EINVAL; } limit_mode = nla_get_u8(tb[QCA_ATTR_BRP_ANT_LIMIT_MODE]); if (limit_mode >= QCA_WLAN_VENDOR_ATTR_BRP_ANT_LIMIT_MODES_NUM) { wil_err(wil, "Invalid limit mode %d\n", limit_mode); return -EINVAL; } if (limit_mode != QCA_WLAN_VENDOR_ATTR_BRP_ANT_LIMIT_MODE_DISABLE) { if (!tb[QCA_ATTR_BRP_ANT_NUM_LIMIT]) { wil_err(wil, "Invalid limit number\n"); return -EINVAL; } antenna_num_limit = nla_get_u8(tb[QCA_ATTR_BRP_ANT_NUM_LIMIT]); if (antenna_num_limit > WIL_BRP_ANT_LIMIT_MAX || antenna_num_limit < WIL_BRP_ANT_LIMIT_MIN) { wil_err(wil, "Invalid number of antenna limit: %d\n", antenna_num_limit); return -EINVAL; } } ether_addr_copy(mac_addr, nla_data(tb[QCA_ATTR_MAC_ADDR])); cid = wil_find_cid(wil, vif->mid, mac_addr); if (cid < 0) { wil_err(wil, "invalid MAC address %pM\n", mac_addr); return -ENOENT; } return wil_brp_wmi_set_ant_limit(wil, vif->mid, cid, limit_mode, antenna_num_limit); } static void wil_nl_60g_fw_state_evt(struct wil6210_priv *wil) { struct sk_buff *vendor_event = NULL; struct wil_nl_60g_event *evt; struct wil_nl_60g_fw_state_event *fw_state_event; if (!wil->publish_nl_evt) return; wil_dbg_misc(wil, "report fw_state event to user-space (%d)\n", wil->fw_state); evt = kzalloc(sizeof(*evt) + sizeof(*fw_state_event), GFP_KERNEL); if (!evt) return; evt->evt_type = NL_60G_EVT_DRIVER_GENERIC; evt->buf_len = sizeof(*fw_state_event); fw_state_event = (struct wil_nl_60g_fw_state_event *)evt->buf; fw_state_event->hdr.evt_id = NL_60G_GEN_EVT_FW_STATE; fw_state_event->fw_state = wil->fw_state; vendor_event = cfg80211_vendor_event_alloc( wil_to_wiphy(wil), NULL, 4 + NLMSG_HDRLEN + sizeof(*evt) + sizeof(*fw_state_event), QCA_NL80211_VENDOR_EVENT_UNSPEC_INDEX, GFP_KERNEL); if (!vendor_event) { wil_err(wil, "failed to allocate vendor_event\n"); goto out; } if (nla_put(vendor_event, WIL_ATTR_60G_BUF, sizeof(*evt) + sizeof(*fw_state_event), evt)) { wil_err(wil, "failed to fill WIL_ATTR_60G_BUF\n"); kfree_skb(vendor_event); goto out; } cfg80211_vendor_event(vendor_event, GFP_KERNEL); out: kfree(evt); } void wil_nl_60g_fw_state_change(struct wil6210_priv *wil, enum wil_fw_state fw_state) { wil_dbg_misc(wil, "fw_state change:%d => %d", wil->fw_state, fw_state); wil->fw_state = fw_state; wil_nl_60g_fw_state_evt(wil); } static int wil_nl_60g_handle_cmd(struct wiphy *wiphy, struct wireless_dev *wdev, const void *data, int data_len) { struct wil6210_priv *wil = wdev_to_wil(wdev); struct nlattr *tb[QCA_ATTR_WIL_MAX + 1]; struct wil_nl_60g_send_receive_wmi *cmd; struct wil_nl_60g_debug_force_wmi debug_force_wmi; int rc, len; u32 wil_nl_60g_cmd_type, publish; rc = nla_parse(tb, QCA_ATTR_WIL_MAX, data, data_len, wil_nl_60g_policy); if (rc) { wil_err(wil, "Invalid nl_60g_cmd ATTR\n"); return rc; } if (!tb[WIL_ATTR_60G_CMD_TYPE]) { wil_err(wil, "Invalid nl_60g_cmd type\n"); return -EINVAL; } wil_nl_60g_cmd_type = nla_get_u32(tb[WIL_ATTR_60G_CMD_TYPE]); switch (wil_nl_60g_cmd_type) { case NL_60G_CMD_REGISTER: if (!tb[WIL_ATTR_60G_BUF]) { wil_err(wil, "Invalid nl_60g_cmd spec\n"); return -EINVAL; } len = nla_len(tb[WIL_ATTR_60G_BUF]); if (len != sizeof(publish)) { wil_err(wil, "cmd buffer wrong len %d\n", len); return -EINVAL; } memcpy(&publish, nla_data(tb[WIL_ATTR_60G_BUF]), len); wil->publish_nl_evt = publish; wil_dbg_wmi(wil, "Publish wmi event %s\n", publish ? "enabled" : "disabled"); wil_nl_60g_fw_state_evt(wil); break; case NL_60G_CMD_DEBUG: if (!tb[WIL_ATTR_60G_BUF]) { wil_err(wil, "Invalid nl_60g_cmd spec\n"); return -EINVAL; } len = nla_len(tb[WIL_ATTR_60G_BUF]); if (len < sizeof(struct wil_nl_60g_debug)) { wil_err(wil, "cmd buffer too short %d\n", len); return -EINVAL; } memcpy(&debug_force_wmi, nla_data(tb[WIL_ATTR_60G_BUF]), sizeof(struct wil_nl_60g_debug)); switch (debug_force_wmi.hdr.cmd_id) { case NL_60G_DBG_FORCE_WMI_SEND: if (len != sizeof(debug_force_wmi)) { wil_err(wil, "cmd buffer wrong len %d\n", len); return -EINVAL; } memcpy(&debug_force_wmi, nla_data(tb[WIL_ATTR_60G_BUF]), sizeof(debug_force_wmi)); wil->force_wmi_send = debug_force_wmi.enable; wil_dbg_wmi(wil, "force sending wmi commands %d\n", wil->force_wmi_send); break; case NL_60G_GEN_FW_RESET: if (!test_bit(WMI_FW_CAPABILITY_WMI_ONLY, wil->fw_capabilities)) { rc = -EOPNOTSUPP; break; } wil_dbg_misc(wil, "NL_60G_GEN_FW_RESET, resetting...\n"); mutex_lock(&wil->mutex); down_write(&wil->mem_lock); rc = wil_reset(wil, true); up_write(&wil->mem_lock); mutex_unlock(&wil->mutex); break; case NL_60G_GEN_GET_DRIVER_CAPA: { struct sk_buff *skb; u32 capa; skb = cfg80211_vendor_cmd_alloc_reply_skb(wiphy, sizeof(capa)); if (!skb) return -ENOMEM; capa = BIT(NL_60G_DRIVER_CAPA_FW_STATE) | #if defined(CONFIG_WIL6210_WRITE_IOCTL) BIT(NL_60G_DRIVER_CAPA_IOCTL_WRITE) | #endif BIT(NL_60G_DRIVER_CAPA_WMI_OVER_NL); rc = nla_put_u32(skb, QCA_WLAN_VENDOR_ATTR_DRIVER_CAPA, capa); if (rc) { wil_err(wil, "Failed to return driver capa\n"); kfree_skb(skb); return rc; } return cfg80211_vendor_cmd_reply(skb); } default: rc = -EINVAL; wil_err(wil, "invalid debug_cmd id %d", debug_force_wmi.hdr.cmd_id); } break; case NL_60G_CMD_FW_WMI: if (!tb[WIL_ATTR_60G_BUF]) { wil_err(wil, "Invalid nl_60g_cmd spec\n"); return -EINVAL; } len = nla_len(tb[WIL_ATTR_60G_BUF]); if (len < offsetof(struct wil_nl_60g_send_receive_wmi, buf)) { wil_err(wil, "wmi cmd buffer too small\n"); return -EINVAL; } cmd = kmalloc(len, GFP_KERNEL); if (!cmd) return -ENOMEM; memcpy(cmd, nla_data(tb[WIL_ATTR_60G_BUF]), (unsigned int)len); wil_dbg_wmi(wil, "sending user-space command (0x%04x) [%d]\n", cmd->cmd_id, cmd->buf_len); if (wil->force_wmi_send) rc = wmi_force_send(wil, cmd->cmd_id, cmd->dev_id, cmd->buf, cmd->buf_len); else rc = wmi_send(wil, cmd->cmd_id, cmd->dev_id, cmd->buf, cmd->buf_len); kfree(cmd); break; default: rc = -EINVAL; wil_err(wil, "invalid nl_60g_cmd type %d", wil_nl_60g_cmd_type); } return rc; } void wil_nl_60g_receive_wmi_evt(struct wil6210_priv *wil, u8 *cmd, int len) { struct sk_buff *vendor_event = NULL; struct wil_nl_60g_event *evt; struct wil_nl_60g_send_receive_wmi *wmi_buf; struct wmi_cmd_hdr *wmi_hdr = (struct wmi_cmd_hdr *)cmd; int data_len; if (!wil->publish_nl_evt) return; wil_dbg_wmi(wil, "report wmi event to user-space (0x%04x) [%d]\n", le16_to_cpu(wmi_hdr->command_id), len); data_len = len - sizeof(struct wmi_cmd_hdr); evt = kzalloc(sizeof(*evt) + sizeof(*wmi_buf) + data_len, GFP_KERNEL); if (!evt) return; evt->evt_type = NL_60G_EVT_FW_WMI; evt->buf_len = sizeof(*wmi_buf) + data_len; wmi_buf = (struct wil_nl_60g_send_receive_wmi *)evt->buf; wmi_buf->cmd_id = le16_to_cpu(wmi_hdr->command_id); wmi_buf->dev_id = wmi_hdr->mid; wmi_buf->buf_len = data_len; memcpy(wmi_buf->buf, cmd + sizeof(struct wmi_cmd_hdr), data_len); vendor_event = cfg80211_vendor_event_alloc( wil_to_wiphy(wil), NULL, data_len + 4 + NLMSG_HDRLEN + sizeof(*evt) + sizeof(*wmi_buf), QCA_NL80211_VENDOR_EVENT_UNSPEC_INDEX, GFP_KERNEL); if (!vendor_event) goto out; if (nla_put(vendor_event, WIL_ATTR_60G_BUF, sizeof(*evt) + sizeof(*wmi_buf) + data_len, evt)) { wil_err(wil, "failed to fill WIL_ATTR_60G_BUF\n"); goto out; } cfg80211_vendor_event(vendor_event, GFP_KERNEL); out: kfree(evt); }