#ifdef HAVE_CONFIG_H #include #endif #ifdef WANT_XTI #ifndef lint char nettest_xti_id[]="\ @(#)nettest_xti.c (c) Copyright 1995-2012 Hewlett-Packard Co. Version 2.6.0"; #else #define DIRTY #define WANT_HISTOGRAM #define WANT_INTERVALS #endif /* lint */ #ifdef WIN32 #error XTI Interface tests are not available under Windows #endif /****************************************************************/ /* */ /* nettest_xti.c */ /* */ /* the XTI args parsing routine... */ /* */ /* scan_xti_args() */ /* */ /* the actual test routines... */ /* */ /* send_xti_tcp_stream() perform a tcp stream test */ /* recv_xti_tcp_stream() */ /* send_xti_tcp_rr() perform a tcp request/response */ /* recv_xti_tcp_rr() */ /* send_xti_tcp_conn_rr() an RR test including connect */ /* recv_xti_tcp_conn_rr() */ /* send_xti_udp_stream() perform a udp stream test */ /* recv_xti_udp_stream() */ /* send_xti_udp_rr() perform a udp request/response */ /* recv_xti_udp_rr() */ /* */ /****************************************************************/ #ifdef HAVE_CONFIG_H #include #endif #include #include #include #include #include #include #include #include #include #include #include /* xti.h should be included *after* in.h because there are name */ /* conflicts!( Silly standards people... raj 2/95 fortuenately, the */ /* confilcts are on IP_TOP and IP_TTL, whcih netperf does not yet use */ #include #include "netlib.h" #include "netsh.h" #include "nettest_xti.h" #ifdef WANT_HISTOGRAM #ifdef __sgi #include #endif /* __sgi */ #include "hist.h" #endif /* WANT_HISTOGRAM */ /* these variables are specific to the XTI sockets tests. declare */ /* them static to make them global only to this file. */ static int rss_size, /* remote socket send buffer size */ rsr_size, /* remote socket recv buffer size */ lss_size, /* local socket send buffer size */ lsr_size, /* local socket recv buffer size */ req_size = 1, /* request size */ rsp_size = 1, /* response size */ send_size, /* how big are individual sends */ recv_size; /* how big are individual receives */ static int confidence_iteration; static char local_cpu_method; static char remote_cpu_method; /* different options for the xti */ static int loc_nodelay, /* don't/do use NODELAY locally */ rem_nodelay, /* don't/do use NODELAY remotely */ loc_sndavoid, /* avoid send copies locally */ loc_rcvavoid, /* avoid recv copies locally */ rem_sndavoid, /* avoid send copies remotely */ rem_rcvavoid; /* avoid recv_copies remotely */ static struct t_info info_struct; #ifdef WANT_HISTOGRAM #ifdef HAVE_GETHRTIME hrtime_t time_one; hrtime_t time_two; #else static struct timeval time_one; static struct timeval time_two; #endif /* HAVE_GETHRTIME */ static HIST time_hist; #endif /* WANT_HISTOGRAM */ static char loc_xti_device[32] = "/dev/tcp"; static char rem_xti_device[32] = "/dev/tcp"; static int xti_flags = 0; char xti_usage[] = "\n\ Usage: netperf [global options] -- [test options] \n\ \n\ TCP/UDP XTI API Test Options:\n\ -D [L][,R] Set XTI_TCP_NODELAY locally and/or remotely (XTI_TCP_*)\n\ -h Display this text\n\ -m bytes Set the send size (XTI_TCP_STREAM, XTI_UDP_STREAM)\n\ -M bytes Set the recv size (XTI_TCP_STREAM, XTI_UDP_STREAM)\n\ -r bytes Set request size (XTI_TCP_RR, XTI_UDP_RR)\n\ -R bytes Set response size (XTI_TCP_RR, XTI_UDP_RR)\n\ -s send[,recv] Set local socket send/recv buffer sizes\n\ -S send[,recv] Set remote socket send/recv buffer sizes\n\ -X dev[,dev] Set the local/remote XTI device file name\n\ \n\ For those options taking two parms, at least one must be specified;\n\ specifying one value without a comma will set both parms to that\n\ value, specifying a value with a leading comma will set just the second\n\ parm, a value with a trailing comma will set just the first. To set\n\ each parm to unique values, specify both and separate them with a\n\ comma.\n"; /* This routine is intended to retrieve interesting aspects of tcp */ /* for the data connection. at first, it attempts to retrieve the */ /* maximum segment size. later, it might be modified to retrieve */ /* other information, but it must be information that can be */ /* retrieved quickly as it is called during the timing of the test. */ /* for that reason, a second routine may be created that can be */ /* called outside of the timing loop */ void get_xti_info(socket, info_struct) int socket; struct t_info *info_struct; { } /* This routine will create a data (listen) socket with the apropriate */ /* options set and return it to the caller. this replaces all the */ /* duplicate code in each of the test routines and should help make */ /* things a little easier to understand. since this routine can be */ /* called by either the netperf or netserver programs, all output */ /* should be directed towards "where." family is generally AF_INET, */ /* and type will be either SOCK_STREAM or SOCK_DGRAM */ SOCKET create_xti_endpoint(char *name) { SOCKET temp_socket; struct t_optmgmt *opt_req; /* we request an option */ struct t_optmgmt *opt_ret; /* it tells us what we got */ /* we use this to pass-in BSD-like socket options through t_optmgmt. */ /* it ends up being about as clear as mud. raj 2/95 */ struct sock_option { struct t_opthdr myopthdr; long value; } *sock_option; if (debug) { fprintf(where,"create_xti_endpoint: attempting to open %s\n", name); fflush(where); } /*set up the data socket */ temp_socket = t_open(name,O_RDWR,NULL); if (temp_socket == INVALID_SOCKET){ fprintf(where, "netperf: create_xti_endpoint: t_open %s: errno %d t_errno %d\n", name, errno, t_errno); fflush(where); exit(1); } if (debug) { fprintf(where,"create_xti_endpoint: socket %d obtained...\n",temp_socket); fflush(where); } /* allocate what we need for option mgmt */ if ((opt_req = (struct t_optmgmt *)t_alloc(temp_socket,T_OPTMGMT,T_ALL)) == NULL) { fprintf(where, "netperf: create_xti_endpoint: t_alloc: opt_req errno %d\n", errno); fflush(where); exit(1); } if (debug) { fprintf(where, "create_xti_endpoint: opt_req->opt.buf %x maxlen %d len %d\n", opt_req->opt.buf, opt_req->opt.maxlen, opt_req->opt.len); fflush(where); } if ((opt_ret = (struct t_optmgmt *) t_alloc(temp_socket,T_OPTMGMT,T_ALL)) == NULL) { fprintf(where, "netperf: create_xti_endpoint: t_alloc: opt_ret errno %d\n", errno); fflush(where); exit(1); } if (debug) { fprintf(where, "create_xti_endpoint: opt_ret->opt.buf %x maxlen %d len %d\n", opt_ret->opt.buf, opt_ret->opt.maxlen, opt_ret->opt.len); fflush(where); } /* Modify the local socket size. The reason we alter the send buffer */ /* size here rather than when the connection is made is to take care */ /* of decreases in buffer size. Decreasing the window size after */ /* connection establishment is a TCP no-no. Also, by setting the */ /* buffer (window) size before the connection is established, we can */ /* control the TCP MSS (segment size). The MSS is never more that 1/2 */ /* the minimum receive buffer size at each half of the connection. */ /* This is why we are altering the receive buffer size on the sending */ /* size of a unidirectional transfer. If the user has not requested */ /* that the socket buffers be altered, we will try to find-out what */ /* their values are. If we cannot touch the socket buffer in any way, */ /* we will set the values to -1 to indicate that. */ #ifdef XTI_SNDBUF if (lss_size > 0) { /* we want to "negotiate" the option */ opt_req->flags = T_NEGOTIATE; } else { /* we want to accept the default, and know what it is. I assume */ /* that when nothing has been changed, that T_CURRENT will return */ /* the same as T_DEFAULT raj 3/95 */ opt_req->flags = T_CURRENT; } /* the first part is for the netbuf that holds the option we want */ /* to negotiate or check */ /* the buffer of the netbuf points at the socket options structure */ /* we assume that the t_alloc call allocated a buffer that started */ /* on a proper alignment */ sock_option = (struct sock_option *)opt_req->opt.buf; /* and next, set the fields in the sock_option structure */ sock_option->myopthdr.level = XTI_GENERIC; sock_option->myopthdr.name = XTI_SNDBUF; sock_option->myopthdr.len = sizeof(struct t_opthdr) + sizeof(long); sock_option->value = lss_size; opt_req->opt.len = sizeof(struct t_opthdr) + sizeof(long); /* now, set-up the stuff to return the value in the end */ /* we assume that the t_alloc call allocated a buffer that started */ /* on a proper alignment */ sock_option = (struct sock_option *)opt_ret->opt.buf; /* finally, call t_optmgmt. clear as mud. */ if (t_optmgmt(temp_socket,opt_req,opt_ret) == -1) { fprintf(where, "netperf: create_xti_endpoint: XTI_SNDBUF option: t_errno %d\n", t_errno); fflush(where); exit(1); } if (sock_option->myopthdr.status == T_SUCCESS) { lss_size = sock_option->value; } else { fprintf(where,"create_xti_endpoint: XTI_SNDBUF option status 0x%.4x", sock_option->myopthdr.status); fprintf(where," value %d\n", sock_option->value); fflush(where); lss_size = -1; } if (lsr_size > 0) { /* we want to "negotiate" the option */ opt_req->flags = T_NEGOTIATE; } else { /* we want to accept the default, and know what it is. I assume */ /* that when nothing has been changed, that T_CURRENT will return */ /* the same as T_DEFAULT raj 3/95 */ opt_req->flags = T_CURRENT; } /* the first part is for the netbuf that holds the option we want */ /* to negotiate or check */ /* the buffer of the netbuf points at the socket options structure */ /* we assume that the t_alloc call allocated a buffer that started */ /* on a proper alignment */ sock_option = (struct sock_option *)opt_req->opt.buf; /* and next, set the fields in the sock_option structure */ sock_option->myopthdr.level = XTI_GENERIC; sock_option->myopthdr.name = XTI_RCVBUF; sock_option->myopthdr.len = sizeof(struct t_opthdr) + sizeof(long); sock_option->value = lsr_size; opt_req->opt.len = sizeof(struct t_opthdr) + sizeof(long); /* now, set-up the stuff to return the value in the end */ /* we assume that the t_alloc call allocated a buffer that started */ /* on a proper alignment */ sock_option = (struct sock_option *)opt_ret->opt.buf; /* finally, call t_optmgmt. clear as mud. */ if (t_optmgmt(temp_socket,opt_req,opt_ret) == -1) { fprintf(where, "netperf: create_xti_endpoint: XTI_RCVBUF option: t_errno %d\n", t_errno); fflush(where); exit(1); } lsr_size = sock_option->value; /* this needs code */ if (debug) { fprintf(where,"netperf: create_xti_endpoint: socket sizes determined...\n"); fprintf(where," send: %d recv: %d\n", lss_size,lsr_size); fflush(where); } #else /* XTI_SNDBUF */ lss_size = -1; lsr_size = -1; #endif /* XTI_SNDBUF */ /* now, we may wish to enable the copy avoidance features on the */ /* local system. of course, this may not be possible... */ if (loc_rcvavoid) { fprintf(where, "netperf: create_xti_endpoint: Could not enable receive copy avoidance"); fflush(where); loc_rcvavoid = 0; } if (loc_sndavoid) { fprintf(where, "netperf: create_xti_endpoint: Could not enable send copy avoidance"); fflush(where); loc_sndavoid = 0; } /* Now, we will see about setting the TCP_NODELAY flag on the local */ /* socket. We will only do this for those systems that actually */ /* support the option. If it fails, note the fact, but keep going. */ /* If the user tries to enable TCP_NODELAY on a UDP socket, this */ /* will cause an error to be displayed */ #ifdef TCP_NODELAY if ((strcmp(test_name,"XTI_TCP_STREAM") == 0) || (strcmp(test_name,"XTI_TCP_RR") == 0) || (strcmp(test_name,"XTI_TCP_CRR") == 0)) { if (loc_nodelay) { /* we want to "negotiate" the option */ opt_req->flags = T_NEGOTIATE; } else { /* we want to accept the default, and know what it is. I assume */ /* that when nothing has been changed, that T_CURRENT will return */ /* the same as T_DEFAULT raj 3/95 */ opt_req->flags = T_CURRENT; } /* the first part is for the netbuf that holds the option we want */ /* to negotiate or check the buffer of the netbuf points at the */ /* socket options structure */ /* we assume that the t_alloc call allocated a buffer that started */ /* on a proper alignment */ sock_option = (struct sock_option *)opt_req->opt.buf; /* and next, set the fields in the sock_option structure */ sock_option->myopthdr.level = INET_TCP; sock_option->myopthdr.name = TCP_NODELAY; sock_option->myopthdr.len = sizeof(struct t_opthdr) + sizeof(long); sock_option->value = T_YES; opt_req->opt.len = sizeof(struct t_opthdr) + sizeof(long); /* now, set-up the stuff to return the value in the end */ /* we assume that the t_alloc call allocated a buffer that started */ /* on a proper alignment */ sock_option = (struct sock_option *)opt_ret->opt.buf; /* finally, call t_optmgmt. clear as mud. */ if (t_optmgmt(temp_socket,opt_req,opt_ret) == -1) { fprintf(where, "create_xti_endpoint: TCP_NODELAY option: errno %d t_errno %d\n", errno, t_errno); fflush(where); exit(1); } loc_nodelay = sock_option->value; } #else /* TCP_NODELAY */ loc_nodelay = 0; #endif /* TCP_NODELAY */ return(temp_socket); } /* This routine implements the TCP unidirectional data transfer test */ /* (a.k.a. stream) for the xti interface. It receives its */ /* parameters via global variables from the shell and writes its */ /* output to the standard output. */ void send_xti_tcp_stream(char remote_host[]) { char *tput_title = "\ Recv Send Send \n\ Socket Socket Message Elapsed \n\ Size Size Size Time Throughput \n\ bytes bytes bytes secs. %s/sec \n\n"; char *tput_fmt_0 = "%7.2f\n"; char *tput_fmt_1 = "%6d %6d %6d %-6.2f %7.2f \n"; char *cpu_title = "\ Recv Send Send Utilization Service Demand\n\ Socket Socket Message Elapsed Send Recv Send Recv\n\ Size Size Size Time Throughput local remote local remote\n\ bytes bytes bytes secs. %-8.8s/s %% %c %% %c us/KB us/KB\n\n"; char *cpu_fmt_0 = "%6.3f %c\n"; char *cpu_fmt_1 = "%6d %6d %6d %-6.2f %7.2f %-6.2f %-6.2f %-6.3f %-6.3f\n"; char *ksink_fmt = "\n\ Alignment Offset %-8.8s %-8.8s Sends %-8.8s Recvs\n\ Local Remote Local Remote Xfered Per Per\n\ Send Recv Send Recv Send (avg) Recv (avg)\n\ %5d %5d %5d %5d %6.4g %6.2f %6d %6.2f %6d\n"; char *ksink_fmt2 = "\n\ Maximum\n\ Segment\n\ Size (bytes)\n\ %6d\n"; float elapsed_time; #ifdef WANT_INTERVALS int interval_count; sigset_t signal_set; #endif /* what we want is to have a buffer space that is at least one */ /* send-size greater than our send window. this will insure that we */ /* are never trying to re-use a buffer that may still be in the hands */ /* of the transport. This buffer will be malloc'd after we have found */ /* the size of the local senc socket buffer. We will want to deal */ /* with alignment and offset concerns as well. */ int *message_int_ptr; struct ring_elt *send_ring; int len; unsigned int nummessages; SOCKET send_socket; int bytes_remaining; int tcp_mss = -1; /* possibly uninitialized on printf far below */ /* with links like fddi, one can send > 32 bits worth of bytes */ /* during a test... ;-) at some point, this should probably become a */ /* 64bit integral type, but those are not entirely common yet */ double bytes_sent; float local_cpu_utilization; float local_service_demand; float remote_cpu_utilization; float remote_service_demand; double thruput; /* some addressing information */ struct hostent *hp; struct sockaddr_in server; unsigned int addr; struct t_call server_call; struct xti_tcp_stream_request_struct *xti_tcp_stream_request; struct xti_tcp_stream_response_struct *xti_tcp_stream_response; struct xti_tcp_stream_results_struct *xti_tcp_stream_result; xti_tcp_stream_request = (struct xti_tcp_stream_request_struct *)netperf_request.content.test_specific_data; xti_tcp_stream_response = (struct xti_tcp_stream_response_struct *)netperf_response.content.test_specific_data; xti_tcp_stream_result = (struct xti_tcp_stream_results_struct *)netperf_response.content.test_specific_data; #ifdef WANT_HISTOGRAM time_hist = HIST_new(); #endif /* WANT_HISTOGRAM */ /* since we are now disconnected from the code that established the */ /* control socket, and since we want to be able to use different */ /* protocols and such, we are passed the name of the remote host and */ /* must turn that into the test specific addressing information. */ bzero((char *)&server, sizeof(server)); /* it would seem that while HP-UX will allow an IP address (as a */ /* string) in a call to gethostbyname, other, less enlightened */ /* systems do not. fix from awjacks@ca.sandia.gov raj 10/95 */ /* order changed to check for IP address first. raj 7/96 */ if ((addr = inet_addr(remote_host)) == SOCKET_ERROR) { /* it was not an IP address, try it as a name */ if ((hp = gethostbyname(remote_host)) == NULL) { /* we have no idea what it is */ fprintf(where, "establish_control: could not resolve the destination %s\n", remote_host); fflush(where); exit(1); } else { /* it was a valid remote_host */ bcopy(hp->h_addr, (char *)&server.sin_addr, hp->h_length); server.sin_family = hp->h_addrtype; } } else { /* it was a valid IP address */ server.sin_addr.s_addr = addr; server.sin_family = AF_INET; } if ( print_headers ) { /* we want to have some additional, interesting information in */ /* the headers. we know some of it here, but not all, so we will */ /* only print the test title here and will print the results */ /* titles after the test is finished */ fprintf(where,"XTI TCP STREAM TEST"); fprintf(where," to %s", remote_host); if (iteration_max > 1) { fprintf(where, " : +/-%3.1f%% @ %2d%% conf.", interval/0.02, confidence_level); } if (loc_nodelay || rem_nodelay) { fprintf(where," : nodelay"); } if (loc_sndavoid || loc_rcvavoid || rem_sndavoid || rem_rcvavoid) { fprintf(where," : copy avoidance"); } #ifdef WANT_HISTOGRAM fprintf(where," : histogram"); #endif /* WANT_HISTOGRAM */ #ifdef WANT_INTERVALS fprintf(where," : interval"); #endif /* WANT_INTERVALS */ #ifdef DIRTY fprintf(where," : dirty data"); #endif /* DIRTY */ fprintf(where,"\n"); } send_ring = NULL; confidence_iteration = 1; init_stat(); /* we have a great-big while loop which controls the number of times */ /* we run a particular test. this is for the calculation of a */ /* confidence interval (I really should have stayed awake during */ /* probstats :). If the user did not request confidence measurement */ /* (no confidence is the default) then we will only go though the */ /* loop once. the confidence stuff originates from the folks at IBM */ while (((confidence < 0) && (confidence_iteration < iteration_max)) || (confidence_iteration <= iteration_min)) { /* initialize a few counters. we have to remember that we might be */ /* going through the loop more than once. */ nummessages = 0; bytes_sent = 0.0; times_up = 0; /*set up the data socket */ send_socket = create_xti_endpoint(loc_xti_device); if (send_socket == INVALID_SOCKET) { perror("netperf: send_xti_tcp_stream: tcp stream data socket"); exit(1); } if (debug) { fprintf(where,"send_xti_tcp_stream: send_socket obtained...\n"); } /* it would seem that with XTI, there is no implicit bind on a */ /* connect, so we have to make a call to t_bind. this is not */ /* terribly convenient, but I suppose that "standard is better */ /* than better" :) raj 2/95 */ if (t_bind(send_socket, NULL, NULL) == SOCKET_ERROR) { t_error("send_xti_tcp_stream: t_bind"); exit(1); } /* at this point, we have either retrieved the socket buffer sizes, */ /* or have tried to set them, so now, we may want to set the send */ /* size based on that (because the user either did not use a -m */ /* option, or used one with an argument of 0). If the socket buffer */ /* size is not available, we will set the send size to 4KB - no */ /* particular reason, just arbitrary... */ if (send_size == 0) { if (lss_size > 0) { send_size = lss_size; } else { send_size = 4096; } } /* set-up the data buffer ring with the requested alignment and offset. */ /* note also that we have allocated a quantity */ /* of memory that is at least one send-size greater than our socket */ /* buffer size. We want to be sure that there are at least two */ /* buffers allocated - this can be a bit of a problem when the */ /* send_size is bigger than the socket size, so we must check... the */ /* user may have wanted to explicitly set the "width" of our send */ /* buffers, we should respect that wish... */ if (send_width == 0) { send_width = (lss_size/send_size) + 1; if (send_width == 1) send_width++; } if (send_ring == NULL) { /* only allocate the send ring once. this is a networking test, */ /* not a memory allocation test. this way, we do not need a */ /* deallocate_buffer_ring() routine, and I don't feel like */ /* writing one anyway :) raj 11/94 */ send_ring = allocate_buffer_ring(send_width, send_size, local_send_align, local_send_offset); } /* If the user has requested cpu utilization measurements, we must */ /* calibrate the cpu(s). We will perform this task within the tests */ /* themselves. If the user has specified the cpu rate, then */ /* calibrate_local_cpu will return rather quickly as it will have */ /* nothing to do. If local_cpu_rate is zero, then we will go through */ /* all the "normal" calibration stuff and return the rate back. */ if (local_cpu_usage) { local_cpu_rate = calibrate_local_cpu(local_cpu_rate); } /* Tell the remote end to do a listen. The server alters the socket */ /* paramters on the other side at this point, hence the reason for */ /* all the values being passed in the setup message. If the user did */ /* not specify any of the parameters, they will be passed as 0, which */ /* will indicate to the remote that no changes beyond the system's */ /* default should be used. Alignment is the exception, it will */ /* default to 1, which will be no alignment alterations. */ netperf_request.content.request_type = DO_XTI_TCP_STREAM; xti_tcp_stream_request->send_buf_size = rss_size; xti_tcp_stream_request->recv_buf_size = rsr_size; xti_tcp_stream_request->receive_size = recv_size; xti_tcp_stream_request->no_delay = rem_nodelay; xti_tcp_stream_request->recv_alignment = remote_recv_align; xti_tcp_stream_request->recv_offset = remote_recv_offset; xti_tcp_stream_request->measure_cpu = remote_cpu_usage; xti_tcp_stream_request->cpu_rate = remote_cpu_rate; if (test_time) { xti_tcp_stream_request->test_length = test_time; } else { xti_tcp_stream_request->test_length = test_bytes; } xti_tcp_stream_request->so_rcvavoid = rem_rcvavoid; xti_tcp_stream_request->so_sndavoid = rem_sndavoid; strcpy(xti_tcp_stream_request->xti_device, rem_xti_device); #ifdef __alpha /* ok - even on a DEC box, strings are strings. I didn't really want */ /* to ntohl the words of a string. since I don't want to teach the */ /* send_ and recv_ _request and _response routines about the types, */ /* I will put "anti-ntohl" calls here. I imagine that the "pure" */ /* solution would be to use XDR, but I am still leary of being able */ /* to find XDR libs on all platforms I want running netperf. raj */ { int *charword; int *initword; int *lastword; initword = (int *) xti_tcp_stream_request->xti_device; lastword = initword + ((strlen(rem_xti_device) + 3) / 4); for (charword = initword; charword < lastword; charword++) { *charword = ntohl(*charword); } } #endif /* __alpha */ #ifdef DIRTY xti_tcp_stream_request->dirty_count = rem_dirty_count; xti_tcp_stream_request->clean_count = rem_clean_count; #endif /* DIRTY */ if (debug > 1) { fprintf(where, "netperf: send_xti_tcp_stream: requesting TCP stream test\n"); } send_request(); /* The response from the remote will contain all of the relevant */ /* socket parameters for this test type. We will put them back into */ /* the variables here so they can be displayed if desired. The */ /* remote will have calibrated CPU if necessary, and will have done */ /* all the needed set-up we will have calibrated the cpu locally */ /* before sending the request, and will grab the counter value right*/ /* after the connect returns. The remote will grab the counter right*/ /* after the accept call. This saves the hassle of extra messages */ /* being sent for the TCP tests. */ recv_response(); if (!netperf_response.content.serv_errno) { if (debug) fprintf(where,"remote listen done.\n"); rsr_size = xti_tcp_stream_response->recv_buf_size; rss_size = xti_tcp_stream_response->send_buf_size; rem_nodelay = xti_tcp_stream_response->no_delay; remote_cpu_usage = xti_tcp_stream_response->measure_cpu; remote_cpu_rate = xti_tcp_stream_response->cpu_rate; /* we have to make sure that the server port number is in */ /* network order */ server.sin_port = (short)xti_tcp_stream_response->data_port_number; server.sin_port = htons(server.sin_port); rem_rcvavoid = xti_tcp_stream_response->so_rcvavoid; rem_sndavoid = xti_tcp_stream_response->so_sndavoid; } else { Set_errno(netperf_response.content.serv_errno); perror("netperf: remote error"); exit(1); } /*Connect up to the remote port on the data socket */ memset (&server_call, 0, sizeof(server_call)); server_call.addr.maxlen = sizeof(struct sockaddr_in); server_call.addr.len = sizeof(struct sockaddr_in); server_call.addr.buf = (char *)&server; if (t_connect(send_socket, &server_call, NULL) == INVALID_SOCKET){ t_error("netperf: send_xti_tcp_stream: data socket connect failed"); printf(" port: %d\n",ntohs(server.sin_port)); exit(1); } /* Data Socket set-up is finished. If there were problems, either */ /* the connect would have failed, or the previous response would */ /* have indicated a problem. I failed to see the value of the */ /* extra message after the accept on the remote. If it failed, */ /* we'll see it here. If it didn't, we might as well start pumping */ /* data. */ /* Set-up the test end conditions. For a stream test, they can be */ /* either time or byte-count based. */ if (test_time) { /* The user wanted to end the test after a period of time. */ times_up = 0; bytes_remaining = 0; /* in previous revisions, we had the same code repeated throught */ /* all the test suites. this was unnecessary, and meant more */ /* work for me when I wanted to switch to POSIX signals, so I */ /* have abstracted this out into a routine in netlib.c. if you */ /* are experiencing signal problems, you might want to look */ /* there. raj 11/94 */ start_timer(test_time); } else { /* The tester wanted to send a number of bytes. */ bytes_remaining = test_bytes; times_up = 1; } /* The cpu_start routine will grab the current time and possibly */ /* value of the idle counter for later use in measuring cpu */ /* utilization and/or service demand and thruput. */ cpu_start(local_cpu_usage); #ifdef WANT_INTERVALS if ((interval_burst) || (demo_mode)) { /* zero means that we never pause, so we never should need the */ /* interval timer, unless we are in demo_mode */ start_itimer(interval_wate); } interval_count = interval_burst; /* get the signal set for the call to sigsuspend */ if (sigprocmask(SIG_BLOCK, (sigset_t *)NULL, &signal_set) != 0) { fprintf(where, "send_xti_tcp_stream: unable to get sigmask errno %d\n", errno); fflush(where); exit(1); } #endif /* WANT_INTERVALS */ /* before we start, initialize a few variables */ /* We use an "OR" to control test execution. When the test is */ /* controlled by time, the byte count check will always return false. */ /* When the test is controlled by byte count, the time test will */ /* always return false. When the test is finished, the whole */ /* expression will go false and we will stop sending data. */ while ((!times_up) || (bytes_remaining > 0)) { #ifdef DIRTY /* we want to dirty some number of consecutive integers in the buffer */ /* we are about to send. we may also want to bring some number of */ /* them cleanly into the cache. The clean ones will follow any dirty */ /* ones into the cache. at some point, we might want to replace */ /* the rand() call with something from a table to reduce our call */ /* overhead during the test, but it is not a high priority item. */ access_buffer(send_ring->buffer_ptr, send_size, loc_dirty_count, loc_clean_count); #endif /* DIRTY */ #ifdef WANT_HISTOGRAM /* timestamp just before we go into send and then again just after */ /* we come out raj 8/94 */ HIST_timestamp(&time_one); #endif /* WANT_HISTOGRAM */ if((len=t_snd(send_socket, send_ring->buffer_ptr, send_size, 0)) != send_size) { if ((len >=0) || (errno == EINTR)) { /* the test was interrupted, must be the end of test */ break; } fprintf(where, "send_xti_tcp_stream: t_snd: errno %d t_errno %d t_look 0x%.4x\n", errno, t_errno, t_look(send_socket)); fflush(where); exit(1); } #ifdef WANT_HISTOGRAM /* timestamp the exit from the send call and update the histogram */ HIST_timestamp(&time_two); HIST_add(time_hist,delta_micro(&time_one,&time_two)); #endif /* WANT_HISTOGRAM */ #ifdef WANT_INTERVALS if (demo_mode) { units_this_tick += send_size; } /* in this case, the interval count is the count-down couter */ /* to decide to sleep for a little bit */ if ((interval_burst) && (--interval_count == 0)) { /* call sigsuspend and wait for the interval timer to get us */ /* out */ if (debug) { fprintf(where,"about to suspend\n"); fflush(where); } if (sigsuspend(&signal_set) == EFAULT) { fprintf(where, "send_xti_tcp_stream: fault with signal set!\n"); fflush(where); exit(1); } interval_count = interval_burst; } #endif /* WANT_INTERVALS */ /* now we want to move our pointer to the next position in the */ /* data buffer...we may also want to wrap back to the "beginning" */ /* of the bufferspace, so we will mod the number of messages sent */ /* by the send width, and use that to calculate the offset to add */ /* to the base pointer. */ nummessages++; send_ring = send_ring->next; if (bytes_remaining) { bytes_remaining -= send_size; } } /* The test is over. Flush the buffers to the remote end. We do a */ /* graceful release to insure that all data has been taken by the */ /* remote. */ /* but first, if the verbosity is greater than 1, find-out what */ /* the TCP maximum segment_size was (if possible) */ if (verbosity > 1) { tcp_mss = -1; get_xti_info(send_socket,info_struct); } if (t_sndrel(send_socket) == -1) { t_error("netperf: cannot shutdown tcp stream socket"); exit(1); } /* hang a t_rcvrel() off the socket to block until the remote has */ /* brought all the data up into the application. it will do a */ /* t_sedrel to cause a FIN to be sent our way. We will assume that */ /* any exit from the t_rcvrel() call is good... raj 2/95 */ if (debug > 1) { fprintf(where,"about to hang a receive for graceful release.\n"); fflush(where); } t_rcvrel(send_socket); /* this call will always give us the elapsed time for the test, and */ /* will also store-away the necessaries for cpu utilization */ cpu_stop(local_cpu_usage,&elapsed_time); /* was cpu being */ /* measured and how */ /* long did we really */ /* run? */ /* Get the statistics from the remote end. The remote will have */ /* calculated service demand and all those interesting things. If it */ /* wasn't supposed to care, it will return obvious values. */ recv_response(); if (!netperf_response.content.serv_errno) { if (debug) fprintf(where,"remote results obtained\n"); } else { Set_errno(netperf_response.content.serv_errno); perror("netperf: remote error"); exit(1); } /* We now calculate what our thruput was for the test. In the future, */ /* we may want to include a calculation of the thruput measured by */ /* the remote, but it should be the case that for a TCP stream test, */ /* that the two numbers should be *very* close... We calculate */ /* bytes_sent regardless of the way the test length was controlled. */ /* If it was time, we needed to, and if it was by bytes, the user may */ /* have specified a number of bytes that wasn't a multiple of the */ /* send_size, so we really didn't send what he asked for ;-) */ bytes_sent = xti_tcp_stream_result->bytes_received; thruput = calc_thruput(bytes_sent); if (local_cpu_usage || remote_cpu_usage) { /* We must now do a little math for service demand and cpu */ /* utilization for the system(s) */ /* Of course, some of the information might be bogus because */ /* there was no idle counter in the kernel(s). We need to make */ /* a note of this for the user's benefit...*/ if (local_cpu_usage) { local_cpu_utilization = calc_cpu_util(0.0); local_service_demand = calc_service_demand(bytes_sent, 0.0, 0.0, 0); } else { local_cpu_utilization = -1.0; local_service_demand = -1.0; } if (remote_cpu_usage) { remote_cpu_utilization = xti_tcp_stream_result->cpu_util; remote_service_demand = calc_service_demand(bytes_sent, 0.0, remote_cpu_utilization, xti_tcp_stream_result->num_cpus); } else { remote_cpu_utilization = -1.0; remote_service_demand = -1.0; } } else { /* we were not measuring cpu, for the confidence stuff, we */ /* should make it -1.0 */ local_cpu_utilization = -1.0; local_service_demand = -1.0; remote_cpu_utilization = -1.0; remote_service_demand = -1.0; } /* at this point, we want to calculate the confidence information. */ /* if debugging is on, calculate_confidence will print-out the */ /* parameters we pass it */ calculate_confidence(confidence_iteration, elapsed_time, thruput, local_cpu_utilization, remote_cpu_utilization, local_service_demand, remote_service_demand); confidence_iteration++; } /* at this point, we have finished making all the runs that we */ /* will be making. so, we should extract what the calcuated values */ /* are for all the confidence stuff. we could make the values */ /* global, but that seemed a little messy, and it did not seem worth */ /* all the mucking with header files. so, we create a routine much */ /* like calcualte_confidence, which just returns the mean values. */ /* raj 11/94 */ retrieve_confident_values(&elapsed_time, &thruput, &local_cpu_utilization, &remote_cpu_utilization, &local_service_demand, &remote_service_demand); /* We are now ready to print all the information. If the user */ /* has specified zero-level verbosity, we will just print the */ /* local service demand, or the remote service demand. If the */ /* user has requested verbosity level 1, he will get the basic */ /* "streamperf" numbers. If the user has specified a verbosity */ /* of greater than 1, we will display a veritable plethora of */ /* background information from outside of this block as it it */ /* not cpu_measurement specific... */ if (confidence < 0) { /* we did not hit confidence, but were we asked to look for it? */ if (iteration_max > 1) { display_confidence(); } } if (local_cpu_usage || remote_cpu_usage) { local_cpu_method = format_cpu_method(cpu_method); remote_cpu_method = format_cpu_method(xti_tcp_stream_result->cpu_method); switch (verbosity) { case 0: if (local_cpu_usage) { fprintf(where, cpu_fmt_0, local_service_demand, local_cpu_method); } else { fprintf(where, cpu_fmt_0, remote_service_demand, remote_cpu_method); } break; case 1: case 2: if (print_headers) { fprintf(where, cpu_title, format_units(), local_cpu_method, remote_cpu_method); } fprintf(where, cpu_fmt_1, /* the format string */ rsr_size, /* remote recvbuf size */ lss_size, /* local sendbuf size */ send_size, /* how large were the sends */ elapsed_time, /* how long was the test */ thruput, /* what was the xfer rate */ local_cpu_utilization, /* local cpu */ remote_cpu_utilization, /* remote cpu */ local_service_demand, /* local service demand */ remote_service_demand); /* remote service demand */ break; } } else { /* The tester did not wish to measure service demand. */ switch (verbosity) { case 0: fprintf(where, tput_fmt_0, thruput); break; case 1: case 2: if (print_headers) { fprintf(where,tput_title,format_units()); } fprintf(where, tput_fmt_1, /* the format string */ rsr_size, /* remote recvbuf size */ lss_size, /* local sendbuf size */ send_size, /* how large were the sends */ elapsed_time, /* how long did it take */ thruput);/* how fast did it go */ break; } } /* it would be a good thing to include information about some of the */ /* other parameters that may have been set for this test, but at the */ /* moment, I do not wish to figure-out all the formatting, so I will */ /* just put this comment here to help remind me that it is something */ /* that should be done at a later time. */ if (verbosity > 1) { /* The user wanted to know it all, so we will give it to him. */ /* This information will include as much as we can find about */ /* TCP statistics, the alignments of the sends and receives */ /* and all that sort of rot... */ /* this stuff needs to be worked-out in the presence of confidence */ /* intervals and multiple iterations of the test... raj 11/94 */ fprintf(where, ksink_fmt, "Bytes", "Bytes", "Bytes", local_send_align, remote_recv_align, local_send_offset, remote_recv_offset, bytes_sent, bytes_sent / (double)nummessages, nummessages, bytes_sent / (double)xti_tcp_stream_result->recv_calls, xti_tcp_stream_result->recv_calls); fprintf(where, ksink_fmt2, tcp_mss); fflush(where); #ifdef WANT_HISTOGRAM fprintf(where,"\n\nHistogram of time spent in send() call.\n"); fflush(where); HIST_report(time_hist); #endif /* WANT_HISTOGRAM */ } } /* This is the server-side routine for the tcp stream test. It is */ /* implemented as one routine. I could break things-out somewhat, but */ /* didn't feel it was necessary. */ void recv_xti_tcp_stream() { struct sockaddr_in myaddr_in, peeraddr_in; struct t_bind bind_req, bind_resp; struct t_call call_req; SOCKET s_listen,s_data; int addrlen; int len; unsigned int receive_calls; float elapsed_time; double bytes_received; struct ring_elt *recv_ring; int *message_int_ptr; int i; struct xti_tcp_stream_request_struct *xti_tcp_stream_request; struct xti_tcp_stream_response_struct *xti_tcp_stream_response; struct xti_tcp_stream_results_struct *xti_tcp_stream_results; xti_tcp_stream_request = (struct xti_tcp_stream_request_struct *)netperf_request.content.test_specific_data; xti_tcp_stream_response = (struct xti_tcp_stream_response_struct *)netperf_response.content.test_specific_data; xti_tcp_stream_results = (struct xti_tcp_stream_results_struct *)netperf_response.content.test_specific_data; if (debug) { fprintf(where,"netserver: recv_xti_tcp_stream: entered...\n"); fflush(where); } /* We want to set-up the listen socket with all the desired */ /* parameters and then let the initiator know that all is ready. If */ /* socket size defaults are to be used, then the initiator will have */ /* sent us 0's. If the socket sizes cannot be changed, then we will */ /* send-back what they are. If that information cannot be determined, */ /* then we send-back -1's for the sizes. If things go wrong for any */ /* reason, we will drop back ten yards and punt. */ /* If anything goes wrong, we want the remote to know about it. It */ /* would be best if the error that the remote reports to the user is */ /* the actual error we encountered, rather than some bogus unexpected */ /* response type message. */ if (debug) { fprintf(where,"recv_xti_tcp_stream: setting the response type...\n"); fflush(where); } netperf_response.content.response_type = XTI_TCP_STREAM_RESPONSE; if (debug) { fprintf(where,"recv_xti_tcp_stream: the response type is set...\n"); fflush(where); } /* We now alter the message_ptr variable to be at the desired */ /* alignment with the desired offset. */ if (debug) { fprintf(where,"recv_xti_tcp_stream: requested alignment of %d\n", xti_tcp_stream_request->recv_alignment); fflush(where); } /* Let's clear-out our sockaddr for the sake of cleanlines. Then we */ /* can put in OUR values !-) At some point, we may want to nail this */ /* socket to a particular network-level address, but for now, */ /* INADDR_ANY should be just fine. */ bzero((char *)&myaddr_in, sizeof(myaddr_in)); myaddr_in.sin_family = AF_INET; myaddr_in.sin_addr.s_addr = INADDR_ANY; myaddr_in.sin_port = 0; /* Grab a socket to listen on, and then listen on it. */ if (debug) { fprintf(where,"recv_xti_tcp_stream: grabbing a socket...\n"); fflush(where); } /* create_xti_endpoint expects to find some things in the global */ /* variables, so set the globals based on the values in the request. */ /* once the socket has been created, we will set the response values */ /* based on the updated value of those globals. raj 7/94 */ lss_size = xti_tcp_stream_request->send_buf_size; lsr_size = xti_tcp_stream_request->recv_buf_size; loc_nodelay = xti_tcp_stream_request->no_delay; loc_rcvavoid = xti_tcp_stream_request->so_rcvavoid; loc_sndavoid = xti_tcp_stream_request->so_sndavoid; #ifdef __alpha /* ok - even on a DEC box, strings are strings. I din't really want */ /* to ntohl the words of a string. since I don't want to teach the */ /* send_ and recv_ _request and _response routines about the types, */ /* I will put "anti-ntohl" calls here. I imagine that the "pure" */ /* solution would be to use XDR, but I am still leary of being able */ /* to find XDR libs on all platforms I want running netperf. raj */ { int *charword; int *initword; int *lastword; initword = (int *) xti_tcp_stream_request->xti_device; lastword = initword + ((xti_tcp_stream_request->dev_name_len + 3) / 4); for (charword = initword; charword < lastword; charword++) { *charword = htonl(*charword); } } #endif /* __alpha */ s_listen = create_xti_endpoint(xti_tcp_stream_request->xti_device); if (s_listen == INVALID_SOCKET) { netperf_response.content.serv_errno = errno; send_response(); exit(1); } /* Let's get an address assigned to this socket so we can tell the */ /* initiator how to reach the data socket. There may be a desire to */ /* nail this socket to a specific IP address in a multi-homed, */ /* multi-connection situation, but for now, we'll ignore the issue */ /* and concentrate on single connection testing. */ bind_req.addr.maxlen = sizeof(struct sockaddr_in); bind_req.addr.len = sizeof(struct sockaddr_in); bind_req.addr.buf = (char *)&myaddr_in; bind_req.qlen = 1; bind_resp.addr.maxlen = sizeof(struct sockaddr_in); bind_resp.addr.len = sizeof(struct sockaddr_in); bind_resp.addr.buf = (char *)&myaddr_in; bind_resp.qlen = 1; if (t_bind(s_listen, &bind_req, &bind_resp) == SOCKET_ERROR) { netperf_response.content.serv_errno = t_errno; close(s_listen); send_response(); exit(1); } if (debug) { fprintf(where, "recv_xti_tcp_stream: t_bind complete port %d\n", ntohs(myaddr_in.sin_port)); fflush(where); } /* what sort of sizes did we end-up with? */ if (xti_tcp_stream_request->receive_size == 0) { if (lsr_size > 0) { recv_size = lsr_size; } else { recv_size = 4096; } } else { recv_size = xti_tcp_stream_request->receive_size; } /* we want to set-up our recv_ring in a manner analagous to what we */ /* do on the sending side. this is more for the sake of symmetry */ /* than for the needs of say copy avoidance, but it might also be */ /* more realistic - this way one could conceivably go with a */ /* double-buffering scheme when taking the data an putting it into */ /* the filesystem or something like that. raj 7/94 */ if (recv_width == 0) { recv_width = (lsr_size/recv_size) + 1; if (recv_width == 1) recv_width++; } recv_ring = allocate_buffer_ring(recv_width, recv_size, xti_tcp_stream_request->recv_alignment, xti_tcp_stream_request->recv_offset); if (debug) { fprintf(where,"recv_xti_tcp_stream: recv alignment and offset set...\n"); fflush(where); } /* Now myaddr_in contains the port and the internet address this is */ /* returned to the sender also implicitly telling the sender that the */ /* socket buffer sizing has been done. */ xti_tcp_stream_response->data_port_number = (int) ntohs(myaddr_in.sin_port); netperf_response.content.serv_errno = 0; /* But wait, there's more. If the initiator wanted cpu measurements, */ /* then we must call the calibrate routine, which will return the max */ /* rate back to the initiator. If the CPU was not to be measured, or */ /* something went wrong with the calibration, we will return a -1 to */ /* the initiator. */ xti_tcp_stream_response->cpu_rate = 0.0; /* assume no cpu */ if (xti_tcp_stream_request->measure_cpu) { xti_tcp_stream_response->measure_cpu = 1; xti_tcp_stream_response->cpu_rate = calibrate_local_cpu(xti_tcp_stream_request->cpu_rate); } else { xti_tcp_stream_response->measure_cpu = 0; } /* before we send the response back to the initiator, pull some of */ /* the socket parms from the globals */ xti_tcp_stream_response->send_buf_size = lss_size; xti_tcp_stream_response->recv_buf_size = lsr_size; xti_tcp_stream_response->no_delay = loc_nodelay; xti_tcp_stream_response->so_rcvavoid = loc_rcvavoid; xti_tcp_stream_response->so_sndavoid = loc_sndavoid; xti_tcp_stream_response->receive_size = recv_size; send_response(); /* Now, let's set-up the socket to listen for connections. for xti, */ /* the t_listen call is blocking by default - this is different */ /* semantics from BSD - probably has to do with being able to reject */ /* a call before an accept */ call_req.addr.maxlen = sizeof(struct sockaddr_in); call_req.addr.len = sizeof(struct sockaddr_in); call_req.addr.buf = (char *)&peeraddr_in; call_req.opt.maxlen = 0; call_req.opt.len = 0; call_req.opt.buf = NULL; call_req.udata.maxlen= 0; call_req.udata.len = 0; call_req.udata.buf = 0; if (t_listen(s_listen, &call_req) == -1) { fprintf(where, "recv_xti_tcp_stream: t_listen: errno %d t_errno %d\n", errno, t_errno); fflush(where); netperf_response.content.serv_errno = t_errno; close(s_listen); send_response(); exit(1); } if (debug) { fprintf(where, "recv_xti_tcp_stream: t_listen complete t_look 0x%.4x\n", t_look(s_listen)); fflush(where); } /* now just rubber stamp the thing. we want to use the same fd? so */ /* we will just equate s_data with s_listen. this seems a little */ /* hokey to me, but then I'm a BSD biggot still. raj 2/95 */ s_data = s_listen; if (t_accept(s_listen, s_data, &call_req) == -1) { fprintf(where, "recv_xti_tcp_stream: t_accept: errno %d t_errno %d\n", errno, t_errno); fflush(where); close(s_listen); exit(1); } if (debug) { fprintf(where, "recv_xti_tcp_stream: t_accept complete t_look 0x%.4x\n", t_look(s_data)); fprintf(where, " remote is %s port %d\n", inet_ntoa(*(struct in_addr *)&peeraddr_in.sin_addr), ntohs(peeraddr_in.sin_port)); fflush(where); } /* Now it's time to start receiving data on the connection. We will */ /* first grab the apropriate counters and then start grabbing. */ cpu_start(xti_tcp_stream_request->measure_cpu); /* The loop will exit when the sender does a t_sndrel, which will */ /* return T_LOOK error from the t_recv */ #ifdef DIRTY /* we want to dirty some number of consecutive integers in the buffer */ /* we are about to recv. we may also want to bring some number of */ /* them cleanly into the cache. The clean ones will follow any dirty */ /* ones into the cache. */ access_buffer(recv_ring->buffer_ptr, recv_size, xti_tcp_stream_request->dirty_count, xti_tcp_stream_request->clean_count); #endif /* DIRTY */ bytes_received = 0; receive_calls = 0; while ((len = t_rcv(s_data, recv_ring->buffer_ptr, recv_size, &xti_flags)) != -1) { bytes_received += len; receive_calls++; /* more to the next buffer in the recv_ring */ recv_ring = recv_ring->next; #ifdef DIRTY access_buffer(recv_ring->buffer_ptr, recv_size, xti_tcp_stream_request->dirty_count, xti_tcp_stream_request->clean_count); #endif /* DIRTY */ } if (t_look(s_data) == T_ORDREL) { /* this is a normal exit path */ if (debug) { fprintf(where, "recv_xti_tcp_stream: t_rcv T_ORDREL indicated\n"); fflush(where); } } else { /* something went wrong */ fprintf(where, "recv_xti_tcp_stream: t_rcv: errno %d t_errno %d len %d", errno, t_errno, len); fprintf(where, " t_look 0x%.4x", t_look(s_data)); fflush(where); netperf_response.content.serv_errno = t_errno; send_response(); exit(1); } /* receive the release and let the initiator know that we have */ /* received all the data. raj 3/95 */ if (t_rcvrel(s_data) == -1) { netperf_response.content.serv_errno = errno; send_response(); exit(1); } if (debug) { fprintf(where, "recv_xti_tcp_stream: t_rcvrel complete\n"); fflush(where); } if (t_sndrel(s_data) == -1) { netperf_response.content.serv_errno = errno; send_response(); exit(1); } if (debug) { fprintf(where, "recv_xti_tcp_stream: t_sndrel complete\n"); fflush(where); } cpu_stop(xti_tcp_stream_request->measure_cpu,&elapsed_time); /* send the results to the sender */ if (debug) { fprintf(where, "recv_xti_tcp_stream: got %g bytes\n", bytes_received); fprintf(where, "recv_xti_tcp_stream: got %d recvs\n", receive_calls); fflush(where); } xti_tcp_stream_results->bytes_received = bytes_received; xti_tcp_stream_results->elapsed_time = elapsed_time; xti_tcp_stream_results->recv_calls = receive_calls; if (xti_tcp_stream_request->measure_cpu) { xti_tcp_stream_results->cpu_util = calc_cpu_util(0.0); }; if (debug) { fprintf(where, "recv_xti_tcp_stream: test complete, sending results.\n"); fprintf(where, " bytes_received %g receive_calls %d\n", bytes_received, receive_calls); fprintf(where, " len %d\n", len); fflush(where); } xti_tcp_stream_results->cpu_method = cpu_method; send_response(); /* we are now done with the socket */ t_close(s_data); } /* this routine implements the sending (netperf) side of the XTI_TCP_RR */ /* test. */ void send_xti_tcp_rr(char remote_host[]) { char *tput_title = "\ Local /Remote\n\ Socket Size Request Resp. Elapsed Trans.\n\ Send Recv Size Size Time Rate \n\ bytes Bytes bytes bytes secs. per sec \n\n"; char *tput_fmt_0 = "%7.2f\n"; char *tput_fmt_1_line_1 = "\ %-6d %-6d %-6d %-6d %-6.2f %7.2f \n"; char *tput_fmt_1_line_2 = "\ %-6d %-6d\n"; char *cpu_title = "\ Local /Remote\n\ Socket Size Request Resp. Elapsed Trans. CPU CPU S.dem S.dem\n\ Send Recv Size Size Time Rate local remote local remote\n\ bytes bytes bytes bytes secs. per sec %% %c %% %c us/Tr us/Tr\n\n"; char *cpu_fmt_0 = "%6.3f %c\n"; char *cpu_fmt_1_line_1 = "\ %-6d %-6d %-6d %-6d %-6.2f %-6.2f %-6.2f %-6.2f %-6.3f %-6.3f\n"; char *cpu_fmt_1_line_2 = "\ %-6d %-6d\n"; char *ksink_fmt = "\ Alignment Offset\n\ Local Remote Local Remote\n\ Send Recv Send Recv\n\ %5d %5d %5d %5d\n"; int timed_out = 0; float elapsed_time; int len; char *temp_message_ptr; int nummessages; SOCKET send_socket; int trans_remaining; double bytes_xferd; struct ring_elt *send_ring; struct ring_elt *recv_ring; int rsp_bytes_left; int rsp_bytes_recvd; float local_cpu_utilization; float local_service_demand; float remote_cpu_utilization; float remote_service_demand; double thruput; struct hostent *hp; struct sockaddr_in server; unsigned int addr; struct t_call server_call; struct xti_tcp_rr_request_struct *xti_tcp_rr_request; struct xti_tcp_rr_response_struct *xti_tcp_rr_response; struct xti_tcp_rr_results_struct *xti_tcp_rr_result; #ifdef WANT_INTERVALS int interval_count; sigset_t signal_set; #endif /* WANT_INTERVALS */ xti_tcp_rr_request = (struct xti_tcp_rr_request_struct *)netperf_request.content.test_specific_data; xti_tcp_rr_response= (struct xti_tcp_rr_response_struct *)netperf_response.content.test_specific_data; xti_tcp_rr_result = (struct xti_tcp_rr_results_struct *)netperf_response.content.test_specific_data; #ifdef WANT_HISTOGRAM time_hist = HIST_new(); #endif /* WANT_HISTOGRAM */ /* since we are now disconnected from the code that established the */ /* control socket, and since we want to be able to use different */ /* protocols and such, we are passed the name of the remote host and */ /* must turn that into the test specific addressing information. */ bzero((char *)&server, sizeof(server)); /* it would seem that while HP-UX will allow an IP address (as a */ /* string) in a call to gethostbyname, other, less enlightened */ /* systems do not. fix from awjacks@ca.sandia.gov raj 10/95 */ /* order changed to check for IP address first. raj 7/96 */ if ((addr = inet_addr(remote_host)) == SOCKET_ERROR) { /* it was not an IP address, try it as a name */ if ((hp = gethostbyname(remote_host)) == NULL) { /* we have no idea what it is */ fprintf(where, "establish_control: could not resolve the destination %s\n", remote_host); fflush(where); exit(1); } else { /* it was a valid remote_host */ bcopy(hp->h_addr, (char *)&server.sin_addr, hp->h_length); server.sin_family = hp->h_addrtype; } } else { /* it was a valid IP address */ server.sin_addr.s_addr = addr; server.sin_family = AF_INET; } if ( print_headers ) { fprintf(where,"XTI TCP REQUEST/RESPONSE TEST"); fprintf(where," to %s", remote_host); if (iteration_max > 1) { fprintf(where, " : +/-%3.1f%% @ %2d%% conf.", interval/0.02, confidence_level); } if (loc_nodelay || rem_nodelay) { fprintf(where," : nodelay"); } if (loc_sndavoid || loc_rcvavoid || rem_sndavoid || rem_rcvavoid) { fprintf(where," : copy avoidance"); } #ifdef WANT_HISTOGRAM fprintf(where," : histogram"); #endif /* WANT_HISTOGRAM */ #ifdef WANT_INTERVALS fprintf(where," : interval"); #endif /* WANT_INTERVALS */ #ifdef DIRTY fprintf(where," : dirty data"); #endif /* DIRTY */ fprintf(where,"\n"); } /* initialize a few counters */ send_ring = NULL; recv_ring = NULL; confidence_iteration = 1; init_stat(); /* we have a great-big while loop which controls the number of times */ /* we run a particular test. this is for the calculation of a */ /* confidence interval (I really should have stayed awake during */ /* probstats :). If the user did not request confidence measurement */ /* (no confidence is the default) then we will only go though the */ /* loop once. the confidence stuff originates from the folks at IBM */ while (((confidence < 0) && (confidence_iteration < iteration_max)) || (confidence_iteration <= iteration_min)) { /* initialize a few counters. we have to remember that we might be */ /* going through the loop more than once. */ nummessages = 0; bytes_xferd = 0.0; times_up = 0; timed_out = 0; trans_remaining = 0; /* set-up the data buffers with the requested alignment and offset. */ /* since this is a request/response test, default the send_width and */ /* recv_width to 1 and not two raj 7/94 */ if (send_width == 0) send_width = 1; if (recv_width == 0) recv_width = 1; if (send_ring == NULL) { send_ring = allocate_buffer_ring(send_width, req_size, local_send_align, local_send_offset); } if (recv_ring == NULL) { recv_ring = allocate_buffer_ring(recv_width, rsp_size, local_recv_align, local_recv_offset); } /*set up the data socket */ send_socket = create_xti_endpoint(loc_xti_device); if (send_socket == INVALID_SOCKET){ perror("netperf: send_xti_tcp_rr: tcp stream data socket"); exit(1); } if (debug) { fprintf(where,"send_xti_tcp_rr: send_socket obtained...\n"); } /* it would seem that with XTI, there is no implicit bind on a */ /* connect, so we have to make a call to t_bind. this is not */ /* terribly convenient, but I suppose that "standard is better */ /* than better" :) raj 2/95 */ if (t_bind(send_socket, NULL, NULL) == SOCKET_ERROR) { t_error("send_xti_tcp_stream: t_bind"); exit(1); } /* If the user has requested cpu utilization measurements, we must */ /* calibrate the cpu(s). We will perform this task within the tests */ /* themselves. If the user has specified the cpu rate, then */ /* calibrate_local_cpu will return rather quickly as it will have */ /* nothing to do. If local_cpu_rate is zero, then we will go through */ /* all the "normal" calibration stuff and return the rate back.*/ if (local_cpu_usage) { local_cpu_rate = calibrate_local_cpu(local_cpu_rate); } /* Tell the remote end to do a listen. The server alters the socket */ /* paramters on the other side at this point, hence the reason for */ /* all the values being passed in the setup message. If the user did */ /* not specify any of the parameters, they will be passed as 0, which */ /* will indicate to the remote that no changes beyond the system's */ /* default should be used. Alignment is the exception, it will */ /* default to 8, which will be no alignment alterations. */ netperf_request.content.request_type = DO_XTI_TCP_RR; xti_tcp_rr_request->recv_buf_size = rsr_size; xti_tcp_rr_request->send_buf_size = rss_size; xti_tcp_rr_request->recv_alignment = remote_recv_align; xti_tcp_rr_request->recv_offset = remote_recv_offset; xti_tcp_rr_request->send_alignment = remote_send_align; xti_tcp_rr_request->send_offset = remote_send_offset; xti_tcp_rr_request->request_size = req_size; xti_tcp_rr_request->response_size = rsp_size; xti_tcp_rr_request->no_delay = rem_nodelay; xti_tcp_rr_request->measure_cpu = remote_cpu_usage; xti_tcp_rr_request->cpu_rate = remote_cpu_rate; xti_tcp_rr_request->so_rcvavoid = rem_rcvavoid; xti_tcp_rr_request->so_sndavoid = rem_sndavoid; if (test_time) { xti_tcp_rr_request->test_length = test_time; } else { xti_tcp_rr_request->test_length = test_trans * -1; } strcpy(xti_tcp_rr_request->xti_device, rem_xti_device); #ifdef __alpha /* ok - even on a DEC box, strings are strings. I didn't really want */ /* to ntohl the words of a string. since I don't want to teach the */ /* send_ and recv_ _request and _response routines about the types, */ /* I will put "anti-ntohl" calls here. I imagine that the "pure" */ /* solution would be to use XDR, but I am still leary of being able */ /* to find XDR libs on all platforms I want running netperf. raj */ { int *charword; int *initword; int *lastword; initword = (int *) xti_tcp_rr_request->xti_device; lastword = initword + ((strlen(rem_xti_device) + 3) / 4); for (charword = initword; charword < lastword; charword++) { *charword = ntohl(*charword); } } #endif /* __alpha */ if (debug > 1) { fprintf(where,"netperf: send_xti_tcp_rr: requesting TCP rr test\n"); } send_request(); /* The response from the remote will contain all of the relevant */ /* socket parameters for this test type. We will put them back into */ /* the variables here so they can be displayed if desired. The */ /* remote will have calibrated CPU if necessary, and will have done */ /* all the needed set-up we will have calibrated the cpu locally */ /* before sending the request, and will grab the counter value right*/ /* after the connect returns. The remote will grab the counter right*/ /* after the accept call. This saves the hassle of extra messages */ /* being sent for the TCP tests. */ recv_response(); if (!netperf_response.content.serv_errno) { if (debug) fprintf(where,"remote listen done.\n"); rsr_size = xti_tcp_rr_response->recv_buf_size; rss_size = xti_tcp_rr_response->send_buf_size; rem_nodelay = xti_tcp_rr_response->no_delay; remote_cpu_usage = xti_tcp_rr_response->measure_cpu; remote_cpu_rate = xti_tcp_rr_response->cpu_rate; /* make sure that port numbers are in network order */ server.sin_port = (short)xti_tcp_rr_response->data_port_number; server.sin_port = htons(server.sin_port); } else { Set_errno(netperf_response.content.serv_errno); perror("netperf: remote error"); exit(1); } /*Connect up to the remote port on the data socket */ memset (&server_call, 0, sizeof(server_call)); server_call.addr.maxlen = sizeof(struct sockaddr_in); server_call.addr.len = sizeof(struct sockaddr_in); server_call.addr.buf = (char *)&server; if (t_connect(send_socket, &server_call, NULL) == INVALID_SOCKET){ t_error("netperf: send_xti_tcp_rr: data socket connect failed"); printf(" port: %d\n",ntohs(server.sin_port)); exit(1); } /* Data Socket set-up is finished. If there were problems, either the */ /* connect would have failed, or the previous response would have */ /* indicated a problem. I failed to see the value of the extra */ /* message after the accept on the remote. If it failed, we'll see it */ /* here. If it didn't, we might as well start pumping data. */ /* Set-up the test end conditions. For a request/response test, they */ /* can be either time or transaction based. */ if (test_time) { /* The user wanted to end the test after a period of time. */ times_up = 0; trans_remaining = 0; start_timer(test_time); } else { /* The tester wanted to send a number of bytes. */ trans_remaining = test_bytes; times_up = 1; } /* The cpu_start routine will grab the current time and possibly */ /* value of the idle counter for later use in measuring cpu */ /* utilization and/or service demand and thruput. */ cpu_start(local_cpu_usage); #ifdef WANT_INTERVALS if ((interval_burst) || (demo_mode)) { /* zero means that we never pause, so we never should need the */ /* interval timer, unless we are in demo_mode */ start_itimer(interval_wate); } interval_count = interval_burst; /* get the signal set for the call to sigsuspend */ if (sigprocmask(SIG_BLOCK, (sigset_t *)NULL, &signal_set) != 0) { fprintf(where, "send_xti_tcp_rr: unable to get sigmask errno %d\n", errno); fflush(where); exit(1); } #endif /* WANT_INTERVALS */ /* We use an "OR" to control test execution. When the test is */ /* controlled by time, the byte count check will always return false. */ /* When the test is controlled by byte count, the time test will */ /* always return false. When the test is finished, the whole */ /* expression will go false and we will stop sending data. I think I */ /* just arbitrarily decrement trans_remaining for the timed test, but */ /* will not do that just yet... One other question is whether or not */ /* the send buffer and the receive buffer should be the same buffer. */ while ((!times_up) || (trans_remaining > 0)) { /* send the request. we assume that if we use a blocking socket, */ /* the request will be sent at one shot. */ #ifdef WANT_HISTOGRAM /* timestamp just before our call to send, and then again just */ /* after the receive raj 8/94 */ HIST_timestamp(&time_one); #endif /* WANT_HISTOGRAM */ if((len=t_snd(send_socket, send_ring->buffer_ptr, req_size, 0)) != req_size) { if ((errno == EINTR) || (errno == 0)) { /* we hit the end of a */ /* timed test. */ timed_out = 1; break; } fprintf(where, "send_xti_tcp_rr: t_snd: errno %d t_errno %d t_look 0x%.4x\n", errno, t_errno, t_look(send_socket)); fflush(where); exit(1); } send_ring = send_ring->next; /* receive the response */ rsp_bytes_left = rsp_size; temp_message_ptr = recv_ring->buffer_ptr; while(rsp_bytes_left > 0) { if((rsp_bytes_recvd=t_rcv(send_socket, temp_message_ptr, rsp_bytes_left, &xti_flags)) == SOCKET_ERROR) { if (errno == EINTR) { /* We hit the end of a timed test. */ timed_out = 1; break; } fprintf(where, "send_xti_tcp_rr: t_rcv: errno %d t_errno %d t_look 0x%x\n", errno, t_errno, t_look(send_socket)); fflush(where); exit(1); } rsp_bytes_left -= rsp_bytes_recvd; temp_message_ptr += rsp_bytes_recvd; } recv_ring = recv_ring->next; if (timed_out) { /* we may have been in a nested while loop - we need */ /* another call to break. */ break; } #ifdef WANT_HISTOGRAM HIST_timestamp(&time_two); HIST_add(time_hist,delta_micro(&time_one,&time_two)); #endif /* WANT_HISTOGRAM */ #ifdef WANT_INTERVALS if (demo_mode) { units_this_tick += 1; } /* in this case, the interval count is the count-down couter */ /* to decide to sleep for a little bit */ if ((interval_burst) && (--interval_count == 0)) { /* call sigsuspend and wait for the interval timer to get us */ /* out */ if (debug) { fprintf(where,"about to suspend\n"); fflush(where); } if (sigsuspend(&signal_set) == EFAULT) { fprintf(where, "send_xti_udp_rr: fault with signal set!\n"); fflush(where); exit(1); } interval_count = interval_burst; } #endif /* WANT_INTERVALS */ nummessages++; if (trans_remaining) { trans_remaining--; } if (debug > 3) { if ((nummessages % 100) == 0) { fprintf(where, "Transaction %d completed\n", nummessages); fflush(where); } } } /* this call will always give us the elapsed time for the test, and */ /* will also store-away the necessaries for cpu utilization */ cpu_stop(local_cpu_usage,&elapsed_time); /* was cpu being */ /* measured? how long */ /* did we really run? */ /* Get the statistics from the remote end. The remote will have */ /* calculated service demand and all those interesting things. If it */ /* wasn't supposed to care, it will return obvious values. */ recv_response(); if (!netperf_response.content.serv_errno) { if (debug) fprintf(where,"remote results obtained\n"); } else { Set_errno(netperf_response.content.serv_errno); perror("netperf: remote error"); exit(1); } /* We now calculate what our thruput was for the test. */ bytes_xferd = (req_size * nummessages) + (rsp_size * nummessages); thruput = nummessages/elapsed_time; if (local_cpu_usage || remote_cpu_usage) { /* We must now do a little math for service demand and cpu */ /* utilization for the system(s) */ /* Of course, some of the information might be bogus because */ /* there was no idle counter in the kernel(s). We need to make */ /* a note of this for the user's benefit...*/ if (local_cpu_usage) { local_cpu_utilization = calc_cpu_util(0.0); /* since calc_service demand is doing ms/Kunit we will */ /* multiply the number of transaction by 1024 to get */ /* "good" numbers */ local_service_demand = calc_service_demand((double) nummessages*1024, 0.0, 0.0, 0); } else { local_cpu_utilization = -1.0; local_service_demand = -1.0; } if (remote_cpu_usage) { remote_cpu_utilization = xti_tcp_rr_result->cpu_util; /* since calc_service demand is doing ms/Kunit we will */ /* multiply the number of transaction by 1024 to get */ /* "good" numbers */ remote_service_demand = calc_service_demand((double) nummessages*1024, 0.0, remote_cpu_utilization, xti_tcp_rr_result->num_cpus); } else { remote_cpu_utilization = -1.0; remote_service_demand = -1.0; } } else { /* we were not measuring cpu, for the confidence stuff, we */ /* should make it -1.0 */ local_cpu_utilization = -1.0; local_service_demand = -1.0; remote_cpu_utilization = -1.0; remote_service_demand = -1.0; } /* at this point, we want to calculate the confidence information. */ /* if debugging is on, calculate_confidence will print-out the */ /* parameters we pass it */ calculate_confidence(confidence_iteration, elapsed_time, thruput, local_cpu_utilization, remote_cpu_utilization, local_service_demand, remote_service_demand); confidence_iteration++; /* we are now done with the socket, so close it */ t_close(send_socket); } retrieve_confident_values(&elapsed_time, &thruput, &local_cpu_utilization, &remote_cpu_utilization, &local_service_demand, &remote_service_demand); /* We are now ready to print all the information. If the user */ /* has specified zero-level verbosity, we will just print the */ /* local service demand, or the remote service demand. If the */ /* user has requested verbosity level 1, he will get the basic */ /* "streamperf" numbers. If the user has specified a verbosity */ /* of greater than 1, we will display a veritable plethora of */ /* background information from outside of this block as it it */ /* not cpu_measurement specific... */ if (confidence < 0) { /* we did not hit confidence, but were we asked to look for it? */ if (iteration_max > 1) { display_confidence(); } } if (local_cpu_usage || remote_cpu_usage) { local_cpu_method = format_cpu_method(cpu_method); remote_cpu_method = format_cpu_method(xti_tcp_rr_result->cpu_method); switch (verbosity) { case 0: if (local_cpu_usage) { fprintf(where, cpu_fmt_0, local_service_demand, local_cpu_method); } else { fprintf(where, cpu_fmt_0, remote_service_demand, remote_cpu_method); } break; case 1: case 2: if (print_headers) { fprintf(where, cpu_title, local_cpu_method, remote_cpu_method); } fprintf(where, cpu_fmt_1_line_1, /* the format string */ lss_size, /* local sendbuf size */ lsr_size, req_size, /* how large were the requests */ rsp_size, /* guess */ elapsed_time, /* how long was the test */ thruput, local_cpu_utilization, /* local cpu */ remote_cpu_utilization, /* remote cpu */ local_service_demand, /* local service demand */ remote_service_demand); /* remote service demand */ fprintf(where, cpu_fmt_1_line_2, rss_size, rsr_size); break; } } else { /* The tester did not wish to measure service demand. */ switch (verbosity) { case 0: fprintf(where, tput_fmt_0, thruput); break; case 1: case 2: if (print_headers) { fprintf(where,tput_title,format_units()); } fprintf(where, tput_fmt_1_line_1, /* the format string */ lss_size, lsr_size, req_size, /* how large were the requests */ rsp_size, /* how large were the responses */ elapsed_time, /* how long did it take */ thruput); fprintf(where, tput_fmt_1_line_2, rss_size, /* remote recvbuf size */ rsr_size); break; } } /* it would be a good thing to include information about some of the */ /* other parameters that may have been set for this test, but at the */ /* moment, I do not wish to figure-out all the formatting, so I will */ /* just put this comment here to help remind me that it is something */ /* that should be done at a later time. */ /* how to handle the verbose information in the presence of */ /* confidence intervals is yet to be determined... raj 11/94 */ if (verbosity > 1) { /* The user wanted to know it all, so we will give it to him. */ /* This information will include as much as we can find about */ /* TCP statistics, the alignments of the sends and receives */ /* and all that sort of rot... */ fprintf(where, ksink_fmt, local_send_align, remote_recv_offset, local_send_offset, remote_recv_offset); #ifdef WANT_HISTOGRAM fprintf(where,"\nHistogram of request/response times\n"); fflush(where); HIST_report(time_hist); #endif /* WANT_HISTOGRAM */ } } void send_xti_udp_stream(char remote_host[]) { /**********************************************************************/ /* */ /* UDP Unidirectional Send Test */ /* */ /**********************************************************************/ char *tput_title = "\ Socket Message Elapsed Messages \n\ Size Size Time Okay Errors Throughput\n\ bytes bytes secs # # %s/sec\n\n"; char *tput_fmt_0 = "%7.2f\n"; char *tput_fmt_1 = "\ %6d %6d %-7.2f %7d %6d %7.2f\n\ %6d %-7.2f %7d %7.2f\n\n"; char *cpu_title = "\ Socket Message Elapsed Messages CPU Service\n\ Size Size Time Okay Errors Throughput Util Demand\n\ bytes bytes secs # # %s/sec %% %c%c us/KB\n\n"; char *cpu_fmt_0 = "%6.2f %c\n"; char *cpu_fmt_1 = "\ %6d %6d %-7.2f %7d %6d %7.1f %-6.2f %-6.3f\n\ %6d %-7.2f %7d %7.1f %-6.2f %-6.3f\n\n"; unsigned int messages_recvd; unsigned int messages_sent; unsigned int failed_sends; float elapsed_time, recv_elapsed, local_cpu_utilization, remote_cpu_utilization; float local_service_demand, remote_service_demand; double local_thruput, remote_thruput; double bytes_sent; double bytes_recvd; int len; int *message_int_ptr; struct ring_elt *send_ring; SOCKET data_socket; unsigned int sum_messages_sent; unsigned int sum_messages_recvd; unsigned int sum_failed_sends; double sum_local_thruput; #ifdef WANT_INTERVALS int interval_count; sigset_t signal_set; #endif /* WANT_INTERVALS */ struct hostent *hp; struct sockaddr_in server; unsigned int addr; struct t_unitdata unitdata; struct xti_udp_stream_request_struct *xti_udp_stream_request; struct xti_udp_stream_response_struct *xti_udp_stream_response; struct xti_udp_stream_results_struct *xti_udp_stream_results; xti_udp_stream_request = (struct xti_udp_stream_request_struct *)netperf_request.content.test_specific_data; xti_udp_stream_response = (struct xti_udp_stream_response_struct *)netperf_response.content.test_specific_data; xti_udp_stream_results = (struct xti_udp_stream_results_struct *)netperf_response.content.test_specific_data; #ifdef WANT_HISTOGRAM time_hist = HIST_new(); #endif /* WANT_HISTOGRAM */ /* since we are now disconnected from the code that established the */ /* control socket, and since we want to be able to use different */ /* protocols and such, we are passed the name of the remote host and */ /* must turn that into the test specific addressing information. */ bzero((char *)&server, sizeof(server)); /* it would seem that while HP-UX will allow an IP address (as a */ /* string) in a call to gethostbyname, other, less enlightened */ /* systems do not. fix from awjacks@ca.sandia.gov raj 10/95 */ /* order changed to check for IP address first. raj 7/96 */ if ((addr = inet_addr(remote_host)) == SOCKET_ERROR) { /* it was not an IP address, try it as a name */ if ((hp = gethostbyname(remote_host)) == NULL) { /* we have no idea what it is */ fprintf(where, "establish_control: could not resolve the destination %s\n", remote_host); fflush(where); exit(1); } else { /* it was a valid remote_host */ bcopy(hp->h_addr, (char *)&server.sin_addr, hp->h_length); server.sin_family = hp->h_addrtype; } } else { /* it was a valid IP address */ server.sin_addr.s_addr = addr; server.sin_family = AF_INET; } if ( print_headers ) { fprintf(where,"UDP UNIDIRECTIONAL SEND TEST"); fprintf(where," to %s", remote_host); if (iteration_max > 1) { fprintf(where, " : +/-%3.1f%% @ %2d%% conf.", interval/0.02, confidence_level); } if (loc_sndavoid || loc_rcvavoid || rem_sndavoid || rem_rcvavoid) { fprintf(where," : copy avoidance"); } #ifdef WANT_HISTOGRAM fprintf(where," : histogram"); #endif /* WANT_HISTOGRAM */ #ifdef WANT_INTERVALS fprintf(where," : interval"); #endif /* WANT_INTERVALS */ #ifdef DIRTY fprintf(where," : dirty data"); #endif /* DIRTY */ fprintf(where,"\n"); } send_ring = NULL; confidence_iteration = 1; init_stat(); sum_messages_sent = 0; sum_messages_recvd = 0; sum_failed_sends = 0; sum_local_thruput = 0.0; /* we have a great-big while loop which controls the number of times */ /* we run a particular test. this is for the calculation of a */ /* confidence interval (I really should have stayed awake during */ /* probstats :). If the user did not request confidence measurement */ /* (no confidence is the default) then we will only go though the */ /* loop once. the confidence stuff originates from the folks at IBM */ while (((confidence < 0) && (confidence_iteration < iteration_max)) || (confidence_iteration <= iteration_min)) { /* initialize a few counters. we have to remember that we might be */ /* going through the loop more than once. */ messages_sent = 0; messages_recvd = 0; failed_sends = 0; times_up = 0; /*set up the data socket */ data_socket = create_xti_endpoint(loc_xti_device); if (data_socket == INVALID_SOCKET) { perror("send_xti_udp_stream: create_xti_endpoint"); exit(1); } if (t_bind(data_socket, NULL, NULL) == SOCKET_ERROR) { t_error("send_xti_udp_stream: t_bind"); exit(1); } /* now, we want to see if we need to set the send_size */ if (send_size == 0) { if (lss_size > 0) { send_size = lss_size; } else { send_size = 4096; } } /* set-up the data buffer with the requested alignment and offset, */ /* most of the numbers here are just a hack to pick something nice */ /* and big in an attempt to never try to send a buffer a second time */ /* before it leaves the node...unless the user set the width */ /* explicitly. */ if (send_width == 0) send_width = 32; if (send_ring == NULL ) { send_ring = allocate_buffer_ring(send_width, send_size, local_send_align, local_send_offset); } /* if the user supplied a cpu rate, this call will complete rather */ /* quickly, otherwise, the cpu rate will be retured to us for */ /* possible display. The Library will keep it's own copy of this data */ /* for use elsewhere. We will only display it. (Does that make it */ /* "opaque" to us?) */ if (local_cpu_usage) local_cpu_rate = calibrate_local_cpu(local_cpu_rate); /* Tell the remote end to set up the data connection. The server */ /* sends back the port number and alters the socket parameters there. */ /* Of course this is a datagram service so no connection is actually */ /* set up, the server just sets up the socket and binds it. */ netperf_request.content.request_type = DO_XTI_UDP_STREAM; xti_udp_stream_request->recv_buf_size = rsr_size; xti_udp_stream_request->message_size = send_size; xti_udp_stream_request->recv_alignment = remote_recv_align; xti_udp_stream_request->recv_offset = remote_recv_offset; xti_udp_stream_request->measure_cpu = remote_cpu_usage; xti_udp_stream_request->cpu_rate = remote_cpu_rate; xti_udp_stream_request->test_length = test_time; xti_udp_stream_request->so_rcvavoid = rem_rcvavoid; xti_udp_stream_request->so_sndavoid = rem_sndavoid; strcpy(xti_udp_stream_request->xti_device, rem_xti_device); #ifdef __alpha /* ok - even on a DEC box, strings are strings. I didn't really want */ /* to ntohl the words of a string. since I don't want to teach the */ /* send_ and recv_ _request and _response routines about the types, */ /* I will put "anti-ntohl" calls here. I imagine that the "pure" */ /* solution would be to use XDR, but I am still leary of being able */ /* to find XDR libs on all platforms I want running netperf. raj */ { int *charword; int *initword; int *lastword; initword = (int *) xti_udp_stream_request->xti_device; lastword = initword + ((strlen(rem_xti_device) + 3) / 4); for (charword = initword; charword < lastword; charword++) { *charword = ntohl(*charword); } } #endif /* __alpha */ send_request(); recv_response(); if (!netperf_response.content.serv_errno) { if (debug) fprintf(where,"send_xti_udp_stream: remote data connection done.\n"); } else { Set_errno(netperf_response.content.serv_errno); perror("send_xti_udp_stream: error on remote"); exit(1); } /* Place the port number returned by the remote into the sockaddr */ /* structure so our sends can be sent to the correct place. Also get */ /* some of the returned socket buffer information for user display. */ /* make sure that port numbers are in the proper order */ server.sin_port = (short)xti_udp_stream_response->data_port_number; server.sin_port = htons(server.sin_port); rsr_size = xti_udp_stream_response->recv_buf_size; rss_size = xti_udp_stream_response->send_buf_size; remote_cpu_rate = xti_udp_stream_response->cpu_rate; /* it would seem that XTI does not allow the expedient of */ /* "connecting" a UDP end-point the way BSD does. so, we will do */ /* everything with t_sndudata and t_rcvudata. Our "virtual" */ /* connect here will be to assign the destination portion of the */ /* t_unitdata struct here, where we would have otherwise called */ /* t_connect() raj 3/95 */ memset (&unitdata, 0, sizeof(unitdata)); unitdata.addr.maxlen = sizeof(struct sockaddr_in); unitdata.addr.len = sizeof(struct sockaddr_in); unitdata.addr.buf = (char *)&server; /* we don't use any options, so might as well set that part here */ /* too */ unitdata.opt.maxlen = 0; unitdata.opt.len = 0; unitdata.opt.buf = NULL; /* we need to initialize the send buffer for the first time as */ /* well since we move to the next pointer after the send call. */ unitdata.udata.maxlen = send_size; unitdata.udata.len = send_size; unitdata.udata.buf = send_ring->buffer_ptr; /* set up the timer to call us after test_time. one of these days, */ /* it might be nice to figure-out a nice reliable way to have the */ /* test controlled by a byte count as well, but since UDP is not */ /* reliable, that could prove difficult. so, in the meantime, we */ /* only allow a XTI_UDP_STREAM test to be a timed test. */ if (test_time) { times_up = 0; start_timer(test_time); } else { fprintf(where,"Sorry, XTI_UDP_STREAM tests must be timed.\n"); fflush(where); exit(1); } /* Get the start count for the idle counter and the start time */ cpu_start(local_cpu_usage); #ifdef WANT_INTERVALS if ((interval_burst) || (demo_mode)) { /* zero means that we never pause, so we never should need the */ /* interval timer, unless we are in demo_mode */ start_itimer(interval_wate); } interval_count = interval_burst; /* get the signal set for the call to sigsuspend */ if (sigprocmask(SIG_BLOCK, (sigset_t *)NULL, &signal_set) != 0) { fprintf(where, "send_xti_udp_stream: unable to get sigmask errno %d\n", errno); fflush(where); exit(1); } #endif /* WANT_INTERVALS */ /* Send datagrams like there was no tomorrow. at somepoint it might */ /* be nice to set this up so that a quantity of bytes could be sent, */ /* but we still need some sort of end of test trigger on the receive */ /* side. that could be a select with a one second timeout, but then */ /* if there is a test where none of the data arrives for awile and */ /* then starts again, we would end the test too soon. something to */ /* think about... */ while (!times_up) { #ifdef DIRTY /* we want to dirty some number of consecutive integers in the buffer */ /* we are about to send. we may also want to bring some number of */ /* them cleanly into the cache. The clean ones will follow any dirty */ /* ones into the cache. */ access_buffer(send_ring->buffer_ptr, send_size, loc_dirty_count, loc_clean_count); #endif /* DIRTY */ #ifdef WANT_HISTOGRAM HIST_timestamp(&time_one); #endif /* WANT_HISTOGRAM */ if ((t_sndudata(data_socket, &unitdata)) != 0) { if (errno == EINTR) break; if (errno == ENOBUFS) { failed_sends++; continue; } perror("xti_udp_send: data send error"); t_error("xti_udp_send: data send error"); exit(1); } messages_sent++; /* now we want to move our pointer to the next position in the */ /* data buffer...and update the unitdata structure */ send_ring = send_ring->next; unitdata.udata.buf = send_ring->buffer_ptr; #ifdef WANT_HISTOGRAM /* get the second timestamp */ HIST_timestamp(&time_two); HIST_add(time_hist,delta_micro(&time_one,&time_two)); #endif /* WANT_HISTOGRAM */ #ifdef WANT_INTERVALS if (demo_mode) { units_this_tick += send_size; } /* in this case, the interval count is the count-down couter */ /* to decide to sleep for a little bit */ if ((interval_burst) && (--interval_count == 0)) { /* call sigsuspend and wait for the interval timer to get us */ /* out */ if (debug) { fprintf(where,"about to suspend\n"); fflush(where); } if (sigsuspend(&signal_set) == EFAULT) { fprintf(where, "send_xti_udp_stream: fault with signal set!\n"); fflush(where); exit(1); } interval_count = interval_burst; } #endif /* WANT_INTERVALS */ } /* This is a timed test, so the remote will be returning to us after */ /* a time. We should not need to send any "strange" messages to tell */ /* the remote that the test is completed, unless we decide to add a */ /* number of messages to the test. */ /* the test is over, so get stats and stuff */ cpu_stop(local_cpu_usage, &elapsed_time); /* Get the statistics from the remote end */ recv_response(); if (!netperf_response.content.serv_errno) { if (debug) fprintf(where,"send_xti_udp_stream: remote results obtained\n"); } else { Set_errno(netperf_response.content.serv_errno); perror("send_xti_udp_stream: error on remote"); exit(1); } bytes_sent = (double) send_size * (double) messages_sent; local_thruput = calc_thruput(bytes_sent); messages_recvd = xti_udp_stream_results->messages_recvd; bytes_recvd = (double) send_size * (double) messages_recvd; /* we asume that the remote ran for as long as we did */ remote_thruput = calc_thruput(bytes_recvd); /* print the results for this socket and message size */ if (local_cpu_usage || remote_cpu_usage) { /* We must now do a little math for service demand and cpu */ /* utilization for the system(s) We pass zeros for the local */ /* cpu utilization and elapsed time to tell the routine to use */ /* the libraries own values for those. */ if (local_cpu_usage) { local_cpu_utilization = calc_cpu_util(0.0); /* shouldn't this really be based on bytes_recvd, since that is */ /* the effective throughput of the test? I think that it should, */ /* so will make the change raj 11/94 */ local_service_demand = calc_service_demand(bytes_recvd, 0.0, 0.0, 0); } else { local_cpu_utilization = -1.0; local_service_demand = -1.0; } /* The local calculations could use variables being kept by */ /* the local netlib routines. The remote calcuations need to */ /* have a few things passed to them. */ if (remote_cpu_usage) { remote_cpu_utilization = xti_udp_stream_results->cpu_util; remote_service_demand = calc_service_demand(bytes_recvd, 0.0, remote_cpu_utilization, xti_udp_stream_results->num_cpus); } else { remote_cpu_utilization = -1.0; remote_service_demand = -1.0; } } else { /* we were not measuring cpu, for the confidence stuff, we */ /* should make it -1.0 */ local_cpu_utilization = -1.0; local_service_demand = -1.0; remote_cpu_utilization = -1.0; remote_service_demand = -1.0; } /* at this point, we want to calculate the confidence information. */ /* if debugging is on, calculate_confidence will print-out the */ /* parameters we pass it */ calculate_confidence(confidence_iteration, elapsed_time, remote_thruput, local_cpu_utilization, remote_cpu_utilization, local_service_demand, remote_service_demand); /* since the routine calculate_confidence is rather generic, and */ /* we have a few other parms of interest, we will do a little work */ /* here to caclulate their average. */ sum_messages_sent += messages_sent; sum_messages_recvd += messages_recvd; sum_failed_sends += failed_sends; sum_local_thruput += local_thruput; confidence_iteration++; /* this datapoint is done, so we don't need the socket any longer */ close(data_socket); } /* we should reach this point once the test is finished */ retrieve_confident_values(&elapsed_time, &remote_thruput, &local_cpu_utilization, &remote_cpu_utilization, &local_service_demand, &remote_service_demand); /* some of the interesting values aren't covered by the generic */ /* confidence routine */ messages_sent = sum_messages_sent / (confidence_iteration -1); messages_recvd = sum_messages_recvd / (confidence_iteration -1); failed_sends = sum_failed_sends / (confidence_iteration -1); local_thruput = sum_local_thruput / (confidence_iteration -1); /* We are now ready to print all the information. If the user */ /* has specified zero-level verbosity, we will just print the */ /* local service demand, or the remote service demand. If the */ /* user has requested verbosity level 1, he will get the basic */ /* "streamperf" numbers. If the user has specified a verbosity */ /* of greater than 1, we will display a veritable plethora of */ /* background information from outside of this block as it it */ /* not cpu_measurement specific... */ if (confidence < 0) { /* we did not hit confidence, but were we asked to look for it? */ if (iteration_max > 1) { display_confidence(); } } if (local_cpu_usage || remote_cpu_usage) { local_cpu_method = format_cpu_method(cpu_method); remote_cpu_method = format_cpu_method(xti_udp_stream_results->cpu_method); switch (verbosity) { case 0: if (local_cpu_usage) { fprintf(where, cpu_fmt_0, local_service_demand, local_cpu_method); } else { fprintf(where, cpu_fmt_0, remote_service_demand, local_cpu_method); } break; case 1: case 2: if (print_headers) { fprintf(where, cpu_title, format_units(), local_cpu_method, remote_cpu_method); } fprintf(where, cpu_fmt_1, /* the format string */ lss_size, /* local sendbuf size */ send_size, /* how large were the sends */ elapsed_time, /* how long was the test */ messages_sent, failed_sends, local_thruput, /* what was the xfer rate */ local_cpu_utilization, /* local cpu */ local_service_demand, /* local service demand */ rsr_size, elapsed_time, messages_recvd, remote_thruput, remote_cpu_utilization, /* remote cpu */ remote_service_demand); /* remote service demand */ break; } } else { /* The tester did not wish to measure service demand. */ switch (verbosity) { case 0: fprintf(where, tput_fmt_0, local_thruput); break; case 1: case 2: if (print_headers) { fprintf(where,tput_title,format_units()); } fprintf(where, tput_fmt_1, /* the format string */ lss_size, /* local sendbuf size */ send_size, /* how large were the sends */ elapsed_time, /* how long did it take */ messages_sent, failed_sends, local_thruput, rsr_size, /* remote recvbuf size */ elapsed_time, messages_recvd, remote_thruput); break; } } fflush(where); #ifdef WANT_HISTOGRAM if (verbosity > 1) { fprintf(where,"\nHistogram of time spent in send() call\n"); fflush(where); HIST_report(time_hist); } #endif /* WANT_HISTOGRAM */ } /* this routine implements the receive side (netserver) of the */ /* XTI_UDP_STREAM performance test. */ void recv_xti_udp_stream() { struct ring_elt *recv_ring; struct t_bind bind_req, bind_resp; struct t_unitdata unitdata; int flags = 0; struct sockaddr_in myaddr_in; struct sockaddr_in fromaddr_in; SOCKET s_data; int addrlen; unsigned int bytes_received = 0; float elapsed_time; unsigned int message_size; unsigned int messages_recvd = 0; struct xti_udp_stream_request_struct *xti_udp_stream_request; struct xti_udp_stream_response_struct *xti_udp_stream_response; struct xti_udp_stream_results_struct *xti_udp_stream_results; xti_udp_stream_request = (struct xti_udp_stream_request_struct *)netperf_request.content.test_specific_data; xti_udp_stream_response = (struct xti_udp_stream_response_struct *)netperf_response.content.test_specific_data; xti_udp_stream_results = (struct xti_udp_stream_results_struct *)netperf_response.content.test_specific_data; if (debug) { fprintf(where,"netserver: recv_xti_udp_stream: entered...\n"); fflush(where); } /* We want to set-up the listen socket with all the desired */ /* parameters and then let the initiator know that all is ready. If */ /* socket size defaults are to be used, then the initiator will have */ /* sent us 0's. If the socket sizes cannot be changed, then we will */ /* send-back what they are. If that information cannot be determined, */ /* then we send-back -1's for the sizes. If things go wrong for any */ /* reason, we will drop back ten yards and punt. */ /* If anything goes wrong, we want the remote to know about it. It */ /* would be best if the error that the remote reports to the user is */ /* the actual error we encountered, rather than some bogus unexpected */ /* response type message. */ if (debug > 1) { fprintf(where,"recv_xti_udp_stream: setting the response type...\n"); fflush(where); } netperf_response.content.response_type = XTI_UDP_STREAM_RESPONSE; if (debug > 2) { fprintf(where,"recv_xti_udp_stream: the response type is set...\n"); fflush(where); } /* We now alter the message_ptr variable to be at the desired */ /* alignment with the desired offset. */ if (debug > 1) { fprintf(where,"recv_xti_udp_stream: requested alignment of %d\n", xti_udp_stream_request->recv_alignment); fflush(where); } if (recv_width == 0) recv_width = 1; recv_ring = allocate_buffer_ring(recv_width, xti_udp_stream_request->message_size, xti_udp_stream_request->recv_alignment, xti_udp_stream_request->recv_offset); if (debug > 1) { fprintf(where,"recv_xti_udp_stream: receive alignment and offset set...\n"); fflush(where); } /* Let's clear-out our sockaddr for the sake of cleanlines. Then we */ /* can put in OUR values !-) At some point, we may want to nail this */ /* socket to a particular network-level address, but for now, */ /* INADDR_ANY should be just fine. */ bzero((char *)&myaddr_in, sizeof(myaddr_in)); myaddr_in.sin_family = AF_INET; myaddr_in.sin_addr.s_addr = INADDR_ANY; myaddr_in.sin_port = 0; /* Grab a socket to listen on, and then listen on it. */ if (debug > 1) { fprintf(where,"recv_xti_udp_stream: grabbing a socket...\n"); fflush(where); } /* create_xti_endpoint expects to find some things in the global */ /* variables, so set the globals based on the values in the request. */ /* once the socket has been created, we will set the response values */ /* based on the updated value of those globals. raj 7/94 */ lsr_size = xti_udp_stream_request->recv_buf_size; loc_rcvavoid = xti_udp_stream_request->so_rcvavoid; loc_sndavoid = xti_udp_stream_request->so_sndavoid; #ifdef __alpha /* ok - even on a DEC box, strings are strings. I din't really want */ /* to ntohl the words of a string. since I don't want to teach the */ /* send_ and recv_ _request and _response routines about the types, */ /* I will put "anti-ntohl" calls here. I imagine that the "pure" */ /* solution would be to use XDR, but I am still leary of being able */ /* to find XDR libs on all platforms I want running netperf. raj */ { int *charword; int *initword; int *lastword; initword = (int *) xti_udp_stream_request->xti_device; lastword = initword + ((xti_udp_stream_request->dev_name_len + 3) / 4); for (charword = initword; charword < lastword; charword++) { *charword = htonl(*charword); } } #endif /* __alpha */ s_data = create_xti_endpoint(xti_udp_stream_request->xti_device); if (s_data == INVALID_SOCKET) { netperf_response.content.serv_errno = errno; send_response(); exit(1); } /* Let's get an address assigned to this socket so we can tell the */ /* initiator how to reach the data socket. There may be a desire to */ /* nail this socket to a specific IP address in a multi-homed, */ /* multi-connection situation, but for now, we'll ignore the issue */ /* and concentrate on single connection testing. */ bind_req.addr.maxlen = sizeof(struct sockaddr_in); bind_req.addr.len = sizeof(struct sockaddr_in); bind_req.addr.buf = (char *)&myaddr_in; bind_req.qlen = 1; bind_resp.addr.maxlen = sizeof(struct sockaddr_in); bind_resp.addr.len = sizeof(struct sockaddr_in); bind_resp.addr.buf = (char *)&myaddr_in; bind_resp.qlen = 1; if (t_bind(s_data, &bind_req, &bind_resp) == SOCKET_ERROR) { netperf_response.content.serv_errno = t_errno; send_response(); exit(1); } xti_udp_stream_response->test_length = xti_udp_stream_request->test_length; /* Now myaddr_in contains the port and the internet address this is */ /* returned to the sender also implicitly telling the sender that the */ /* socket buffer sizing has been done. */ xti_udp_stream_response->data_port_number = (int) ntohs(myaddr_in.sin_port); netperf_response.content.serv_errno = 0; /* But wait, there's more. If the initiator wanted cpu measurements, */ /* then we must call the calibrate routine, which will return the max */ /* rate back to the initiator. If the CPU was not to be measured, or */ /* something went wrong with the calibration, we will return a -1 to */ /* the initiator. */ xti_udp_stream_response->cpu_rate = 0.0; /* assume no cpu */ xti_udp_stream_response->measure_cpu = 0; if (xti_udp_stream_request->measure_cpu) { /* We will pass the rate into the calibration routine. If the */ /* user did not specify one, it will be 0.0, and we will do a */ /* "real" calibration. Otherwise, all it will really do is */ /* store it away... */ xti_udp_stream_response->measure_cpu = 1; xti_udp_stream_response->cpu_rate = calibrate_local_cpu(xti_udp_stream_request->cpu_rate); } message_size = xti_udp_stream_request->message_size; test_time = xti_udp_stream_request->test_length; /* before we send the response back to the initiator, pull some of */ /* the socket parms from the globals */ xti_udp_stream_response->send_buf_size = lss_size; xti_udp_stream_response->recv_buf_size = lsr_size; xti_udp_stream_response->so_rcvavoid = loc_rcvavoid; xti_udp_stream_response->so_sndavoid = loc_sndavoid; /* since we are going to call t_rcvudata() instead of t_rcv() we */ /* need to init the unitdata structure raj 3/95 */ unitdata.addr.maxlen = sizeof(fromaddr_in); unitdata.addr.len = sizeof(fromaddr_in); unitdata.addr.buf = (char *)&fromaddr_in; unitdata.opt.maxlen = 0; unitdata.opt.len = 0; unitdata.opt.buf = NULL; unitdata.udata.maxlen = xti_udp_stream_request->message_size; unitdata.udata.len = xti_udp_stream_request->message_size; unitdata.udata.buf = recv_ring->buffer_ptr; send_response(); /* Now it's time to start receiving data on the connection. We will */ /* first grab the apropriate counters and then start grabbing. */ cpu_start(xti_udp_stream_request->measure_cpu); /* The loop will exit when the timer pops, or if we happen to recv a */ /* message of less than send_size bytes... */ times_up = 0; start_timer(test_time + PAD_TIME); if (debug) { fprintf(where,"recv_xti_udp_stream: about to enter inner sanctum.\n"); fflush(where); } while (!times_up) { #ifdef RAJ_DEBUG if (debug) { fprintf(where,"t_rcvudata, errno %d, t_errno %d", errno, t_errno); fprintf(where," after %d messages\n",messages_recvd); fprintf(where,"addrmax %d addrlen %d addrbuf %x\n", unitdata.addr.maxlen, unitdata.addr.len, unitdata.addr.buf); fprintf(where,"optmax %d optlen %d optbuf %x\n", unitdata.opt.maxlen, unitdata.opt.len, unitdata.opt.buf); fprintf(where,"udatamax %d udatalen %d udatabuf %x\n", unitdata.udata.maxlen, unitdata.udata.len, unitdata.udata.buf); fflush(where); } #endif /* RAJ_DEBUG */ if (t_rcvudata(s_data, &unitdata, &flags) != 0) { if (errno == TNODATA) { continue; } if (errno != EINTR) { netperf_response.content.serv_errno = t_errno; send_response(); exit(1); } break; } messages_recvd++; recv_ring = recv_ring->next; unitdata.udata.buf = recv_ring->buffer_ptr; } if (debug) { fprintf(where,"recv_xti_udp_stream: got %d messages.\n",messages_recvd); fflush(where); } /* The loop now exits due timer or < send_size bytes received. */ cpu_stop(xti_udp_stream_request->measure_cpu,&elapsed_time); if (times_up) { /* we ended on a timer, subtract the PAD_TIME */ elapsed_time -= (float)PAD_TIME; } else { stop_timer(); } if (debug) { fprintf(where,"recv_xti_udp_stream: test ended in %f seconds.\n",elapsed_time); fflush(where); } bytes_received = (messages_recvd * message_size); /* send the results to the sender */ if (debug) { fprintf(where, "recv_xti_udp_stream: got %d bytes\n", bytes_received); fflush(where); } netperf_response.content.response_type = XTI_UDP_STREAM_RESULTS; xti_udp_stream_results->bytes_received = bytes_received; xti_udp_stream_results->messages_recvd = messages_recvd; xti_udp_stream_results->elapsed_time = elapsed_time; xti_udp_stream_results->cpu_method = cpu_method; if (xti_udp_stream_request->measure_cpu) { xti_udp_stream_results->cpu_util = calc_cpu_util(elapsed_time); } else { xti_udp_stream_results->cpu_util = -1.0; } if (debug > 1) { fprintf(where, "recv_xti_udp_stream: test complete, sending results.\n"); fflush(where); } send_response(); } void send_xti_udp_rr(char remote_host[]) { char *tput_title = "\ Local /Remote\n\ Socket Size Request Resp. Elapsed Trans.\n\ Send Recv Size Size Time Rate \n\ bytes Bytes bytes bytes secs. per sec \n\n"; char *tput_fmt_0 = "%7.2f\n"; char *tput_fmt_1_line_1 = "\ %-6d %-6d %-6d %-6d %-6.2f %7.2f \n"; char *tput_fmt_1_line_2 = "\ %-6d %-6d\n"; char *cpu_title = "\ Local /Remote\n\ Socket Size Request Resp. Elapsed Trans. CPU CPU S.dem S.dem\n\ Send Recv Size Size Time Rate local remote local remote\n\ bytes bytes bytes bytes secs. per sec %% %c %% %c us/Tr us/Tr\n\n"; char *cpu_fmt_0 = "%6.3f %c\n"; char *cpu_fmt_1_line_1 = "\ %-6d %-6d %-6d %-6d %-6.2f %-6.2f %-6.2f %-6.2f %-6.3f %-6.3f\n"; char *cpu_fmt_1_line_2 = "\ %-6d %-6d\n"; char *ksink_fmt = "\ Alignment Offset\n\ Local Remote Local Remote\n\ Send Recv Send Recv\n\ %5d %5d %5d %5d\n"; float elapsed_time; struct ring_elt *send_ring; struct ring_elt *recv_ring; struct t_bind bind_req, bind_resp; struct t_unitdata unitdata; struct t_unitdata send_unitdata; struct t_unitdata recv_unitdata; int flags = 0; int len; int nummessages; SOCKET send_socket; int trans_remaining; int bytes_xferd; int rsp_bytes_recvd; float local_cpu_utilization; float local_service_demand; float remote_cpu_utilization; float remote_service_demand; double thruput; struct hostent *hp; struct sockaddr_in server, myaddr_in; unsigned int addr; int addrlen; struct xti_udp_rr_request_struct *xti_udp_rr_request; struct xti_udp_rr_response_struct *xti_udp_rr_response; struct xti_udp_rr_results_struct *xti_udp_rr_result; #ifdef WANT_INTERVALS int interval_count; sigset_t signal_set; #endif /* WANT_INTERVALS */ xti_udp_rr_request = (struct xti_udp_rr_request_struct *)netperf_request.content.test_specific_data; xti_udp_rr_response = (struct xti_udp_rr_response_struct *)netperf_response.content.test_specific_data; xti_udp_rr_result = (struct xti_udp_rr_results_struct *)netperf_response.content.test_specific_data; #ifdef WANT_HISTOGRAM time_hist = HIST_new(); #endif /* since we are now disconnected from the code that established the */ /* control socket, and since we want to be able to use different */ /* protocols and such, we are passed the name of the remote host and */ /* must turn that into the test specific addressing information. */ bzero((char *)&server, sizeof(server)); /* it would seem that while HP-UX will allow an IP address (as a */ /* string) in a call to gethostbyname, other, less enlightened */ /* systems do not. fix from awjacks@ca.sandia.gov raj 10/95 */ /* order changed to check for IP address first. raj 7/96 */ if ((addr = inet_addr(remote_host)) == SOCKET_ERROR) { /* it was not an IP address, try it as a name */ if ((hp = gethostbyname(remote_host)) == NULL) { /* we have no idea what it is */ fprintf(where, "establish_control: could not resolve the destination %s\n", remote_host); fflush(where); exit(1); } else { /* it was a valid remote_host */ bcopy(hp->h_addr, (char *)&server.sin_addr, hp->h_length); server.sin_family = hp->h_addrtype; } } else { /* it was a valid IP address */ server.sin_addr.s_addr = addr; server.sin_family = AF_INET; } if ( print_headers ) { fprintf(where,"XTI UDP REQUEST/RESPONSE TEST"); fprintf(where," to %s", remote_host); if (iteration_max > 1) { fprintf(where, " : +/-%3.1f%% @ %2d%% conf.", interval/0.02, confidence_level); } if (loc_sndavoid || loc_rcvavoid || rem_sndavoid || rem_rcvavoid) { fprintf(where," : copy avoidance"); } #ifdef WANT_HISTOGRAM fprintf(where," : histogram"); #endif /* WANT_HISTOGRAM */ #ifdef WANT_INTERVALS fprintf(where," : interval"); #endif /* WANT_INTERVALS */ #ifdef DIRTY fprintf(where," : dirty data"); #endif /* DIRTY */ fprintf(where,"\n"); } /* initialize a few counters */ send_ring = NULL; recv_ring = NULL; nummessages = 0; bytes_xferd = 0; times_up = 0; confidence_iteration = 1; init_stat(); /* we have a great-big while loop which controls the number of times */ /* we run a particular test. this is for the calculation of a */ /* confidence interval (I really should have stayed awake during */ /* probstats :). If the user did not request confidence measurement */ /* (no confidence is the default) then we will only go though the */ /* loop once. the confidence stuff originates from the folks at IBM */ while (((confidence < 0) && (confidence_iteration < iteration_max)) || (confidence_iteration <= iteration_min)) { nummessages = 0; bytes_xferd = 0.0; times_up = 0; trans_remaining = 0; /* set-up the data buffers with the requested alignment and offset */ if (send_width == 0) send_width = 1; if (recv_width == 0) recv_width = 1; if (send_ring == NULL) { send_ring = allocate_buffer_ring(send_width, req_size, local_send_align, local_send_offset); } if (recv_ring == NULL) { recv_ring = allocate_buffer_ring(recv_width, rsp_size, local_recv_align, local_recv_offset); } /* since we are going to call t_rcvudata() instead of t_rcv() we */ /* need to init the unitdata structure raj 8/95 */ memset (&recv_unitdata, 0, sizeof(recv_unitdata)); recv_unitdata.addr.maxlen = sizeof(struct sockaddr_in); recv_unitdata.addr.len = sizeof(struct sockaddr_in); recv_unitdata.addr.buf = (char *)&server; recv_unitdata.opt.maxlen = 0; recv_unitdata.opt.len = 0; recv_unitdata.opt.buf = NULL; recv_unitdata.udata.maxlen = rsp_size; recv_unitdata.udata.len = rsp_size; recv_unitdata.udata.buf = recv_ring->buffer_ptr; /* since we are going to call t_sndudata() instead of t_snd() we */ /* need to init the unitdata structure raj 8/95 */ memset (&send_unitdata, 0, sizeof(send_unitdata)); send_unitdata.addr.maxlen = sizeof(struct sockaddr_in); send_unitdata.addr.len = sizeof(struct sockaddr_in); send_unitdata.addr.buf = (char *)&server; send_unitdata.opt.maxlen = 0; send_unitdata.opt.len = 0; send_unitdata.opt.buf = NULL; send_unitdata.udata.maxlen = req_size; send_unitdata.udata.len = req_size; send_unitdata.udata.buf = send_ring->buffer_ptr; /*set up the data socket */ send_socket = create_xti_endpoint(loc_xti_device); if (send_socket == INVALID_SOCKET){ perror("netperf: send_xti_udp_rr: udp rr data socket"); exit(1); } if (debug) { fprintf(where,"send_xti_udp_rr: send_socket obtained...\n"); } /* it would seem that with XTI, there is no implicit bind */ /* so we have to make a call to t_bind. this is not */ /* terribly convenient, but I suppose that "standard is better */ /* than better" :) raj 2/95 */ if (t_bind(send_socket, NULL, NULL) == SOCKET_ERROR) { t_error("send_xti_tcp_stream: t_bind"); exit(1); } /* If the user has requested cpu utilization measurements, we must */ /* calibrate the cpu(s). We will perform this task within the tests */ /* themselves. If the user has specified the cpu rate, then */ /* calibrate_local_cpu will return rather quickly as it will have */ /* nothing to do. If local_cpu_rate is zero, then we will go through */ /* all the "normal" calibration stuff and return the rate back. If */ /* there is no idle counter in the kernel idle loop, the */ /* local_cpu_rate will be set to -1. */ if (local_cpu_usage) { local_cpu_rate = calibrate_local_cpu(local_cpu_rate); } /* Tell the remote end to do a listen. The server alters the socket */ /* paramters on the other side at this point, hence the reason for */ /* all the values being passed in the setup message. If the user did */ /* not specify any of the parameters, they will be passed as 0, which */ /* will indicate to the remote that no changes beyond the system's */ /* default should be used. Alignment is the exception, it will */ /* default to 8, which will be no alignment alterations. */ netperf_request.content.request_type = DO_XTI_UDP_RR; xti_udp_rr_request->recv_buf_size = rsr_size; xti_udp_rr_request->send_buf_size = rss_size; xti_udp_rr_request->recv_alignment = remote_recv_align; xti_udp_rr_request->recv_offset = remote_recv_offset; xti_udp_rr_request->send_alignment = remote_send_align; xti_udp_rr_request->send_offset = remote_send_offset; xti_udp_rr_request->request_size = req_size; xti_udp_rr_request->response_size = rsp_size; xti_udp_rr_request->measure_cpu = remote_cpu_usage; xti_udp_rr_request->cpu_rate = remote_cpu_rate; xti_udp_rr_request->so_rcvavoid = rem_rcvavoid; xti_udp_rr_request->so_sndavoid = rem_sndavoid; if (test_time) { xti_udp_rr_request->test_length = test_time; } else { xti_udp_rr_request->test_length = test_trans * -1; } strcpy(xti_udp_rr_request->xti_device, rem_xti_device); #ifdef __alpha /* ok - even on a DEC box, strings are strings. I didn't really want */ /* to ntohl the words of a string. since I don't want to teach the */ /* send_ and recv_ _request and _response routines about the types, */ /* I will put "anti-ntohl" calls here. I imagine that the "pure" */ /* solution would be to use XDR, but I am still leary of being able */ /* to find XDR libs on all platforms I want running netperf. raj */ { int *charword; int *initword; int *lastword; initword = (int *) xti_udp_rr_request->xti_device; lastword = initword + ((strlen(rem_xti_device) + 3) / 4); for (charword = initword; charword < lastword; charword++) { *charword = ntohl(*charword); } } #endif /* __alpha */ if (debug > 1) { fprintf(where,"netperf: send_xti_udp_rr: requesting UDP r/r test\n"); } send_request(); /* The response from the remote will contain all of the relevant */ /* socket parameters for this test type. We will put them back into */ /* the variables here so they can be displayed if desired. The */ /* remote will have calibrated CPU if necessary, and will have done */ /* all the needed set-up we will have calibrated the cpu locally */ /* before sending the request, and will grab the counter value right*/ /* after the connect returns. The remote will grab the counter right*/ /* after the accept call. This saves the hassle of extra messages */ /* being sent for the UDP tests. */ recv_response(); if (!netperf_response.content.serv_errno) { if (debug) fprintf(where,"remote listen done.\n"); rsr_size = xti_udp_rr_response->recv_buf_size; rss_size = xti_udp_rr_response->send_buf_size; remote_cpu_usage = xti_udp_rr_response->measure_cpu; remote_cpu_rate = xti_udp_rr_response->cpu_rate; /* port numbers in proper order */ server.sin_port = (short)xti_udp_rr_response->data_port_number; server.sin_port = htons(server.sin_port); } else { Set_errno(netperf_response.content.serv_errno); perror("netperf: remote error"); exit(1); } /* Data Socket set-up is finished. If there were problems, either the */ /* connect would have failed, or the previous response would have */ /* indicated a problem. I failed to see the value of the extra */ /* message after the accept on the remote. If it failed, we'll see it */ /* here. If it didn't, we might as well start pumping data. */ /* Set-up the test end conditions. For a request/response test, they */ /* can be either time or transaction based. */ if (test_time) { /* The user wanted to end the test after a period of time. */ times_up = 0; trans_remaining = 0; start_timer(test_time); } else { /* The tester wanted to send a number of bytes. */ trans_remaining = test_bytes; times_up = 1; } /* The cpu_start routine will grab the current time and possibly */ /* value of the idle counter for later use in measuring cpu */ /* utilization and/or service demand and thruput. */ cpu_start(local_cpu_usage); #ifdef WANT_INTERVALS if ((interval_burst) || (demo_mode)) { /* zero means that we never pause, so we never should need the */ /* interval timer, unless we are in demo_mode */ start_itimer(interval_wate); } interval_count = interval_burst; /* get the signal set for the call to sigsuspend */ if (sigprocmask(SIG_BLOCK, (sigset_t *)NULL, &signal_set) != 0) { fprintf(where, "send_xti_udp_rr: unable to get sigmask errno %d\n", errno); fflush(where); exit(1); } #endif /* WANT_INTERVALS */ /* We use an "OR" to control test execution. When the test is */ /* controlled by time, the byte count check will always return */ /* false. When the test is controlled by byte count, the time test */ /* will always return false. When the test is finished, the whole */ /* expression will go false and we will stop sending data. I think */ /* I just arbitrarily decrement trans_remaining for the timed */ /* test, but will not do that just yet... One other question is */ /* whether or not the send buffer and the receive buffer should be */ /* the same buffer. */ while ((!times_up) || (trans_remaining > 0)) { /* send the request */ #ifdef WANT_HISTOGRAM HIST_timestamp(&time_one); #endif if((t_sndudata(send_socket, &send_unitdata)) != 0) { if (errno == EINTR) { /* We likely hit */ /* test-end time. */ break; } fprintf(where, "send_xti_udp_rr: t_sndudata: errno %d t_errno %d t_look 0x%.4x\n", errno, t_errno, t_look(send_socket)); fflush(where); exit(1); } send_ring = send_ring->next; /* receive the response. with UDP we will get it all, or nothing */ if((t_rcvudata(send_socket, &recv_unitdata, &flags)) != 0) { if (errno == TNODATA) { continue; } if (errno == EINTR) { /* Again, we have likely hit test-end time */ break; } fprintf(where, "send_xti_udp_rr: t_rcvudata: errno %d t_errno %d t_look 0x%x\n", errno, t_errno, t_look(send_socket)); fprintf(where, "recv_unitdata.udata.buf %x\n",recv_unitdata.udata.buf); fprintf(where, "recv_unitdata.udata.maxlen %x\n",recv_unitdata.udata.maxlen); fprintf(where, "recv_unitdata.udata.len %x\n",recv_unitdata.udata.len); fprintf(where, "recv_unitdata.addr.buf %x\n",recv_unitdata.addr.buf); fprintf(where, "recv_unitdata.addr.maxlen %x\n",recv_unitdata.addr.maxlen); fprintf(where, "recv_unitdata.addr.len %x\n",recv_unitdata.addr.len); fflush(where); exit(1); } recv_ring = recv_ring->next; #ifdef WANT_HISTOGRAM HIST_timestamp(&time_two); HIST_add(time_hist,delta_micro(&time_one,&time_two)); /* at this point, we may wish to sleep for some period of */ /* time, so we see how long that last transaction just took, */ /* and sleep for the difference of that and the interval. We */ /* will not sleep if the time would be less than a */ /* millisecond. */ #endif #ifdef WANT_INTERVALS if (demo_mode) { units_this_tick += 1; } /* in this case, the interval count is the count-down couter */ /* to decide to sleep for a little bit */ if ((interval_burst) && (--interval_count == 0)) { /* call sigsuspend and wait for the interval timer to get us */ /* out */ if (debug) { fprintf(where,"about to suspend\n"); fflush(where); } if (sigsuspend(&signal_set) == EFAULT) { fprintf(where, "send_xti_udp_rr: fault with signal set!\n"); fflush(where); exit(1); } interval_count = interval_burst; } #endif /* WANT_INTERVALS */ nummessages++; if (trans_remaining) { trans_remaining--; } if (debug > 3) { if ((nummessages % 100) == 0) { fprintf(where,"Transaction %d completed\n",nummessages); fflush(where); } } } /* this call will always give us the elapsed time for the test, and */ /* will also store-away the necessaries for cpu utilization */ cpu_stop(local_cpu_usage,&elapsed_time); /* was cpu being */ /* measured? how long */ /* did we really run? */ /* Get the statistics from the remote end. The remote will have */ /* calculated service demand and all those interesting things. If */ /* it wasn't supposed to care, it will return obvious values. */ recv_response(); if (!netperf_response.content.serv_errno) { if (debug) fprintf(where,"remote results obtained\n"); } else { Set_errno(netperf_response.content.serv_errno); perror("netperf: remote error"); exit(1); } /* We now calculate what our thruput was for the test. In the */ /* future, we may want to include a calculation of the thruput */ /* measured by the remote, but it should be the case that for a */ /* UDP rr test, that the two numbers should be *very* close... */ /* We calculate bytes_sent regardless of the way the test length */ /* was controlled. */ bytes_xferd = (req_size * nummessages) + (rsp_size * nummessages); thruput = nummessages / elapsed_time; if (local_cpu_usage || remote_cpu_usage) { /* We must now do a little math for service demand and cpu */ /* utilization for the system(s) Of course, some of the */ /* information might be bogus because there was no idle counter */ /* in the kernel(s). We need to make a note of this for the */ /* user's benefit by placing a code for the metod used in the */ /* test banner */ if (local_cpu_usage) { local_cpu_utilization = calc_cpu_util(0.0); /* since calc_service demand is doing ms/Kunit we will */ /* multiply the number of transaction by 1024 to get */ /* "good" numbers */ local_service_demand = calc_service_demand((double) nummessages*1024, 0.0, 0.0, 0); } else { local_cpu_utilization = -1.0; local_service_demand = -1.0; } if (remote_cpu_usage) { remote_cpu_utilization = xti_udp_rr_result->cpu_util; /* since calc_service demand is doing ms/Kunit we will */ /* multiply the number of transaction by 1024 to get */ /* "good" numbers */ remote_service_demand = calc_service_demand((double) nummessages*1024, 0.0, remote_cpu_utilization, xti_udp_rr_result->num_cpus); } else { remote_cpu_utilization = -1.0; remote_service_demand = -1.0; } } else { /* we were not measuring cpu, for the confidence stuff, we */ /* should make it -1.0 */ local_cpu_utilization = -1.0; local_service_demand = -1.0; remote_cpu_utilization = -1.0; remote_service_demand = -1.0; } /* at this point, we want to calculate the confidence information. */ /* if debugging is on, calculate_confidence will print-out the */ /* parameters we pass it */ calculate_confidence(confidence_iteration, elapsed_time, thruput, local_cpu_utilization, remote_cpu_utilization, local_service_demand, remote_service_demand); confidence_iteration++; /* we are done with the socket */ t_close(send_socket); } /* at this point, we have made all the iterations we are going to */ /* make. */ retrieve_confident_values(&elapsed_time, &thruput, &local_cpu_utilization, &remote_cpu_utilization, &local_service_demand, &remote_service_demand); /* We are now ready to print all the information. If the user */ /* has specified zero-level verbosity, we will just print the */ /* local service demand, or the remote service demand. If the */ /* user has requested verbosity level 1, he will get the basic */ /* "streamperf" numbers. If the user has specified a verbosity */ /* of greater than 1, we will display a veritable plethora of */ /* background information from outside of this block as it it */ /* not cpu_measurement specific... */ if (confidence < 0) { /* we did not hit confidence, but were we asked to look for it? */ if (iteration_max > 1) { display_confidence(); } } if (local_cpu_usage || remote_cpu_usage) { local_cpu_method = format_cpu_method(cpu_method); remote_cpu_method = format_cpu_method(xti_udp_rr_result->cpu_method); switch (verbosity) { case 0: if (local_cpu_usage) { fprintf(where, cpu_fmt_0, local_service_demand, local_cpu_method); } else { fprintf(where, cpu_fmt_0, remote_service_demand, remote_cpu_method); } break; case 1: case 2: if (print_headers) { fprintf(where, cpu_title, local_cpu_method, remote_cpu_method); } fprintf(where, cpu_fmt_1_line_1, /* the format string */ lss_size, /* local sendbuf size */ lsr_size, req_size, /* how large were the requests */ rsp_size, /* guess */ elapsed_time, /* how long was the test */ nummessages/elapsed_time, local_cpu_utilization, /* local cpu */ remote_cpu_utilization, /* remote cpu */ local_service_demand, /* local service demand */ remote_service_demand); /* remote service demand */ fprintf(where, cpu_fmt_1_line_2, rss_size, rsr_size); break; } } else { /* The tester did not wish to measure service demand. */ switch (verbosity) { case 0: fprintf(where, tput_fmt_0, nummessages/elapsed_time); break; case 1: case 2: if (print_headers) { fprintf(where,tput_title,format_units()); } fprintf(where, tput_fmt_1_line_1, /* the format string */ lss_size, lsr_size, req_size, /* how large were the requests */ rsp_size, /* how large were the responses */ elapsed_time, /* how long did it take */ nummessages/elapsed_time); fprintf(where, tput_fmt_1_line_2, rss_size, /* remote recvbuf size */ rsr_size); break; } } fflush(where); /* it would be a good thing to include information about some of the */ /* other parameters that may have been set for this test, but at the */ /* moment, I do not wish to figure-out all the formatting, so I will */ /* just put this comment here to help remind me that it is something */ /* that should be done at a later time. */ /* how to handle the verbose information in the presence of */ /* confidence intervals is yet to be determined... raj 11/94 */ if (verbosity > 1) { /* The user wanted to know it all, so we will give it to him. */ /* This information will include as much as we can find about */ /* UDP statistics, the alignments of the sends and receives */ /* and all that sort of rot... */ #ifdef WANT_HISTOGRAM fprintf(where,"\nHistogram of request/reponse times.\n"); fflush(where); HIST_report(time_hist); #endif /* WANT_HISTOGRAM */ } } /* this routine implements the receive side (netserver) of a XTI_UDP_RR */ /* test. */ void recv_xti_udp_rr() { struct ring_elt *recv_ring; struct ring_elt *send_ring; struct t_bind bind_req, bind_resp; struct t_unitdata send_unitdata; struct t_unitdata recv_unitdata; int flags = 0; struct sockaddr_in myaddr_in, peeraddr_in; SOCKET s_data; int addrlen; int trans_received; int trans_remaining; float elapsed_time; struct xti_udp_rr_request_struct *xti_udp_rr_request; struct xti_udp_rr_response_struct *xti_udp_rr_response; struct xti_udp_rr_results_struct *xti_udp_rr_results; /* a little variable initialization */ memset (&myaddr_in, 0, sizeof(struct sockaddr_in)); myaddr_in.sin_family = AF_INET; myaddr_in.sin_addr.s_addr = INADDR_ANY; myaddr_in.sin_port = 0; memset (&peeraddr_in, 0, sizeof(struct sockaddr_in)); /* and some not so paranoid :) */ xti_udp_rr_request = (struct xti_udp_rr_request_struct *)netperf_request.content.test_specific_data; xti_udp_rr_response = (struct xti_udp_rr_response_struct *)netperf_response.content.test_specific_data; xti_udp_rr_results = (struct xti_udp_rr_results_struct *)netperf_response.content.test_specific_data; if (debug) { fprintf(where,"netserver: recv_xti_udp_rr: entered...\n"); fflush(where); } /* We want to set-up the listen socket with all the desired */ /* parameters and then let the initiator know that all is ready. If */ /* socket size defaults are to be used, then the initiator will have */ /* sent us 0's. If the socket sizes cannot be changed, then we will */ /* send-back what they are. If that information cannot be determined, */ /* then we send-back -1's for the sizes. If things go wrong for any */ /* reason, we will drop back ten yards and punt. */ /* If anything goes wrong, we want the remote to know about it. It */ /* would be best if the error that the remote reports to the user is */ /* the actual error we encountered, rather than some bogus unexpected */ /* response type message. */ if (debug) { fprintf(where,"recv_xti_udp_rr: setting the response type...\n"); fflush(where); } netperf_response.content.response_type = XTI_UDP_RR_RESPONSE; if (debug) { fprintf(where,"recv_xti_udp_rr: the response type is set...\n"); fflush(where); } /* We now alter the message_ptr variables to be at the desired */ /* alignments with the desired offsets. */ if (debug) { fprintf(where,"recv_xti_udp_rr: requested recv alignment of %d offset %d\n", xti_udp_rr_request->recv_alignment, xti_udp_rr_request->recv_offset); fprintf(where,"recv_xti_udp_rr: requested send alignment of %d offset %d\n", xti_udp_rr_request->send_alignment, xti_udp_rr_request->send_offset); fflush(where); } if (send_width == 0) send_width = 1; if (recv_width == 0) recv_width = 1; recv_ring = allocate_buffer_ring(recv_width, xti_udp_rr_request->request_size, xti_udp_rr_request->recv_alignment, xti_udp_rr_request->recv_offset); send_ring = allocate_buffer_ring(send_width, xti_udp_rr_request->response_size, xti_udp_rr_request->send_alignment, xti_udp_rr_request->send_offset); if (debug) { fprintf(where,"recv_xti_udp_rr: receive alignment and offset set...\n"); fflush(where); } /* create_xti_endpoint expects to find some things in the global */ /* variables, so set the globals based on the values in the request. */ /* once the socket has been created, we will set the response values */ /* based on the updated value of those globals. raj 7/94 */ lss_size = xti_udp_rr_request->send_buf_size; lsr_size = xti_udp_rr_request->recv_buf_size; loc_rcvavoid = xti_udp_rr_request->so_rcvavoid; loc_sndavoid = xti_udp_rr_request->so_sndavoid; #ifdef __alpha /* ok - even on a DEC box, strings are strings. I din't really want */ /* to ntohl the words of a string. since I don't want to teach the */ /* send_ and recv_ _request and _response routines about the types, */ /* I will put "anti-ntohl" calls here. I imagine that the "pure" */ /* solution would be to use XDR, but I am still leary of being able */ /* to find XDR libs on all platforms I want running netperf. raj */ { int *charword; int *initword; int *lastword; initword = (int *) xti_udp_rr_request->xti_device; lastword = initword + ((xti_udp_rr_request->dev_name_len + 3) / 4); for (charword = initword; charword < lastword; charword++) { *charword = htonl(*charword); } } #endif /* __alpha */ s_data = create_xti_endpoint(xti_udp_rr_request->xti_device); if (s_data == INVALID_SOCKET) { netperf_response.content.serv_errno = errno; send_response(); exit(1); } if (debug) { fprintf(where,"recv_xti_udp_rr: endpoint created...\n"); fflush(where); } /* Let's get an address assigned to this socket so we can tell the */ /* initiator how to reach the data socket. There may be a desire to */ /* nail this socket to a specific IP address in a multi-homed, */ /* multi-connection situation, but for now, we'll ignore the issue */ /* and concentrate on single connection testing. */ bind_req.addr.maxlen = sizeof(struct sockaddr_in); bind_req.addr.len = sizeof(struct sockaddr_in); bind_req.addr.buf = (char *)&myaddr_in; bind_req.qlen = 1; bind_resp.addr.maxlen = sizeof(struct sockaddr_in); bind_resp.addr.len = sizeof(struct sockaddr_in); bind_resp.addr.buf = (char *)&myaddr_in; bind_resp.qlen = 1; if (t_bind(s_data, &bind_req, &bind_resp) == SOCKET_ERROR) { if (debug) { fprintf(where, "recv_xti_udp_rr: t_bind failed, t_errno %d errno %d\n", t_errno, errno); fflush(where); } netperf_response.content.serv_errno = t_errno; send_response(); exit(1); } if (debug) { fprintf(where, "recv_xti_udp_rr: endpoint bound to port %d...\n", ntohs(myaddr_in.sin_port)); fflush(where); } xti_udp_rr_response->test_length = xti_udp_rr_request->test_length; /* Now myaddr_in contains the port and the internet address this is */ /* returned to the sender also implicitly telling the sender that the */ /* socket buffer sizing has been done. */ xti_udp_rr_response->data_port_number = (int) ntohs(myaddr_in.sin_port); netperf_response.content.serv_errno = 0; fprintf(where,"recv port number %d\n",myaddr_in.sin_port); fflush(where); /* But wait, there's more. If the initiator wanted cpu measurements, */ /* then we must call the calibrate routine, which will return the max */ /* rate back to the initiator. If the CPU was not to be measured, or */ /* something went wrong with the calibration, we will return a 0.0 to */ /* the initiator. */ xti_udp_rr_response->cpu_rate = 0.0; /* assume no cpu */ xti_udp_rr_response->measure_cpu = 0; if (xti_udp_rr_request->measure_cpu) { xti_udp_rr_response->measure_cpu = 1; xti_udp_rr_response->cpu_rate = calibrate_local_cpu(xti_udp_rr_request->cpu_rate); } /* before we send the response back to the initiator, pull some of */ /* the socket parms from the globals */ xti_udp_rr_response->send_buf_size = lss_size; xti_udp_rr_response->recv_buf_size = lsr_size; xti_udp_rr_response->so_rcvavoid = loc_rcvavoid; xti_udp_rr_response->so_sndavoid = loc_sndavoid; /* since we are going to call t_rcvudata() instead of t_rcv() we */ /* need to init the unitdata structure raj 3/95 */ memset (&recv_unitdata, 0, sizeof(recv_unitdata)); recv_unitdata.addr.maxlen = sizeof(struct sockaddr_in); recv_unitdata.addr.len = sizeof(struct sockaddr_in); recv_unitdata.addr.buf = (char *)&peeraddr_in; recv_unitdata.opt.maxlen = 0; recv_unitdata.opt.len = 0; recv_unitdata.opt.buf = NULL; recv_unitdata.udata.maxlen = xti_udp_rr_request->request_size; recv_unitdata.udata.len = xti_udp_rr_request->request_size; recv_unitdata.udata.buf = recv_ring->buffer_ptr; /* since we are going to call t_sndudata() instead of t_snd() we */ /* need to init the unitdata structure raj 8/95 */ memset (&send_unitdata, 0, sizeof(send_unitdata)); send_unitdata.addr.maxlen = sizeof(struct sockaddr_in); send_unitdata.addr.len = sizeof(struct sockaddr_in); send_unitdata.addr.buf = (char *)&peeraddr_in; send_unitdata.opt.maxlen = 0; send_unitdata.opt.len = 0; send_unitdata.opt.buf = NULL; send_unitdata.udata.maxlen = xti_udp_rr_request->response_size; send_unitdata.udata.len = xti_udp_rr_request->response_size; send_unitdata.udata.buf = send_ring->buffer_ptr; send_response(); /* Now it's time to start receiving data on the connection. We will */ /* first grab the apropriate counters and then start grabbing. */ cpu_start(xti_udp_rr_request->measure_cpu); if (xti_udp_rr_request->test_length > 0) { times_up = 0; trans_remaining = 0; start_timer(xti_udp_rr_request->test_length + PAD_TIME); } else { times_up = 1; trans_remaining = xti_udp_rr_request->test_length * -1; } addrlen = sizeof(peeraddr_in); bzero((char *)&peeraddr_in, addrlen); trans_received = 0; while ((!times_up) || (trans_remaining > 0)) { /* receive the request from the other side */ if (t_rcvudata(s_data, &recv_unitdata, &flags) != 0) { if (errno == TNODATA) { continue; } if (errno == EINTR) { /* we must have hit the end of test time. */ break; } if (debug) { fprintf(where, "recv_xti_udp_rr: t_rcvudata failed, t_errno %d errno %d\n", t_errno, errno); fflush(where); } netperf_response.content.serv_errno = t_errno; send_response(); exit(1); } recv_ring = recv_ring->next; recv_unitdata.udata.buf = recv_ring->buffer_ptr; /* Now, send the response to the remote */ if (t_sndudata(s_data, &send_unitdata) != 0) { if (errno == EINTR) { /* we have hit end of test time. */ break; } if (debug) { fprintf(where, "recv_xti_udp_rr: t_sndudata failed, t_errno %d errno %d\n", t_errno, errno); fflush(where); } netperf_response.content.serv_errno = errno; send_response(); exit(1); } send_ring = send_ring->next; send_unitdata.udata.buf = send_ring->buffer_ptr; trans_received++; if (trans_remaining) { trans_remaining--; } if (debug) { fprintf(where, "recv_xti_udp_rr: Transaction %d complete.\n", trans_received); fflush(where); } } /* The loop now exits due to timeout or transaction count being */ /* reached */ cpu_stop(xti_udp_rr_request->measure_cpu,&elapsed_time); if (times_up) { /* we ended the test by time, which was at least 2 seconds */ /* longer than we wanted to run. so, we want to subtract */ /* PAD_TIME from the elapsed_time. */ elapsed_time -= PAD_TIME; } /* send the results to the sender */ if (debug) { fprintf(where, "recv_xti_udp_rr: got %d transactions\n", trans_received); fflush(where); } xti_udp_rr_results->bytes_received = (trans_received * (xti_udp_rr_request->request_size + xti_udp_rr_request->response_size)); xti_udp_rr_results->trans_received = trans_received; xti_udp_rr_results->elapsed_time = elapsed_time; xti_udp_rr_results->cpu_method = cpu_method; if (xti_udp_rr_request->measure_cpu) { xti_udp_rr_results->cpu_util = calc_cpu_util(elapsed_time); } if (debug) { fprintf(where, "recv_xti_udp_rr: test complete, sending results.\n"); fflush(where); } send_response(); /* we are done with the socket now */ close(s_data); } /* this routine implements the receive (netserver) side of a XTI_TCP_RR */ /* test */ void recv_xti_tcp_rr() { struct ring_elt *send_ring; struct ring_elt *recv_ring; struct sockaddr_in myaddr_in, peeraddr_in; struct t_bind bind_req, bind_resp; struct t_call call_req; SOCKET s_listen,s_data; int addrlen; char *temp_message_ptr; int trans_received; int trans_remaining; int bytes_sent; int request_bytes_recvd; int request_bytes_remaining; int timed_out = 0; float elapsed_time; struct xti_tcp_rr_request_struct *xti_tcp_rr_request; struct xti_tcp_rr_response_struct *xti_tcp_rr_response; struct xti_tcp_rr_results_struct *xti_tcp_rr_results; xti_tcp_rr_request = (struct xti_tcp_rr_request_struct *)netperf_request.content.test_specific_data; xti_tcp_rr_response = (struct xti_tcp_rr_response_struct *)netperf_response.content.test_specific_data; xti_tcp_rr_results = (struct xti_tcp_rr_results_struct *)netperf_response.content.test_specific_data; if (debug) { fprintf(where,"netserver: recv_xti_tcp_rr: entered...\n"); fflush(where); } /* We want to set-up the listen socket with all the desired */ /* parameters and then let the initiator know that all is ready. If */ /* socket size defaults are to be used, then the initiator will have */ /* sent us 0's. If the socket sizes cannot be changed, then we will */ /* send-back what they are. If that information cannot be determined, */ /* then we send-back -1's for the sizes. If things go wrong for any */ /* reason, we will drop back ten yards and punt. */ /* If anything goes wrong, we want the remote to know about it. It */ /* would be best if the error that the remote reports to the user is */ /* the actual error we encountered, rather than some bogus unexpected */ /* response type message. */ if (debug) { fprintf(where,"recv_xti_tcp_rr: setting the response type...\n"); fflush(where); } netperf_response.content.response_type = XTI_TCP_RR_RESPONSE; if (debug) { fprintf(where,"recv_xti_tcp_rr: the response type is set...\n"); fflush(where); } /* allocate the recv and send rings with the requested alignments */ /* and offsets. raj 7/94 */ if (debug) { fprintf(where,"recv_xti_tcp_rr: requested recv alignment of %d offset %d\n", xti_tcp_rr_request->recv_alignment, xti_tcp_rr_request->recv_offset); fprintf(where,"recv_xti_tcp_rr: requested send alignment of %d offset %d\n", xti_tcp_rr_request->send_alignment, xti_tcp_rr_request->send_offset); fflush(where); } /* at some point, these need to come to us from the remote system */ if (send_width == 0) send_width = 1; if (recv_width == 0) recv_width = 1; send_ring = allocate_buffer_ring(send_width, xti_tcp_rr_request->response_size, xti_tcp_rr_request->send_alignment, xti_tcp_rr_request->send_offset); recv_ring = allocate_buffer_ring(recv_width, xti_tcp_rr_request->request_size, xti_tcp_rr_request->recv_alignment, xti_tcp_rr_request->recv_offset); /* Let's clear-out our sockaddr for the sake of cleanlines. Then we */ /* can put in OUR values !-) At some point, we may want to nail this */ /* socket to a particular network-level address, but for now, */ /* INADDR_ANY should be just fine. */ bzero((char *)&myaddr_in, sizeof(myaddr_in)); myaddr_in.sin_family = AF_INET; myaddr_in.sin_addr.s_addr = INADDR_ANY; myaddr_in.sin_port = 0; /* Grab a socket to listen on, and then listen on it. */ if (debug) { fprintf(where,"recv_xti_tcp_rr: grabbing a socket...\n"); fflush(where); } /* create_xti_endpoint expects to find some things in the global */ /* variables, so set the globals based on the values in the request. */ /* once the socket has been created, we will set the response values */ /* based on the updated value of those globals. raj 7/94 */ lss_size = xti_tcp_rr_request->send_buf_size; lsr_size = xti_tcp_rr_request->recv_buf_size; loc_nodelay = xti_tcp_rr_request->no_delay; loc_rcvavoid = xti_tcp_rr_request->so_rcvavoid; loc_sndavoid = xti_tcp_rr_request->so_sndavoid; #ifdef __alpha /* ok - even on a DEC box, strings are strings. I din't really want */ /* to ntohl the words of a string. since I don't want to teach the */ /* send_ and recv_ _request and _response routines about the types, */ /* I will put "anti-ntohl" calls here. I imagine that the "pure" */ /* solution would be to use XDR, but I am still leary of being able */ /* to find XDR libs on all platforms I want running netperf. raj */ { int *charword; int *initword; int *lastword; initword = (int *) xti_tcp_rr_request->xti_device; lastword = initword + ((xti_tcp_rr_request->dev_name_len + 3) / 4); for (charword = initword; charword < lastword; charword++) { *charword = htonl(*charword); } } #endif /* __alpha */ s_listen = create_xti_endpoint(xti_tcp_rr_request->xti_device); if (s_listen == INVALID_SOCKET) { netperf_response.content.serv_errno = errno; send_response(); exit(1); } /* Let's get an address assigned to this socket so we can tell the */ /* initiator how to reach the data socket. There may be a desire to */ /* nail this socket to a specific IP address in a multi-homed, */ /* multi-connection situation, but for now, we'll ignore the issue */ /* and concentrate on single connection testing. */ bind_req.addr.maxlen = sizeof(struct sockaddr_in); bind_req.addr.len = sizeof(struct sockaddr_in); bind_req.addr.buf = (char *)&myaddr_in; bind_req.qlen = 1; bind_resp.addr.maxlen = sizeof(struct sockaddr_in); bind_resp.addr.len = sizeof(struct sockaddr_in); bind_resp.addr.buf = (char *)&myaddr_in; bind_resp.qlen = 1; if (t_bind(s_listen, &bind_req, &bind_resp) == SOCKET_ERROR) { netperf_response.content.serv_errno = t_errno; close(s_listen); send_response(); exit(1); } if (debug) { fprintf(where, "recv_xti_tcp_rr: t_bind complete port %d\n", ntohs(myaddr_in.sin_port)); fflush(where); } /* Now myaddr_in contains the port and the internet address this is */ /* returned to the sender also implicitly telling the sender that the */ /* socket buffer sizing has been done. */ xti_tcp_rr_response->data_port_number = (int) ntohs(myaddr_in.sin_port); netperf_response.content.serv_errno = 0; /* But wait, there's more. If the initiator wanted cpu measurements, */ /* then we must call the calibrate routine, which will return the max */ /* rate back to the initiator. If the CPU was not to be measured, or */ /* something went wrong with the calibration, we will return a 0.0 to */ /* the initiator. */ xti_tcp_rr_response->cpu_rate = 0.0; /* assume no cpu */ xti_tcp_rr_response->measure_cpu = 0; if (xti_tcp_rr_request->measure_cpu) { xti_tcp_rr_response->measure_cpu = 1; xti_tcp_rr_response->cpu_rate = calibrate_local_cpu(xti_tcp_rr_request->cpu_rate); } /* before we send the response back to the initiator, pull some of */ /* the socket parms from the globals */ xti_tcp_rr_response->send_buf_size = lss_size; xti_tcp_rr_response->recv_buf_size = lsr_size; xti_tcp_rr_response->no_delay = loc_nodelay; xti_tcp_rr_response->so_rcvavoid = loc_rcvavoid; xti_tcp_rr_response->so_sndavoid = loc_sndavoid; xti_tcp_rr_response->test_length = xti_tcp_rr_request->test_length; send_response(); /* Now, let's set-up the socket to listen for connections. for xti, */ /* the t_listen call is blocking by default - this is different */ /* semantics from BSD - probably has to do with being able to reject */ /* a call before an accept */ call_req.addr.maxlen = sizeof(struct sockaddr_in); call_req.addr.len = sizeof(struct sockaddr_in); call_req.addr.buf = (char *)&peeraddr_in; call_req.opt.maxlen = 0; call_req.opt.len = 0; call_req.opt.buf = NULL; call_req.udata.maxlen= 0; call_req.udata.len = 0; call_req.udata.buf = 0; if (t_listen(s_listen, &call_req) == -1) { fprintf(where, "recv_xti_tcp_rr: t_listen: errno %d t_errno %d\n", errno, t_errno); fflush(where); netperf_response.content.serv_errno = t_errno; close(s_listen); send_response(); exit(1); } if (debug) { fprintf(where, "recv_xti_tcp_rr: t_listen complete t_look 0x%.4x\n", t_look(s_listen)); fflush(where); } /* now just rubber stamp the thing. we want to use the same fd? so */ /* we will just equate s_data with s_listen. this seems a little */ /* hokey to me, but then I'm a BSD biggot still. raj 2/95 */ s_data = s_listen; if (t_accept(s_listen, s_data, &call_req) == -1) { fprintf(where, "recv_xti_tcp_rr: t_accept: errno %d t_errno %d\n", errno, t_errno); fflush(where); close(s_listen); exit(1); } if (debug) { fprintf(where, "recv_xti_tcp_rr: t_accept complete t_look 0x%.4x", t_look(s_data)); fprintf(where, " remote is %s port %d\n", inet_ntoa(*(struct in_addr *)&peeraddr_in.sin_addr), ntohs(peeraddr_in.sin_port)); fflush(where); } /* Now it's time to start receiving data on the connection. We will */ /* first grab the apropriate counters and then start grabbing. */ cpu_start(xti_tcp_rr_request->measure_cpu); if (xti_tcp_rr_request->test_length > 0) { times_up = 0; trans_remaining = 0; start_timer(xti_tcp_rr_request->test_length + PAD_TIME); } else { times_up = 1; trans_remaining = xti_tcp_rr_request->test_length * -1; } trans_received = 0; while ((!times_up) || (trans_remaining > 0)) { temp_message_ptr = recv_ring->buffer_ptr; request_bytes_remaining = xti_tcp_rr_request->request_size; while(request_bytes_remaining > 0) { if((request_bytes_recvd=t_rcv(s_data, temp_message_ptr, request_bytes_remaining, &xti_flags)) == SOCKET_ERROR) { if (errno == EINTR) { /* the timer popped */ timed_out = 1; break; } fprintf(where, "recv_xti_tcp_rr: t_rcv: errno %d t_errno %d len %d", errno, t_errno, request_bytes_recvd); fprintf(where, " t_look 0x%x", t_look(s_data)); fflush(where); netperf_response.content.serv_errno = t_errno; send_response(); exit(1); } else { request_bytes_remaining -= request_bytes_recvd; temp_message_ptr += request_bytes_recvd; } } recv_ring = recv_ring->next; if (timed_out) { /* we hit the end of the test based on time - lets */ /* bail out of here now... */ if (debug) { fprintf(where,"yo5\n"); fflush(where); } break; } /* Now, send the response to the remote */ if((bytes_sent=t_snd(s_data, send_ring->buffer_ptr, xti_tcp_rr_request->response_size, 0)) == -1) { if (errno == EINTR) { /* the test timer has popped */ timed_out = 1; if (debug) { fprintf(where,"yo6\n"); fflush(where); } break; } fprintf(where, "recv_xti_tcp_rr: t_rcv: errno %d t_errno %d len %d", errno, t_errno, bytes_sent); fprintf(where, " t_look 0x%x", t_look(s_data)); fflush(where); netperf_response.content.serv_errno = t_errno; send_response(); exit(1); } send_ring = send_ring->next; trans_received++; if (trans_remaining) { trans_remaining--; } } /* The loop now exits due to timeout or transaction count being */ /* reached */ cpu_stop(xti_tcp_rr_request->measure_cpu,&elapsed_time); stop_timer(); /* this is probably unnecessary, but it shouldn't hurt */ if (timed_out) { /* we ended the test by time, which was at least 2 seconds */ /* longer than we wanted to run. so, we want to subtract */ /* PAD_TIME from the elapsed_time. */ elapsed_time -= PAD_TIME; } /* send the results to the sender */ if (debug) { fprintf(where, "recv_xti_tcp_rr: got %d transactions\n", trans_received); fflush(where); } xti_tcp_rr_results->bytes_received = (trans_received * (xti_tcp_rr_request->request_size + xti_tcp_rr_request->response_size)); xti_tcp_rr_results->trans_received = trans_received; xti_tcp_rr_results->elapsed_time = elapsed_time; xti_tcp_rr_results->cpu_method = cpu_method; if (xti_tcp_rr_request->measure_cpu) { xti_tcp_rr_results->cpu_util = calc_cpu_util(elapsed_time); } if (debug) { fprintf(where, "recv_xti_tcp_rr: test complete, sending results.\n"); fflush(where); } /* we are done with the socket, free it */ t_close(s_data); send_response(); } /* this test is intended to test the performance of establishing a */ /* connection, exchanging a request/response pair, and repeating. it */ /* is expected that this would be a good starting-point for */ /* comparision of T/TCP with classic TCP for transactional workloads. */ /* it will also look (can look) much like the communication pattern */ /* of http for www access. */ void send_xti_tcp_conn_rr(char remote_host[]) { char *tput_title = "\ Local /Remote\n\ Socket Size Request Resp. Elapsed Trans.\n\ Send Recv Size Size Time Rate \n\ bytes Bytes bytes bytes secs. per sec \n\n"; char *tput_fmt_0 = "%7.2f\n"; char *tput_fmt_1_line_1 = "\ %-6d %-6d %-6d %-6d %-6.2f %7.2f \n"; char *tput_fmt_1_line_2 = "\ %-6d %-6d\n"; char *cpu_title = "\ Local /Remote\n\ Socket Size Request Resp. Elapsed Trans. CPU CPU S.dem S.dem\n\ Send Recv Size Size Time Rate local remote local remote\n\ bytes bytes bytes bytes secs. per sec %% %% us/Tr us/Tr\n\n"; char *cpu_fmt_0 = "%6.3f\n"; char *cpu_fmt_1_line_1 = "\ %-6d %-6d %-6d %-6d %-6.2f %-6.2f %-6.2f %-6.2f %-6.3f %-6.3f\n"; char *cpu_fmt_1_line_2 = "\ %-6d %-6d\n"; char *ksink_fmt = "\ Alignment Offset\n\ Local Remote Local Remote\n\ Send Recv Send Recv\n\ %5d %5d %5d %5d\n"; int one = 1; int timed_out = 0; float elapsed_time; int len; struct ring_elt *send_ring; struct ring_elt *recv_ring; char *temp_message_ptr; int nummessages; SOCKET send_socket; int trans_remaining; double bytes_xferd; int sock_opt_len = sizeof(int); int rsp_bytes_left; int rsp_bytes_recvd; float local_cpu_utilization; float local_service_demand; float remote_cpu_utilization; float remote_service_demand; double thruput; struct hostent *hp; struct sockaddr_in server; struct sockaddr_in *myaddr; unsigned int addr; int myport; struct xti_tcp_conn_rr_request_struct *xti_tcp_conn_rr_request; struct xti_tcp_conn_rr_response_struct *xti_tcp_conn_rr_response; struct xti_tcp_conn_rr_results_struct *xti_tcp_conn_rr_result; xti_tcp_conn_rr_request = (struct xti_tcp_conn_rr_request_struct *)netperf_request.content.test_specific_data; xti_tcp_conn_rr_response = (struct xti_tcp_conn_rr_response_struct *)netperf_response.content.test_specific_data; xti_tcp_conn_rr_result = (struct xti_tcp_conn_rr_results_struct *)netperf_response.content.test_specific_data; /* since we are now disconnected from the code that established the */ /* control socket, and since we want to be able to use different */ /* protocols and such, we are passed the name of the remote host and */ /* must turn that into the test specific addressing information. */ myaddr = (struct sockaddr_in *)malloc(sizeof(struct sockaddr_in)); if (myaddr == NULL) { printf("malloc(%d) failed!\n", sizeof(struct sockaddr_in)); exit(1); } bzero((char *)&server, sizeof(server)); bzero((char *)myaddr, sizeof(struct sockaddr_in)); myaddr->sin_family = AF_INET; /* it would seem that while HP-UX will allow an IP address (as a */ /* string) in a call to gethostbyname, other, less enlightened */ /* systems do not. fix from awjacks@ca.sandia.gov raj 10/95 */ /* order changed to check for IP address first. raj 7/96 */ if ((addr = inet_addr(remote_host)) == SOCKET_ERROR) { /* it was not an IP address, try it as a name */ if ((hp = gethostbyname(remote_host)) == NULL) { /* we have no idea what it is */ fprintf(where, "establish_control: could not resolve the destination %s\n", remote_host); fflush(where); exit(1); } else { /* it was a valid remote_host */ bcopy(hp->h_addr, (char *)&server.sin_addr, hp->h_length); server.sin_family = hp->h_addrtype; } } else { /* it was a valid IP address */ server.sin_addr.s_addr = addr; server.sin_family = AF_INET; } if ( print_headers ) { fprintf(where,"TCP Connect/Request/Response Test\n"); if (local_cpu_usage || remote_cpu_usage) fprintf(where,cpu_title,format_units()); else fprintf(where,tput_title,format_units()); } /* initialize a few counters */ nummessages = 0; bytes_xferd = 0.0; times_up = 0; /* set-up the data buffers with the requested alignment and offset */ if (send_width == 0) send_width = 1; if (recv_width == 0) recv_width = 1; send_ring = allocate_buffer_ring(send_width, req_size, local_send_align, local_send_offset); recv_ring = allocate_buffer_ring(recv_width, rsp_size, local_recv_align, local_recv_offset); if (debug) { fprintf(where,"send_xti_tcp_conn_rr: send_socket obtained...\n"); } /* If the user has requested cpu utilization measurements, we must */ /* calibrate the cpu(s). We will perform this task within the tests */ /* themselves. If the user has specified the cpu rate, then */ /* calibrate_local_cpu will return rather quickly as it will have */ /* nothing to do. If local_cpu_rate is zero, then we will go through */ /* all the "normal" calibration stuff and return the rate back.*/ if (local_cpu_usage) { local_cpu_rate = calibrate_local_cpu(local_cpu_rate); } /* Tell the remote end to do a listen. The server alters the socket */ /* paramters on the other side at this point, hence the reason for */ /* all the values being passed in the setup message. If the user did */ /* not specify any of the parameters, they will be passed as 0, which */ /* will indicate to the remote that no changes beyond the system's */ /* default should be used. Alignment is the exception, it will */ /* default to 8, which will be no alignment alterations. */ netperf_request.content.request_type = DO_XTI_TCP_CRR; xti_tcp_conn_rr_request->recv_buf_size = rsr_size; xti_tcp_conn_rr_request->send_buf_size = rss_size; xti_tcp_conn_rr_request->recv_alignment = remote_recv_align; xti_tcp_conn_rr_request->recv_offset = remote_recv_offset; xti_tcp_conn_rr_request->send_alignment = remote_send_align; xti_tcp_conn_rr_request->send_offset = remote_send_offset; xti_tcp_conn_rr_request->request_size = req_size; xti_tcp_conn_rr_request->response_size = rsp_size; xti_tcp_conn_rr_request->no_delay = rem_nodelay; xti_tcp_conn_rr_request->measure_cpu = remote_cpu_usage; xti_tcp_conn_rr_request->cpu_rate = remote_cpu_rate; xti_tcp_conn_rr_request->so_rcvavoid = rem_rcvavoid; xti_tcp_conn_rr_request->so_sndavoid = rem_sndavoid; if (test_time) { xti_tcp_conn_rr_request->test_length = test_time; } else { xti_tcp_conn_rr_request->test_length = test_trans * -1; } if (debug > 1) { fprintf(where,"netperf: send_xti_tcp_conn_rr: requesting TCP crr test\n"); } send_request(); /* The response from the remote will contain all of the relevant */ /* socket parameters for this test type. We will put them back into */ /* the variables here so they can be displayed if desired. The */ /* remote will have calibrated CPU if necessary, and will have done */ /* all the needed set-up we will have calibrated the cpu locally */ /* before sending the request, and will grab the counter value right */ /* after the connect returns. The remote will grab the counter right */ /* after the accept call. This saves the hassle of extra messages */ /* being sent for the TCP tests. */ recv_response(); if (!netperf_response.content.serv_errno) { rsr_size = xti_tcp_conn_rr_response->recv_buf_size; rss_size = xti_tcp_conn_rr_response->send_buf_size; rem_nodelay = xti_tcp_conn_rr_response->no_delay; remote_cpu_usage= xti_tcp_conn_rr_response->measure_cpu; remote_cpu_rate = xti_tcp_conn_rr_response->cpu_rate; /* make sure that port numbers are in network order */ server.sin_port = (short)xti_tcp_conn_rr_response->data_port_number; server.sin_port = htons(server.sin_port); if (debug) { fprintf(where,"remote listen done.\n"); fprintf(where,"remote port is %d\n",ntohs(server.sin_port)); fflush(where); } } else { Set_errno(netperf_response.content.serv_errno); perror("netperf: remote error"); exit(1); } /* Set-up the test end conditions. For a request/response test, they */ /* can be either time or transaction based. */ if (test_time) { /* The user wanted to end the test after a period of time. */ times_up = 0; trans_remaining = 0; start_timer(test_time); } else { /* The tester wanted to send a number of bytes. */ trans_remaining = test_bytes; times_up = 1; } /* The cpu_start routine will grab the current time and possibly */ /* value of the idle counter for later use in measuring cpu */ /* utilization and/or service demand and thruput. */ cpu_start(local_cpu_usage); /* We use an "OR" to control test execution. When the test is */ /* controlled by time, the byte count check will always return false. */ /* When the test is controlled by byte count, the time test will */ /* always return false. When the test is finished, the whole */ /* expression will go false and we will stop sending data. I think I */ /* just arbitrarily decrement trans_remaining for the timed test, but */ /* will not do that just yet... One other question is whether or not */ /* the send buffer and the receive buffer should be the same buffer. */ /* just for grins, start the port numbers at 65530. this should */ /* quickly flush-out those broken implementations of TCP which treat */ /* the port number as a signed 16 bit quantity. */ myport = 65530; myaddr->sin_port = htons(myport); while ((!times_up) || (trans_remaining > 0)) { /* set up the data socket */ send_socket = create_xti_endpoint(loc_xti_device); if (send_socket == INVALID_SOCKET) { perror("netperf: send_xti_tcp_conn_rr: tcp stream data socket"); exit(1); } /* we set SO_REUSEADDR on the premis that no unreserved port */ /* number on the local system is going to be already connected to */ /* the remote netserver's port number. we might still have a */ /* problem if there is a port in the unconnected state. In that */ /* case, we might want to throw-in a goto to the point where we */ /* increment the port number by one and try again. of course, this */ /* could lead to a big load of spinning. one thing that I might */ /* try later is to have the remote actually allocate a couple of */ /* port numbers and cycle through those as well. depends on if we */ /* can get through all the unreserved port numbers in less than */ /* the length of the TIME_WAIT state raj 8/94 */ one = 1; if(setsockopt(send_socket, SOL_SOCKET, SO_REUSEADDR, (char *)&one, sock_opt_len) == SOCKET_ERROR) { perror("netperf: send_xti_tcp_conn_rr: so_reuseaddr"); exit(1); } /* we want to bind our socket to a particular port number. */ if (bind(send_socket, (struct sockaddr *)myaddr, sizeof(struct sockaddr_in)) == SOCKET_ERROR) { printf("netperf: send_xti_tcp_conn_rr: tried to bind to port %d\n", ntohs(myaddr->sin_port)); perror("netperf: send_xti_tcp_conn_rr: bind"); exit(1); } /* Connect up to the remote port on the data socket */ if (connect(send_socket, (struct sockaddr *)&server, sizeof(server)) == INVALID_SOCKET){ if (errno == EINTR) { /* we hit the end of a */ /* timed test. */ timed_out = 1; break; } perror("netperf: data socket connect failed"); printf("\tattempted to connect on socket %d to port %d", send_socket, ntohs(server.sin_port)); printf(" from port %d \n",ntohs(myaddr->sin_port)); exit(1); } /* send the request */ if((len=send(send_socket, send_ring->buffer_ptr, req_size, 0)) != req_size) { if (errno == EINTR) { /* we hit the end of a */ /* timed test. */ timed_out = 1; break; } perror("send_xti_tcp_conn_rr: data send error"); exit(1); } send_ring = send_ring->next; /* receive the response */ rsp_bytes_left = rsp_size; temp_message_ptr = recv_ring->buffer_ptr; while(rsp_bytes_left > 0) { if((rsp_bytes_recvd=recv(send_socket, temp_message_ptr, rsp_bytes_left, 0)) == SOCKET_ERROR) { if (errno == EINTR) { /* We hit the end of a timed test. */ timed_out = 1; break; } perror("send_xti_tcp_conn_rr: data recv error"); exit(1); } rsp_bytes_left -= rsp_bytes_recvd; temp_message_ptr += rsp_bytes_recvd; } recv_ring = recv_ring->next; if (timed_out) { /* we may have been in a nested while loop - we need */ /* another call to break. */ break; } close(send_socket); nummessages++; if (trans_remaining) { trans_remaining--; } if (debug > 3) { fprintf(where, "Transaction %d completed on local port %d\n", nummessages, ntohs(myaddr->sin_port)); fflush(where); } newport: /* pick a new port number */ myport = ntohs(myaddr->sin_port); myport++; /* we do not want to use the port number that the server is */ /* sitting at - this would cause us to fail in a loopback test */ if (myport == ntohs(server.sin_port)) myport++; /* wrap the port number when we get to 65535. NOTE, some broken */ /* TCP's might treat the port number as a signed 16 bit quantity. */ /* we aren't interested in testing such broekn implementations :) */ /* raj 8/94 */ if (myport == 65535) { myport = 5000; } myaddr->sin_port = htons(myport); if (debug) { if ((myport % 1000) == 0) { printf("port %d\n",myport); } } } /* this call will always give us the elapsed time for the test, and */ /* will also store-away the necessaries for cpu utilization */ cpu_stop(local_cpu_usage,&elapsed_time); /* was cpu being measured? */ /* how long did we really run? */ /* Get the statistics from the remote end. The remote will have */ /* calculated service demand and all those interesting things. If it */ /* wasn't supposed to care, it will return obvious values. */ recv_response(); if (!netperf_response.content.serv_errno) { if (debug) fprintf(where,"remote results obtained\n"); } else { Set_errno(netperf_response.content.serv_errno); perror("netperf: remote error"); exit(1); } /* We now calculate what our thruput was for the test. In the future, */ /* we may want to include a calculation of the thruput measured by */ /* the remote, but it should be the case that for a TCP stream test, */ /* that the two numbers should be *very* close... We calculate */ /* bytes_sent regardless of the way the test length was controlled. */ /* If it was time, we needed to, and if it was by bytes, the user may */ /* have specified a number of bytes that wasn't a multiple of the */ /* send_size, so we really didn't send what he asked for ;-) We use */ /* Kbytes/s as the units of thruput for a TCP stream test, where K = */ /* 1024. A future enhancement *might* be to choose from a couple of */ /* unit selections. */ bytes_xferd = (req_size * nummessages) + (rsp_size * nummessages); thruput = calc_thruput(bytes_xferd); if (local_cpu_usage || remote_cpu_usage) { /* We must now do a little math for service demand and cpu */ /* utilization for the system(s) */ /* Of course, some of the information might be bogus because */ /* there was no idle counter in the kernel(s). We need to make */ /* a note of this for the user's benefit...*/ if (local_cpu_usage) { if (local_cpu_rate == 0.0) { fprintf(where,"WARNING WARNING WARNING WARNING WARNING WARNING WARNING!\n"); fprintf(where,"Local CPU usage numbers based on process information only!\n"); fflush(where); } local_cpu_utilization = calc_cpu_util(0.0); /* since calc_service demand is doing ms/Kunit we will */ /* multiply the number of transaction by 1024 to get */ /* "good" numbers */ local_service_demand = calc_service_demand((double) nummessages*1024, 0.0, 0.0, 0); } else { local_cpu_utilization = -1.0; local_service_demand = -1.0; } if (remote_cpu_usage) { if (remote_cpu_rate == 0.0) { fprintf(where,"DANGER DANGER DANGER DANGER DANGER DANGER DANGER!\n"); fprintf(where,"Remote CPU usage numbers based on process information only!\n"); fflush(where); } remote_cpu_utilization = xti_tcp_conn_rr_result->cpu_util; /* since calc_service demand is doing ms/Kunit we will */ /* multiply the number of transaction by 1024 to get */ /* "good" numbers */ remote_service_demand = calc_service_demand((double) nummessages*1024, 0.0, remote_cpu_utilization, xti_tcp_conn_rr_result->num_cpus); } else { remote_cpu_utilization = -1.0; remote_service_demand = -1.0; } /* We are now ready to print all the information. If the user */ /* has specified zero-level verbosity, we will just print the */ /* local service demand, or the remote service demand. If the */ /* user has requested verbosity level 1, he will get the basic */ /* "streamperf" numbers. If the user has specified a verbosity */ /* of greater than 1, we will display a veritable plethora of */ /* background information from outside of this block as it it */ /* not cpu_measurement specific... */ switch (verbosity) { case 0: if (local_cpu_usage) { fprintf(where, cpu_fmt_0, local_service_demand); } else { fprintf(where, cpu_fmt_0, remote_service_demand); } break; case 1: fprintf(where, cpu_fmt_1_line_1, /* the format string */ lss_size, /* local sendbuf size */ lsr_size, req_size, /* how large were the requests */ rsp_size, /* guess */ elapsed_time, /* how long was the test */ nummessages/elapsed_time, local_cpu_utilization, /* local cpu */ remote_cpu_utilization, /* remote cpu */ local_service_demand, /* local service demand */ remote_service_demand); /* remote service demand */ fprintf(where, cpu_fmt_1_line_2, rss_size, rsr_size); break; } } else { /* The tester did not wish to measure service demand. */ switch (verbosity) { case 0: fprintf(where, tput_fmt_0, nummessages/elapsed_time); break; case 1: fprintf(where, tput_fmt_1_line_1, /* the format string */ lss_size, lsr_size, req_size, /* how large were the requests */ rsp_size, /* how large were the responses */ elapsed_time, /* how long did it take */ nummessages/elapsed_time); fprintf(where, tput_fmt_1_line_2, rss_size, /* remote recvbuf size */ rsr_size); break; } } /* it would be a good thing to include information about some of the */ /* other parameters that may have been set for this test, but at the */ /* moment, I do not wish to figure-out all the formatting, so I will */ /* just put this comment here to help remind me that it is something */ /* that should be done at a later time. */ if (verbosity > 1) { /* The user wanted to know it all, so we will give it to him. */ /* This information will include as much as we can find about */ /* TCP statistics, the alignments of the sends and receives */ /* and all that sort of rot... */ fprintf(where, ksink_fmt); } } void recv_xti_tcp_conn_rr() { char *message; struct sockaddr_in myaddr_in, peeraddr_in; SOCKET s_listen,s_data; int addrlen; char *recv_message_ptr; char *send_message_ptr; char *temp_message_ptr; int trans_received; int trans_remaining; int bytes_sent; int request_bytes_recvd; int request_bytes_remaining; int timed_out = 0; float elapsed_time; struct xti_tcp_conn_rr_request_struct *xti_tcp_conn_rr_request; struct xti_tcp_conn_rr_response_struct *xti_tcp_conn_rr_response; struct xti_tcp_conn_rr_results_struct *xti_tcp_conn_rr_results; xti_tcp_conn_rr_request = (struct xti_tcp_conn_rr_request_struct *)netperf_request.content.test_specific_data; xti_tcp_conn_rr_response = (struct xti_tcp_conn_rr_response_struct *)netperf_response.content.test_specific_data; xti_tcp_conn_rr_results = (struct xti_tcp_conn_rr_results_struct *)netperf_response.content.test_specific_data; if (debug) { fprintf(where,"netserver: recv_xti_tcp_conn_rr: entered...\n"); fflush(where); } /* We want to set-up the listen socket with all the desired */ /* parameters and then let the initiator know that all is ready. If */ /* socket size defaults are to be used, then the initiator will have */ /* sent us 0's. If the socket sizes cannot be changed, then we will */ /* send-back what they are. If that information cannot be determined, */ /* then we send-back -1's for the sizes. If things go wrong for any */ /* reason, we will drop back ten yards and punt. */ /* If anything goes wrong, we want the remote to know about it. It */ /* would be best if the error that the remote reports to the user is */ /* the actual error we encountered, rather than some bogus unexpected */ /* response type message. */ if (debug) { fprintf(where,"recv_xti_tcp_conn_rr: setting the response type...\n"); fflush(where); } netperf_response.content.response_type = XTI_TCP_CRR_RESPONSE; if (debug) { fprintf(where,"recv_xti_tcp_conn_rr: the response type is set...\n"); fflush(where); } /* set-up the data buffer with the requested alignment and offset */ message = (char *)malloc(DATABUFFERLEN); if (message == NULL) { printf("malloc(%d) failed!\n", DATABUFFERLEN); exit(1); } /* We now alter the message_ptr variables to be at the desired */ /* alignments with the desired offsets. */ if (debug) { fprintf(where, "recv_xti_tcp_conn_rr: requested recv alignment of %d offset %d\n", xti_tcp_conn_rr_request->recv_alignment, xti_tcp_conn_rr_request->recv_offset); fprintf(where, "recv_xti_tcp_conn_rr: requested send alignment of %d offset %d\n", xti_tcp_conn_rr_request->send_alignment, xti_tcp_conn_rr_request->send_offset); fflush(where); } recv_message_ptr = ALIGN_BUFFER(message, xti_tcp_conn_rr_request->recv_alignment, xti_tcp_conn_rr_request->recv_offset); send_message_ptr = ALIGN_BUFFER(message, xti_tcp_conn_rr_request->send_alignment, xti_tcp_conn_rr_request->send_offset); if (debug) { fprintf(where,"recv_xti_tcp_conn_rr: receive alignment and offset set...\n"); fflush(where); } /* Let's clear-out our sockaddr for the sake of cleanlines. Then we */ /* can put in OUR values !-) At some point, we may want to nail this */ /* socket to a particular network-level address, but for now, */ /* INADDR_ANY should be just fine. */ bzero((char *)&myaddr_in, sizeof(myaddr_in)); myaddr_in.sin_family = AF_INET; myaddr_in.sin_addr.s_addr = INADDR_ANY; myaddr_in.sin_port = 0; /* Grab a socket to listen on, and then listen on it. */ if (debug) { fprintf(where,"recv_xti_tcp_conn_rr: grabbing a socket...\n"); fflush(where); } /* create_xti_endpoint expects to find some things in the global */ /* variables, so set the globals based on the values in the request. */ /* once the socket has been created, we will set the response values */ /* based on the updated value of those globals. raj 7/94 */ lss_size = xti_tcp_conn_rr_request->send_buf_size; lsr_size = xti_tcp_conn_rr_request->recv_buf_size; loc_nodelay = xti_tcp_conn_rr_request->no_delay; loc_rcvavoid = xti_tcp_conn_rr_request->so_rcvavoid; loc_sndavoid = xti_tcp_conn_rr_request->so_sndavoid; s_listen = create_xti_endpoint(loc_xti_device); if (s_listen == INVALID_SOCKET) { netperf_response.content.serv_errno = errno; send_response(); if (debug) { fprintf(where,"could not create data socket\n"); fflush(where); } exit(1); } /* Let's get an address assigned to this socket so we can tell the */ /* initiator how to reach the data socket. There may be a desire to */ /* nail this socket to a specific IP address in a multi-homed, */ /* multi-connection situation, but for now, we'll ignore the issue */ /* and concentrate on single connection testing. */ if (bind(s_listen, (struct sockaddr *)&myaddr_in, sizeof(myaddr_in)) == SOCKET_ERROR) { netperf_response.content.serv_errno = errno; close(s_listen); send_response(); if (debug) { fprintf(where,"could not bind\n"); fflush(where); } exit(1); } /* Now, let's set-up the socket to listen for connections */ if (listen(s_listen, 5) == SOCKET_ERROR) { netperf_response.content.serv_errno = errno; close(s_listen); send_response(); if (debug) { fprintf(where,"could not listen\n"); fflush(where); } exit(1); } /* now get the port number assigned by the system */ addrlen = sizeof(myaddr_in); if (getsockname(s_listen, (struct sockaddr *)&myaddr_in, &addrlen) == SOCKET_ERROR){ netperf_response.content.serv_errno = errno; close(s_listen); send_response(); if (debug) { fprintf(where,"could not geetsockname\n"); fflush(where); } exit(1); } /* Now myaddr_in contains the port and the internet address this is */ /* returned to the sender also implicitly telling the sender that the */ /* socket buffer sizing has been done. */ xti_tcp_conn_rr_response->data_port_number = (int) ntohs(myaddr_in.sin_port); if (debug) { fprintf(where,"telling the remote to call me at %d\n", xti_tcp_conn_rr_response->data_port_number); fflush(where); } netperf_response.content.serv_errno = 0; /* But wait, there's more. If the initiator wanted cpu measurements, */ /* then we must call the calibrate routine, which will return the max */ /* rate back to the initiator. If the CPU was not to be measured, or */ /* something went wrong with the calibration, we will return a 0.0 to */ /* the initiator. */ xti_tcp_conn_rr_response->cpu_rate = 0.0; /* assume no cpu */ if (xti_tcp_conn_rr_request->measure_cpu) { xti_tcp_conn_rr_response->measure_cpu = 1; xti_tcp_conn_rr_response->cpu_rate = calibrate_local_cpu(xti_tcp_conn_rr_request->cpu_rate); } /* before we send the response back to the initiator, pull some of */ /* the socket parms from the globals */ xti_tcp_conn_rr_response->send_buf_size = lss_size; xti_tcp_conn_rr_response->recv_buf_size = lsr_size; xti_tcp_conn_rr_response->no_delay = loc_nodelay; xti_tcp_conn_rr_response->so_rcvavoid = loc_rcvavoid; xti_tcp_conn_rr_response->so_sndavoid = loc_sndavoid; send_response(); addrlen = sizeof(peeraddr_in); /* Now it's time to start receiving data on the connection. We will */ /* first grab the apropriate counters and then start grabbing. */ cpu_start(xti_tcp_conn_rr_request->measure_cpu); /* The loop will exit when the sender does a shutdown, which will */ /* return a length of zero */ if (xti_tcp_conn_rr_request->test_length > 0) { times_up = 0; trans_remaining = 0; start_timer(xti_tcp_conn_rr_request->test_length + PAD_TIME); } else { times_up = 1; trans_remaining = xti_tcp_conn_rr_request->test_length * -1; } trans_received = 0; while ((!times_up) || (trans_remaining > 0)) { /* accept a connection from the remote */ if ((s_data=accept(s_listen, (struct sockaddr *)&peeraddr_in, &addrlen)) == INVALID_SOCKET) { if (errno == EINTR) { /* the timer popped */ timed_out = 1; break; } fprintf(where,"recv_xti_tcp_conn_rr: accept: errno = %d\n",errno); fflush(where); close(s_listen); exit(1); } if (debug) { fprintf(where,"recv_xti_tcp_conn_rr: accepted data connection.\n"); fflush(where); } temp_message_ptr = recv_message_ptr; request_bytes_remaining = xti_tcp_conn_rr_request->request_size; /* receive the request from the other side */ while(request_bytes_remaining > 0) { if((request_bytes_recvd=recv(s_data, temp_message_ptr, request_bytes_remaining, 0)) == SOCKET_ERROR) { if (errno == EINTR) { /* the timer popped */ timed_out = 1; break; } netperf_response.content.serv_errno = errno; send_response(); exit(1); } else { request_bytes_remaining -= request_bytes_recvd; temp_message_ptr += request_bytes_recvd; } } if (timed_out) { /* we hit the end of the test based on time - lets */ /* bail out of here now... */ fprintf(where,"yo5\n"); fflush(where); break; } /* Now, send the response to the remote */ if((bytes_sent=send(s_data, send_message_ptr, xti_tcp_conn_rr_request->response_size, 0)) == SOCKET_ERROR) { if (errno == EINTR) { /* the test timer has popped */ timed_out = 1; fprintf(where,"yo6\n"); fflush(where); break; } netperf_response.content.serv_errno = 99; send_response(); exit(1); } trans_received++; if (trans_remaining) { trans_remaining--; } if (debug) { fprintf(where, "recv_xti_tcp_conn_rr: Transaction %d complete\n", trans_received); fflush(where); } /* close the connection */ close(s_data); } /* The loop now exits due to timeout or transaction count being */ /* reached */ cpu_stop(xti_tcp_conn_rr_request->measure_cpu,&elapsed_time); if (timed_out) { /* we ended the test by time, which was at least 2 seconds */ /* longer than we wanted to run. so, we want to subtract */ /* PAD_TIME from the elapsed_time. */ elapsed_time -= PAD_TIME; } /* send the results to the sender */ if (debug) { fprintf(where, "recv_xti_tcp_conn_rr: got %d transactions\n", trans_received); fflush(where); } xti_tcp_conn_rr_results->bytes_received = (trans_received * (xti_tcp_conn_rr_request->request_size + xti_tcp_conn_rr_request->response_size)); xti_tcp_conn_rr_results->trans_received = trans_received; xti_tcp_conn_rr_results->elapsed_time = elapsed_time; if (xti_tcp_conn_rr_request->measure_cpu) { xti_tcp_conn_rr_results->cpu_util = calc_cpu_util(elapsed_time); } if (debug) { fprintf(where, "recv_xti_tcp_conn_rr: test complete, sending results.\n"); fflush(where); } send_response(); } void print_xti_usage() { fwrite(xti_usage, sizeof(char), strlen(xti_usage), stdout); exit(1); } void scan_xti_args(int argc, char *argv[]) { #define XTI_ARGS "Dhm:M:r:s:S:Vw:W:X:" extern int optind, opterrs; /* index of first unused arg */ extern char *optarg; /* pointer to option string */ int c; char arg1[BUFSIZ], /* argument holders */ arg2[BUFSIZ]; if (no_control) { fprintf(where, "The XTI tests do not know how to run with no control connection\n"); exit(-1); } /* Go through all the command line arguments and break them */ /* out. For those options that take two parms, specifying only */ /* the first will set both to that value. Specifying only the */ /* second will leave the first untouched. To change only the */ /* first, use the form "first," (see the routine break_args.. */ while ((c= getopt(argc, argv, XTI_ARGS)) != EOF) { switch (c) { case '?': case 'h': print_xti_usage(); exit(1); case 'D': /* set the TCP nodelay flag */ loc_nodelay = 1; rem_nodelay = 1; break; case 's': /* set local socket sizes */ break_args(optarg,arg1,arg2); if (arg1[0]) lss_size = convert(arg1); if (arg2[0]) lsr_size = convert(arg2); break; case 'S': /* set remote socket sizes */ break_args(optarg,arg1,arg2); if (arg1[0]) rss_size = convert(arg1); if (arg2[0]) rsr_size = convert(arg2); break; case 'r': /* set the request/response sizes */ break_args(optarg,arg1,arg2); if (arg1[0]) req_size = convert(arg1); if (arg2[0]) rsp_size = convert(arg2); break; case 'm': /* set the send size */ send_size = convert(optarg); break; case 'M': /* set the recv size */ recv_size = convert(optarg); break; case 'W': /* set the "width" of the user space data */ /* buffer. This will be the number of */ /* send_size buffers malloc'd in the */ /* *_STREAM test. It may be enhanced to set */ /* both send and receive "widths" but for now */ /* it is just the sending *_STREAM. */ send_width = convert(optarg); break; case 'V' : /* we want to do copy avoidance and will set */ /* it for everything, everywhere, if we really */ /* can. of course, we don't know anything */ /* about the remote... */ #ifdef SO_SND_COPYAVOID loc_sndavoid = 1; #else loc_sndavoid = 0; printf("Local send copy avoidance not available.\n"); #endif #ifdef SO_RCV_COPYAVOID loc_rcvavoid = 1; #else loc_rcvavoid = 0; printf("Local recv copy avoidance not available.\n"); #endif rem_sndavoid = 1; rem_rcvavoid = 1; break; case 'X': /* set the xti device file name(s) */ break_args(optarg,arg1,arg2); if (arg1[0]) strcpy(loc_xti_device,arg1); if (arg2[0]) strcpy(rem_xti_device,arg2); break; }; } } #endif /* WANT_XTI */