/* * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 2 of the License, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * The full GNU General Public License is included in this distribution in the * file called COPYING. */ #ifndef LINUX_DMAENGINE_H #define LINUX_DMAENGINE_H #include #include #include #include #include #include #include #include /** * typedef dma_cookie_t - an opaque DMA cookie * * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code */ typedef s32 dma_cookie_t; #define DMA_MIN_COOKIE 1 static inline int dma_submit_error(dma_cookie_t cookie) { return cookie < 0 ? cookie : 0; } /** * enum dma_status - DMA transaction status * @DMA_COMPLETE: transaction completed * @DMA_IN_PROGRESS: transaction not yet processed * @DMA_PAUSED: transaction is paused * @DMA_ERROR: transaction failed */ enum dma_status { DMA_COMPLETE, DMA_IN_PROGRESS, DMA_PAUSED, DMA_ERROR, }; /** * enum dma_transaction_type - DMA transaction types/indexes * * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is * automatically set as dma devices are registered. */ enum dma_transaction_type { DMA_MEMCPY, DMA_XOR, DMA_PQ, DMA_XOR_VAL, DMA_PQ_VAL, DMA_MEMSET, DMA_MEMSET_SG, DMA_INTERRUPT, DMA_SG, DMA_PRIVATE, DMA_ASYNC_TX, DMA_SLAVE, DMA_CYCLIC, DMA_INTERLEAVE, /* last transaction type for creation of the capabilities mask */ DMA_TX_TYPE_END, }; /** * enum dma_transfer_direction - dma transfer mode and direction indicator * @DMA_MEM_TO_MEM: Async/Memcpy mode * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory * @DMA_DEV_TO_DEV: Slave mode & From Device to Device */ enum dma_transfer_direction { DMA_MEM_TO_MEM, DMA_MEM_TO_DEV, DMA_DEV_TO_MEM, DMA_DEV_TO_DEV, DMA_TRANS_NONE, }; /** * Interleaved Transfer Request * ---------------------------- * A chunk is collection of contiguous bytes to be transfered. * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG). * ICGs may or maynot change between chunks. * A FRAME is the smallest series of contiguous {chunk,icg} pairs, * that when repeated an integral number of times, specifies the transfer. * A transfer template is specification of a Frame, the number of times * it is to be repeated and other per-transfer attributes. * * Practically, a client driver would have ready a template for each * type of transfer it is going to need during its lifetime and * set only 'src_start' and 'dst_start' before submitting the requests. * * * | Frame-1 | Frame-2 | ~ | Frame-'numf' | * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...| * * == Chunk size * ... ICG */ /** * struct data_chunk - Element of scatter-gather list that makes a frame. * @size: Number of bytes to read from source. * size_dst := fn(op, size_src), so doesn't mean much for destination. * @icg: Number of bytes to jump after last src/dst address of this * chunk and before first src/dst address for next chunk. * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false. * Ignored for src(assumed 0), if src_inc is true and src_sgl is false. * @dst_icg: Number of bytes to jump after last dst address of this * chunk and before the first dst address for next chunk. * Ignored if dst_inc is true and dst_sgl is false. * @src_icg: Number of bytes to jump after last src address of this * chunk and before the first src address for next chunk. * Ignored if src_inc is true and src_sgl is false. */ struct data_chunk { size_t size; size_t icg; size_t dst_icg; size_t src_icg; }; /** * struct dma_interleaved_template - Template to convey DMAC the transfer pattern * and attributes. * @src_start: Bus address of source for the first chunk. * @dst_start: Bus address of destination for the first chunk. * @dir: Specifies the type of Source and Destination. * @src_inc: If the source address increments after reading from it. * @dst_inc: If the destination address increments after writing to it. * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read). * Otherwise, source is read contiguously (icg ignored). * Ignored if src_inc is false. * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write). * Otherwise, destination is filled contiguously (icg ignored). * Ignored if dst_inc is false. * @numf: Number of frames in this template. * @frame_size: Number of chunks in a frame i.e, size of sgl[]. * @sgl: Array of {chunk,icg} pairs that make up a frame. */ struct dma_interleaved_template { dma_addr_t src_start; dma_addr_t dst_start; enum dma_transfer_direction dir; bool src_inc; bool dst_inc; bool src_sgl; bool dst_sgl; size_t numf; size_t frame_size; struct data_chunk sgl[0]; }; /** * enum dma_ctrl_flags - DMA flags to augment operation preparation, * control completion, and communicate status. * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of * this transaction * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client * acknowledges receipt, i.e. has has a chance to establish any dependency * chains * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as * sources that were the result of a previous operation, in the case of a PQ * operation it continues the calculation with new sources * @DMA_PREP_FENCE - tell the driver that subsequent operations depend * on the result of this operation * @DMA_CTRL_REUSE: client can reuse the descriptor and submit again till * cleared or freed */ enum dma_ctrl_flags { DMA_PREP_INTERRUPT = (1 << 0), DMA_CTRL_ACK = (1 << 1), DMA_PREP_PQ_DISABLE_P = (1 << 2), DMA_PREP_PQ_DISABLE_Q = (1 << 3), DMA_PREP_CONTINUE = (1 << 4), DMA_PREP_FENCE = (1 << 5), DMA_CTRL_REUSE = (1 << 6), }; /** * enum sum_check_bits - bit position of pq_check_flags */ enum sum_check_bits { SUM_CHECK_P = 0, SUM_CHECK_Q = 1, }; /** * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise */ enum sum_check_flags { SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P), SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q), }; /** * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t. * See linux/cpumask.h */ typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t; /** * struct dma_chan_percpu - the per-CPU part of struct dma_chan * @memcpy_count: transaction counter * @bytes_transferred: byte counter */ struct dma_chan_percpu { /* stats */ unsigned long memcpy_count; unsigned long bytes_transferred; }; /** * struct dma_router - DMA router structure * @dev: pointer to the DMA router device * @route_free: function to be called when the route can be disconnected */ struct dma_router { struct device *dev; void (*route_free)(struct device *dev, void *route_data); }; /** * struct dma_chan - devices supply DMA channels, clients use them * @device: ptr to the dma device who supplies this channel, always !%NULL * @cookie: last cookie value returned to client * @completed_cookie: last completed cookie for this channel * @chan_id: channel ID for sysfs * @dev: class device for sysfs * @device_node: used to add this to the device chan list * @local: per-cpu pointer to a struct dma_chan_percpu * @client_count: how many clients are using this channel * @table_count: number of appearances in the mem-to-mem allocation table * @router: pointer to the DMA router structure * @route_data: channel specific data for the router * @private: private data for certain client-channel associations */ struct dma_chan { struct dma_device *device; dma_cookie_t cookie; dma_cookie_t completed_cookie; /* sysfs */ int chan_id; struct dma_chan_dev *dev; struct list_head device_node; struct dma_chan_percpu __percpu *local; int client_count; int table_count; /* DMA router */ struct dma_router *router; void *route_data; void *private; }; /** * struct dma_chan_dev - relate sysfs device node to backing channel device * @chan: driver channel device * @device: sysfs device * @dev_id: parent dma_device dev_id * @idr_ref: reference count to gate release of dma_device dev_id */ struct dma_chan_dev { struct dma_chan *chan; struct device device; int dev_id; atomic_t *idr_ref; }; /** * enum dma_slave_buswidth - defines bus width of the DMA slave * device, source or target buses */ enum dma_slave_buswidth { DMA_SLAVE_BUSWIDTH_UNDEFINED = 0, DMA_SLAVE_BUSWIDTH_1_BYTE = 1, DMA_SLAVE_BUSWIDTH_2_BYTES = 2, DMA_SLAVE_BUSWIDTH_3_BYTES = 3, DMA_SLAVE_BUSWIDTH_4_BYTES = 4, DMA_SLAVE_BUSWIDTH_8_BYTES = 8, DMA_SLAVE_BUSWIDTH_16_BYTES = 16, DMA_SLAVE_BUSWIDTH_32_BYTES = 32, DMA_SLAVE_BUSWIDTH_64_BYTES = 64, }; /** * struct dma_slave_config - dma slave channel runtime config * @direction: whether the data shall go in or out on this slave * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are * legal values. DEPRECATED, drivers should use the direction argument * to the device_prep_slave_sg and device_prep_dma_cyclic functions or * the dir field in the dma_interleaved_template structure. * @src_addr: this is the physical address where DMA slave data * should be read (RX), if the source is memory this argument is * ignored. * @dst_addr: this is the physical address where DMA slave data * should be written (TX), if the source is memory this argument * is ignored. * @src_addr_width: this is the width in bytes of the source (RX) * register where DMA data shall be read. If the source * is memory this may be ignored depending on architecture. * Legal values: 1, 2, 4, 8. * @dst_addr_width: same as src_addr_width but for destination * target (TX) mutatis mutandis. * @src_maxburst: the maximum number of words (note: words, as in * units of the src_addr_width member, not bytes) that can be sent * in one burst to the device. Typically something like half the * FIFO depth on I/O peripherals so you don't overflow it. This * may or may not be applicable on memory sources. * @dst_maxburst: same as src_maxburst but for destination target * mutatis mutandis. * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill * with 'true' if peripheral should be flow controller. Direction will be * selected at Runtime. * @slave_id: Slave requester id. Only valid for slave channels. The dma * slave peripheral will have unique id as dma requester which need to be * pass as slave config. * * This struct is passed in as configuration data to a DMA engine * in order to set up a certain channel for DMA transport at runtime. * The DMA device/engine has to provide support for an additional * callback in the dma_device structure, device_config and this struct * will then be passed in as an argument to the function. * * The rationale for adding configuration information to this struct is as * follows: if it is likely that more than one DMA slave controllers in * the world will support the configuration option, then make it generic. * If not: if it is fixed so that it be sent in static from the platform * data, then prefer to do that. */ struct dma_slave_config { enum dma_transfer_direction direction; dma_addr_t src_addr; dma_addr_t dst_addr; enum dma_slave_buswidth src_addr_width; enum dma_slave_buswidth dst_addr_width; u32 src_maxburst; u32 dst_maxburst; bool device_fc; unsigned int slave_id; }; /** * enum dma_residue_granularity - Granularity of the reported transfer residue * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The * DMA channel is only able to tell whether a descriptor has been completed or * not, which means residue reporting is not supported by this channel. The * residue field of the dma_tx_state field will always be 0. * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully * completed segment of the transfer (For cyclic transfers this is after each * period). This is typically implemented by having the hardware generate an * interrupt after each transferred segment and then the drivers updates the * outstanding residue by the size of the segment. Another possibility is if * the hardware supports scatter-gather and the segment descriptor has a field * which gets set after the segment has been completed. The driver then counts * the number of segments without the flag set to compute the residue. * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred * burst. This is typically only supported if the hardware has a progress * register of some sort (E.g. a register with the current read/write address * or a register with the amount of bursts/beats/bytes that have been * transferred or still need to be transferred). */ enum dma_residue_granularity { DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0, DMA_RESIDUE_GRANULARITY_SEGMENT = 1, DMA_RESIDUE_GRANULARITY_BURST = 2, }; /* struct dma_slave_caps - expose capabilities of a slave channel only * * @src_addr_widths: bit mask of src addr widths the channel supports * @dst_addr_widths: bit mask of dstn addr widths the channel supports * @directions: bit mask of slave direction the channel supported * since the enum dma_transfer_direction is not defined as bits for each * type of direction, the dma controller should fill (1 << ) and same * should be checked by controller as well * @cmd_pause: true, if pause and thereby resume is supported * @cmd_terminate: true, if terminate cmd is supported * @residue_granularity: granularity of the reported transfer residue * @descriptor_reuse: if a descriptor can be reused by client and * resubmitted multiple times */ struct dma_slave_caps { u32 src_addr_widths; u32 dst_addr_widths; u32 directions; bool cmd_pause; bool cmd_terminate; enum dma_residue_granularity residue_granularity; bool descriptor_reuse; }; static inline const char *dma_chan_name(struct dma_chan *chan) { return dev_name(&chan->dev->device); } void dma_chan_cleanup(struct kref *kref); /** * typedef dma_filter_fn - callback filter for dma_request_channel * @chan: channel to be reviewed * @filter_param: opaque parameter passed through dma_request_channel * * When this optional parameter is specified in a call to dma_request_channel a * suitable channel is passed to this routine for further dispositioning before * being returned. Where 'suitable' indicates a non-busy channel that * satisfies the given capability mask. It returns 'true' to indicate that the * channel is suitable. */ typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param); typedef void (*dma_async_tx_callback)(void *dma_async_param); struct dmaengine_unmap_data { u8 map_cnt; u8 to_cnt; u8 from_cnt; u8 bidi_cnt; struct device *dev; struct kref kref; size_t len; dma_addr_t addr[0]; }; /** * struct dma_async_tx_descriptor - async transaction descriptor * ---dma generic offload fields--- * @cookie: tracking cookie for this transaction, set to -EBUSY if * this tx is sitting on a dependency list * @flags: flags to augment operation preparation, control completion, and * communicate status * @phys: physical address of the descriptor * @chan: target channel for this operation * @tx_submit: accept the descriptor, assign ordered cookie and mark the * descriptor pending. To be pushed on .issue_pending() call * @callback: routine to call after this operation is complete * @callback_param: general parameter to pass to the callback routine * ---async_tx api specific fields--- * @next: at completion submit this descriptor * @parent: pointer to the next level up in the dependency chain * @lock: protect the parent and next pointers */ struct dma_async_tx_descriptor { dma_cookie_t cookie; enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */ dma_addr_t phys; struct dma_chan *chan; dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx); int (*desc_free)(struct dma_async_tx_descriptor *tx); dma_async_tx_callback callback; void *callback_param; struct dmaengine_unmap_data *unmap; #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH struct dma_async_tx_descriptor *next; struct dma_async_tx_descriptor *parent; spinlock_t lock; #endif }; #ifdef CONFIG_DMA_ENGINE static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx, struct dmaengine_unmap_data *unmap) { kref_get(&unmap->kref); tx->unmap = unmap; } struct dmaengine_unmap_data * dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags); void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap); #else static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx, struct dmaengine_unmap_data *unmap) { } static inline struct dmaengine_unmap_data * dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags) { return NULL; } static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap) { } #endif static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx) { if (tx->unmap) { dmaengine_unmap_put(tx->unmap); tx->unmap = NULL; } } #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH static inline void txd_lock(struct dma_async_tx_descriptor *txd) { } static inline void txd_unlock(struct dma_async_tx_descriptor *txd) { } static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next) { BUG(); } static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd) { } static inline void txd_clear_next(struct dma_async_tx_descriptor *txd) { } static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd) { return NULL; } static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd) { return NULL; } #else static inline void txd_lock(struct dma_async_tx_descriptor *txd) { spin_lock_bh(&txd->lock); } static inline void txd_unlock(struct dma_async_tx_descriptor *txd) { spin_unlock_bh(&txd->lock); } static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next) { txd->next = next; next->parent = txd; } static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd) { txd->parent = NULL; } static inline void txd_clear_next(struct dma_async_tx_descriptor *txd) { txd->next = NULL; } static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd) { return txd->parent; } static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd) { return txd->next; } #endif /** * struct dma_tx_state - filled in to report the status of * a transfer. * @last: last completed DMA cookie * @used: last issued DMA cookie (i.e. the one in progress) * @residue: the remaining number of bytes left to transmit * on the selected transfer for states DMA_IN_PROGRESS and * DMA_PAUSED if this is implemented in the driver, else 0 */ struct dma_tx_state { dma_cookie_t last; dma_cookie_t used; u32 residue; }; /** * enum dmaengine_alignment - defines alignment of the DMA async tx * buffers */ enum dmaengine_alignment { DMAENGINE_ALIGN_1_BYTE = 0, DMAENGINE_ALIGN_2_BYTES = 1, DMAENGINE_ALIGN_4_BYTES = 2, DMAENGINE_ALIGN_8_BYTES = 3, DMAENGINE_ALIGN_16_BYTES = 4, DMAENGINE_ALIGN_32_BYTES = 5, DMAENGINE_ALIGN_64_BYTES = 6, }; /** * struct dma_device - info on the entity supplying DMA services * @chancnt: how many DMA channels are supported * @privatecnt: how many DMA channels are requested by dma_request_channel * @channels: the list of struct dma_chan * @global_node: list_head for global dma_device_list * @cap_mask: one or more dma_capability flags * @max_xor: maximum number of xor sources, 0 if no capability * @max_pq: maximum number of PQ sources and PQ-continue capability * @copy_align: alignment shift for memcpy operations * @xor_align: alignment shift for xor operations * @pq_align: alignment shift for pq operations * @fill_align: alignment shift for memset operations * @dev_id: unique device ID * @dev: struct device reference for dma mapping api * @src_addr_widths: bit mask of src addr widths the device supports * @dst_addr_widths: bit mask of dst addr widths the device supports * @directions: bit mask of slave direction the device supports since * the enum dma_transfer_direction is not defined as bits for * each type of direction, the dma controller should fill (1 << * ) and same should be checked by controller as well * @residue_granularity: granularity of the transfer residue reported * by tx_status * @device_alloc_chan_resources: allocate resources and return the * number of allocated descriptors * @device_free_chan_resources: release DMA channel's resources * @device_prep_dma_memcpy: prepares a memcpy operation * @device_prep_dma_xor: prepares a xor operation * @device_prep_dma_xor_val: prepares a xor validation operation * @device_prep_dma_pq: prepares a pq operation * @device_prep_dma_pq_val: prepares a pqzero_sum operation * @device_prep_dma_memset: prepares a memset operation * @device_prep_dma_memset_sg: prepares a memset operation over a scatter list * @device_prep_dma_interrupt: prepares an end of chain interrupt operation * @device_prep_slave_sg: prepares a slave dma operation * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio. * The function takes a buffer of size buf_len. The callback function will * be called after period_len bytes have been transferred. * @device_prep_interleaved_dma: Transfer expression in a generic way. * @device_prep_dma_imm_data: DMA's 8 byte immediate data to the dst address * @device_prep_dma_custom_mapping: prepares a dma operation from dma driver * specific custom data * @device_config: Pushes a new configuration to a channel, return 0 or an error * code * @device_pause: Pauses any transfer happening on a channel. Returns * 0 or an error code * @device_resume: Resumes any transfer on a channel previously * paused. Returns 0 or an error code * @device_terminate_all: Aborts all transfers on a channel. Returns 0 * or an error code * @device_tx_status: poll for transaction completion, the optional * txstate parameter can be supplied with a pointer to get a * struct with auxiliary transfer status information, otherwise the call * will just return a simple status code * @device_issue_pending: push pending transactions to hardware */ struct dma_device { unsigned int chancnt; unsigned int privatecnt; struct list_head channels; struct list_head global_node; dma_cap_mask_t cap_mask; unsigned short max_xor; unsigned short max_pq; enum dmaengine_alignment copy_align; enum dmaengine_alignment xor_align; enum dmaengine_alignment pq_align; enum dmaengine_alignment fill_align; #define DMA_HAS_PQ_CONTINUE (1 << 15) int dev_id; struct device *dev; u32 src_addr_widths; u32 dst_addr_widths; u32 directions; enum dma_residue_granularity residue_granularity; int (*device_alloc_chan_resources)(struct dma_chan *chan); void (*device_free_chan_resources)(struct dma_chan *chan); struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)( struct dma_chan *chan, dma_addr_t dst, dma_addr_t src, size_t len, unsigned long flags); struct dma_async_tx_descriptor *(*device_prep_dma_xor)( struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src, unsigned int src_cnt, size_t len, unsigned long flags); struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)( struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt, size_t len, enum sum_check_flags *result, unsigned long flags); struct dma_async_tx_descriptor *(*device_prep_dma_pq)( struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src, unsigned int src_cnt, const unsigned char *scf, size_t len, unsigned long flags); struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)( struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src, unsigned int src_cnt, const unsigned char *scf, size_t len, enum sum_check_flags *pqres, unsigned long flags); struct dma_async_tx_descriptor *(*device_prep_dma_memset)( struct dma_chan *chan, dma_addr_t dest, int value, size_t len, unsigned long flags); struct dma_async_tx_descriptor *(*device_prep_dma_memset_sg)( struct dma_chan *chan, struct scatterlist *sg, unsigned int nents, int value, unsigned long flags); struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)( struct dma_chan *chan, unsigned long flags); struct dma_async_tx_descriptor *(*device_prep_dma_sg)( struct dma_chan *chan, struct scatterlist *dst_sg, unsigned int dst_nents, struct scatterlist *src_sg, unsigned int src_nents, unsigned long flags); struct dma_async_tx_descriptor *(*device_prep_slave_sg)( struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, enum dma_transfer_direction direction, unsigned long flags, void *context); struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)( struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, size_t period_len, enum dma_transfer_direction direction, unsigned long flags); struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)( struct dma_chan *chan, struct dma_interleaved_template *xt, unsigned long flags); struct dma_async_tx_descriptor *(*device_prep_dma_imm_data)( struct dma_chan *chan, dma_addr_t dst, u64 data, unsigned long flags); struct dma_async_tx_descriptor *(*device_prep_dma_custom_mapping)( struct dma_chan *chan, void *data, unsigned long flags); int (*device_config)(struct dma_chan *chan, struct dma_slave_config *config); int (*device_pause)(struct dma_chan *chan); int (*device_resume)(struct dma_chan *chan); int (*device_terminate_all)(struct dma_chan *chan); int (*device_terminate_all_graceful)(struct dma_chan *chan, bool graceful); enum dma_status (*device_tx_status)(struct dma_chan *chan, dma_cookie_t cookie, struct dma_tx_state *txstate); void (*device_issue_pending)(struct dma_chan *chan); }; static inline int dmaengine_slave_config(struct dma_chan *chan, struct dma_slave_config *config) { if (chan->device->device_config) return chan->device->device_config(chan, config); return -ENOSYS; } static inline bool is_slave_direction(enum dma_transfer_direction direction) { return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM); } static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single( struct dma_chan *chan, dma_addr_t buf, size_t len, enum dma_transfer_direction dir, unsigned long flags) { struct scatterlist sg; sg_init_table(&sg, 1); sg_dma_address(&sg) = buf; sg_dma_len(&sg) = len; if (!chan || !chan->device || !chan->device->device_prep_slave_sg) return NULL; return chan->device->device_prep_slave_sg(chan, &sg, 1, dir, flags, NULL); } static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg( struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, enum dma_transfer_direction dir, unsigned long flags) { if (!chan || !chan->device || !chan->device->device_prep_slave_sg) return NULL; return chan->device->device_prep_slave_sg(chan, sgl, sg_len, dir, flags, NULL); } #ifdef CONFIG_RAPIDIO_DMA_ENGINE struct rio_dma_ext; static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg( struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, enum dma_transfer_direction dir, unsigned long flags, struct rio_dma_ext *rio_ext) { if (!chan || !chan->device || !chan->device->device_prep_slave_sg) return NULL; return chan->device->device_prep_slave_sg(chan, sgl, sg_len, dir, flags, rio_ext); } #endif static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic( struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, size_t period_len, enum dma_transfer_direction dir, unsigned long flags) { if (!chan || !chan->device || !chan->device->device_prep_dma_cyclic) return NULL; return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len, period_len, dir, flags); } static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma( struct dma_chan *chan, struct dma_interleaved_template *xt, unsigned long flags) { if (!chan || !chan->device || !chan->device->device_prep_interleaved_dma) return NULL; return chan->device->device_prep_interleaved_dma(chan, xt, flags); } static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memset( struct dma_chan *chan, dma_addr_t dest, int value, size_t len, unsigned long flags) { if (!chan || !chan->device || !chan->device->device_prep_dma_memset) return NULL; return chan->device->device_prep_dma_memset(chan, dest, value, len, flags); } static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_sg( struct dma_chan *chan, struct scatterlist *dst_sg, unsigned int dst_nents, struct scatterlist *src_sg, unsigned int src_nents, unsigned long flags) { if (!chan || !chan->device || !chan->device->device_prep_dma_sg) return NULL; return chan->device->device_prep_dma_sg(chan, dst_sg, dst_nents, src_sg, src_nents, flags); } static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_custom_mapping( struct dma_chan *chan, void *data, unsigned long flags) { return chan->device->device_prep_dma_custom_mapping(chan, data, flags); } static inline int dmaengine_terminate_all(struct dma_chan *chan) { if (chan->device->device_terminate_all) return chan->device->device_terminate_all(chan); return -ENOSYS; } static inline int dmaengine_terminate_all_graceful(struct dma_chan *chan, bool graceful) { if (chan->device->device_terminate_all) return chan->device->device_terminate_all_graceful(chan, graceful); return -ENOSYS; } static inline int dmaengine_pause(struct dma_chan *chan) { if (chan->device->device_pause) return chan->device->device_pause(chan); return -ENOSYS; } static inline int dmaengine_resume(struct dma_chan *chan) { if (chan->device->device_resume) return chan->device->device_resume(chan); return -ENOSYS; } static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan, dma_cookie_t cookie, struct dma_tx_state *state) { return chan->device->device_tx_status(chan, cookie, state); } static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc) { return desc->tx_submit(desc); } static inline bool dmaengine_check_align(enum dmaengine_alignment align, size_t off1, size_t off2, size_t len) { size_t mask; if (!align) return true; mask = (1 << align) - 1; if (mask & (off1 | off2 | len)) return false; return true; } static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1, size_t off2, size_t len) { return dmaengine_check_align(dev->copy_align, off1, off2, len); } static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1, size_t off2, size_t len) { return dmaengine_check_align(dev->xor_align, off1, off2, len); } static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1, size_t off2, size_t len) { return dmaengine_check_align(dev->pq_align, off1, off2, len); } static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1, size_t off2, size_t len) { return dmaengine_check_align(dev->fill_align, off1, off2, len); } static inline void dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue) { dma->max_pq = maxpq; if (has_pq_continue) dma->max_pq |= DMA_HAS_PQ_CONTINUE; } static inline bool dmaf_continue(enum dma_ctrl_flags flags) { return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE; } static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags) { enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P; return (flags & mask) == mask; } static inline bool dma_dev_has_pq_continue(struct dma_device *dma) { return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE; } static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma) { return dma->max_pq & ~DMA_HAS_PQ_CONTINUE; } /* dma_maxpq - reduce maxpq in the face of continued operations * @dma - dma device with PQ capability * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set * * When an engine does not support native continuation we need 3 extra * source slots to reuse P and Q with the following coefficients: * 1/ {00} * P : remove P from Q', but use it as a source for P' * 2/ {01} * Q : use Q to continue Q' calculation * 3/ {00} * Q : subtract Q from P' to cancel (2) * * In the case where P is disabled we only need 1 extra source: * 1/ {01} * Q : use Q to continue Q' calculation */ static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags) { if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags)) return dma_dev_to_maxpq(dma); else if (dmaf_p_disabled_continue(flags)) return dma_dev_to_maxpq(dma) - 1; else if (dmaf_continue(flags)) return dma_dev_to_maxpq(dma) - 3; BUG(); } static inline size_t dmaengine_get_icg(bool inc, bool sgl, size_t icg, size_t dir_icg) { if (inc) { if (dir_icg) return dir_icg; else if (sgl) return icg; } return 0; } static inline size_t dmaengine_get_dst_icg(struct dma_interleaved_template *xt, struct data_chunk *chunk) { return dmaengine_get_icg(xt->dst_inc, xt->dst_sgl, chunk->icg, chunk->dst_icg); } static inline size_t dmaengine_get_src_icg(struct dma_interleaved_template *xt, struct data_chunk *chunk) { return dmaengine_get_icg(xt->src_inc, xt->src_sgl, chunk->icg, chunk->src_icg); } /* --- public DMA engine API --- */ #ifdef CONFIG_DMA_ENGINE void dmaengine_get(void); void dmaengine_put(void); #else static inline void dmaengine_get(void) { } static inline void dmaengine_put(void) { } #endif #ifdef CONFIG_ASYNC_TX_DMA #define async_dmaengine_get() dmaengine_get() #define async_dmaengine_put() dmaengine_put() #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX) #else #define async_dma_find_channel(type) dma_find_channel(type) #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */ #else static inline void async_dmaengine_get(void) { } static inline void async_dmaengine_put(void) { } static inline struct dma_chan * async_dma_find_channel(enum dma_transaction_type type) { return NULL; } #endif /* CONFIG_ASYNC_TX_DMA */ void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx, struct dma_chan *chan); static inline void async_tx_ack(struct dma_async_tx_descriptor *tx) { tx->flags |= DMA_CTRL_ACK; } static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx) { tx->flags &= ~DMA_CTRL_ACK; } static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx) { return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK; } #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask)) static inline void __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp) { set_bit(tx_type, dstp->bits); } #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask)) static inline void __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp) { clear_bit(tx_type, dstp->bits); } #define dma_cap_zero(mask) __dma_cap_zero(&(mask)) static inline void __dma_cap_zero(dma_cap_mask_t *dstp) { bitmap_zero(dstp->bits, DMA_TX_TYPE_END); } #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask)) static inline int __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp) { return test_bit(tx_type, srcp->bits); } #define for_each_dma_cap_mask(cap, mask) \ for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END) /** * dma_async_issue_pending - flush pending transactions to HW * @chan: target DMA channel * * This allows drivers to push copies to HW in batches, * reducing MMIO writes where possible. */ static inline void dma_async_issue_pending(struct dma_chan *chan) { chan->device->device_issue_pending(chan); } /** * dma_async_is_tx_complete - poll for transaction completion * @chan: DMA channel * @cookie: transaction identifier to check status of * @last: returns last completed cookie, can be NULL * @used: returns last issued cookie, can be NULL * * If @last and @used are passed in, upon return they reflect the driver * internal state and can be used with dma_async_is_complete() to check * the status of multiple cookies without re-checking hardware state. */ static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan, dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used) { struct dma_tx_state state; enum dma_status status; status = chan->device->device_tx_status(chan, cookie, &state); if (last) *last = state.last; if (used) *used = state.used; return status; } /** * dma_async_is_complete - test a cookie against chan state * @cookie: transaction identifier to test status of * @last_complete: last know completed transaction * @last_used: last cookie value handed out * * dma_async_is_complete() is used in dma_async_is_tx_complete() * the test logic is separated for lightweight testing of multiple cookies */ static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie, dma_cookie_t last_complete, dma_cookie_t last_used) { if (last_complete <= last_used) { if ((cookie <= last_complete) || (cookie > last_used)) return DMA_COMPLETE; } else { if ((cookie <= last_complete) && (cookie > last_used)) return DMA_COMPLETE; } return DMA_IN_PROGRESS; } static inline void dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue) { if (st) { st->last = last; st->used = used; st->residue = residue; } } #ifdef CONFIG_DMA_ENGINE struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type); enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie); enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx); void dma_issue_pending_all(void); struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask, dma_filter_fn fn, void *fn_param); struct dma_chan *dma_request_slave_channel_reason(struct device *dev, const char *name); struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name); void dma_release_channel(struct dma_chan *chan); int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps); #else static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type) { return NULL; } static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie) { return DMA_COMPLETE; } static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx) { return DMA_COMPLETE; } static inline void dma_issue_pending_all(void) { } static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask, dma_filter_fn fn, void *fn_param) { return NULL; } static inline struct dma_chan *dma_request_slave_channel_reason( struct device *dev, const char *name) { return ERR_PTR(-ENODEV); } static inline struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name) { return NULL; } static inline void dma_release_channel(struct dma_chan *chan) { } static inline int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps) { return -ENXIO; } #endif static inline int dmaengine_desc_set_reuse(struct dma_async_tx_descriptor *tx) { struct dma_slave_caps caps; int ret; ret = dma_get_slave_caps(tx->chan, &caps); if (ret) return ret; if (caps.descriptor_reuse) { tx->flags |= DMA_CTRL_REUSE; return 0; } else { return -EPERM; } } static inline void dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor *tx) { tx->flags &= ~DMA_CTRL_REUSE; } static inline bool dmaengine_desc_test_reuse(struct dma_async_tx_descriptor *tx) { return (tx->flags & DMA_CTRL_REUSE) == DMA_CTRL_REUSE; } static inline int dmaengine_desc_free(struct dma_async_tx_descriptor *desc) { /* this is supported for reusable desc, so check that */ if (dmaengine_desc_test_reuse(desc)) return desc->desc_free(desc); else return -EPERM; } /* --- DMA device --- */ int dma_async_device_register(struct dma_device *device); void dma_async_device_unregister(struct dma_device *device); void dma_run_dependencies(struct dma_async_tx_descriptor *tx); struct dma_chan *dma_get_slave_channel(struct dma_chan *chan); struct dma_chan *dma_get_any_slave_channel(struct dma_device *device); #define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y) #define dma_request_slave_channel_compat(mask, x, y, dev, name) \ __dma_request_slave_channel_compat(&(mask), x, y, dev, name) static inline struct dma_chan *__dma_request_slave_channel_compat(const dma_cap_mask_t *mask, dma_filter_fn fn, void *fn_param, struct device *dev, const char *name) { struct dma_chan *chan; chan = dma_request_slave_channel(dev, name); if (chan) return chan; if (!fn || !fn_param) return NULL; return __dma_request_channel(mask, fn, fn_param); } #endif /* DMAENGINE_H */