/* mpfr_agm -- arithmetic-geometric mean of two floating-point numbers Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc. This file is part of the MPFR Library. The MPFR Library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. The MPFR Library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with the MPFR Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */ #include "mpfr-impl.h" /* agm(x,y) is between x and y, so we don't need to save exponent range */ int mpfr_agm (mpfr_ptr r, mpfr_srcptr op2, mpfr_srcptr op1, mp_rnd_t rnd_mode) { int compare, inexact; mp_size_t s; mp_prec_t p, q; mp_limb_t *up, *vp, *tmpp; mpfr_t u, v, tmp; MPFR_ZIV_DECL (loop); MPFR_TMP_DECL(marker); MPFR_LOG_FUNC (("op2[%#R]=%R op1[%#R]=%R rnd=%d", op2,op2,op1,op1,rnd_mode), ("r[%#R]=%R inexact=%d", r, r, inexact)); /* Deal with special values */ if (MPFR_ARE_SINGULAR (op1, op2)) { /* If a or b is NaN, the result is NaN */ if (MPFR_IS_NAN(op1) || MPFR_IS_NAN(op2)) { MPFR_SET_NAN(r); MPFR_RET_NAN; } /* now one of a or b is Inf or 0 */ /* If a and b is +Inf, the result is +Inf. Otherwise if a or b is -Inf or 0, the result is NaN */ else if (MPFR_IS_INF(op1) || MPFR_IS_INF(op2)) { if (MPFR_IS_STRICTPOS(op1) && MPFR_IS_STRICTPOS(op2)) { MPFR_SET_INF(r); MPFR_SET_SAME_SIGN(r, op1); MPFR_RET(0); /* exact */ } else { MPFR_SET_NAN(r); MPFR_RET_NAN; } } else /* a and b are neither NaN nor Inf, and one is zero */ { /* If a or b is 0, the result is +0 since a sqrt is positive */ MPFR_ASSERTD (MPFR_IS_ZERO (op1) || MPFR_IS_ZERO (op2)); MPFR_SET_POS (r); MPFR_SET_ZERO (r); MPFR_RET (0); /* exact */ } } MPFR_CLEAR_FLAGS (r); /* If a or b is negative (excluding -Infinity), the result is NaN */ if (MPFR_UNLIKELY(MPFR_IS_NEG(op1) || MPFR_IS_NEG(op2))) { MPFR_SET_NAN(r); MPFR_RET_NAN; } /* Precision of the following calculus */ q = MPFR_PREC(r); p = q + 15; s = (p - 1) / BITS_PER_MP_LIMB + 1; /* b (op2) and a (op1) are the 2 operands but we want b >= a */ compare = mpfr_cmp (op1, op2); if (MPFR_UNLIKELY( compare == 0 )) { mpfr_set (r, op1, rnd_mode); MPFR_RET (0); /* exact */ } else if (compare > 0) { mpfr_srcptr t = op1; op1 = op2; op2 = t; } /* Now b(=op2) >= a (=op1) */ MPFR_TMP_MARK(marker); /* Main loop */ MPFR_ZIV_INIT (loop, p); for (;;) { mp_prec_t eq; /* Init temporary vars */ MPFR_TMP_INIT (up, u, p, s); MPFR_TMP_INIT (vp, v, p, s); MPFR_TMP_INIT (tmpp, tmp, p, s); /* Calculus of un and vn */ mpfr_mul (u, op1, op2, GMP_RNDN); /* Faster since PREC(op) < PREC(u) */ mpfr_sqrt (u, u, GMP_RNDN); mpfr_add (v, op1, op2, GMP_RNDN); /* add with !=prec is still good*/ mpfr_div_2ui (v, v, 1, GMP_RNDN); while (mpfr_cmp2 (u, v, &eq) != 0 && eq <= p - 2) { mpfr_add (tmp, u, v, GMP_RNDN); /* It seems to work well. Any proofs are welcome. */ #if 0 if (2*eq > p) { mpfr_div_2ui (tmp, tmp, 1, GMP_RNDN); mpfr_swap (v, tmp); break; } #elif 1 if (4*eq > p) { mpfr_div_2ui (tmp, tmp, 1, GMP_RNDN); /* U(k) */ mpfr_sub (u, v, u, GMP_RNDN); /* e = V(k-1)-U(k-1) */ mpfr_sqr (u, u, GMP_RNDN); /* e = e^2 */ mpfr_div_2ui (u, u, 4, GMP_RNDN); /* e*= (1/2)^2*1/4 */ mpfr_div (u, u, tmp, GMP_RNDN); /* 1/4*e^2/U(k) */ mpfr_sub (v, tmp, u, GMP_RNDN); break; } #endif mpfr_mul (u, u, v, GMP_RNDN); mpfr_sqrt (u, u, GMP_RNDN); mpfr_div_2ui (tmp, tmp, 1, GMP_RNDN); mpfr_swap (v, tmp); } /* Roundability of the result */ if (MPFR_LIKELY (MPFR_CAN_ROUND (v, p - 4 - 3, q, rnd_mode))) break; /* Stop the loop */ /* Next iteration */ MPFR_ZIV_NEXT (loop, p); s = (p - 1) / BITS_PER_MP_LIMB + 1; } MPFR_ZIV_FREE (loop); /* Setting of the result */ inexact = mpfr_set (r, v, rnd_mode); /* Let's clean */ MPFR_TMP_FREE(marker); return inexact; /* agm(u,v) can be exact for u, v rational only for u=v. Proof (due to Nicolas Brisebarre): it suffices to consider u=1 and v<1. Then 1/AGM(1,v) = 2F1(1/2,1/2,1;1-v^2), and a theorem due to G.V. Chudnovsky states that for x a non-zero algebraic number with |x|<1, then 2F1(1/2,1/2,1;x) and 2F1(-1/2,1/2,1;x) are algebraically independent over Q. */ }