/* * Mesa 3-D graphics library * Version: 3.3 * * Copyright (C) 1999-2000 Brian Paul All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /* * Antialiased Triangle rasterizers */ #ifdef PC_HEADER #include "all.h" #else #include "glheader.h" #include "aatriangle.h" #include "span.h" #include "types.h" #include "vb.h" #endif /* * Compute coefficients of a plane using the X,Y coords of the v0, v1, v2 * vertices and the given Z values. */ static INLINE void compute_plane(const GLfloat v0[], const GLfloat v1[], const GLfloat v2[], GLfloat z0, GLfloat z1, GLfloat z2, GLfloat plane[4]) { const GLfloat px = v1[0] - v0[0]; const GLfloat py = v1[1] - v0[1]; const GLfloat pz = z1 - z0; const GLfloat qx = v2[0] - v0[0]; const GLfloat qy = v2[1] - v0[1]; const GLfloat qz = z2 - z0; const GLfloat a = py * qz - pz * qy; const GLfloat b = pz * qx - px * qz; const GLfloat c = px * qy - py * qx; const GLfloat d = -(a * v0[0] + b * v0[1] + c * z0); plane[0] = a; plane[1] = b; plane[2] = c; plane[3] = d; } /* * Compute coefficients of a plane with a constant Z value. */ static INLINE void constant_plane(GLfloat value, GLfloat plane[4]) { plane[0] = 0.0; plane[1] = 0.0; plane[2] = -1.0; plane[3] = value; } #define CONSTANT_PLANE(VALUE, PLANE) \ do { \ PLANE[0] = 0.0F; \ PLANE[1] = 0.0F; \ PLANE[2] = -1.0F; \ PLANE[3] = VALUE; \ } while (0) /* * Solve plane equation for Z at (X,Y). */ static INLINE GLfloat solve_plane(GLfloat x, GLfloat y, const GLfloat plane[4]) { GLfloat z = (plane[3] + plane[0] * x + plane[1] * y) / -plane[2]; return z; } #define SOLVE_PLANE(X, Y, PLANE) \ ((PLANE[3] + PLANE[0] * (X) + PLANE[1] * (Y)) / -PLANE[2]) /* * Return 1 / solve_plane(). */ static INLINE GLfloat solve_plane_recip(GLfloat x, GLfloat y, const GLfloat plane[4]) { GLfloat z = -plane[2] / (plane[3] + plane[0] * x + plane[1] * y); return z; } /* * Solve plane and return clamped GLubyte value. */ static INLINE GLubyte solve_plane_0_255(GLfloat x, GLfloat y, const GLfloat plane[4]) { GLfloat z = (plane[3] + plane[0] * x + plane[1] * y) / -plane[2] + 0.5F; if (z < 0.0F) return 0; else if (z > 255.0F) return 255; return (GLubyte) (GLint) z; } /* * Compute how much (area) of the given pixel is inside the triangle. * Vertices MUST be specified in counter-clockwise order. * Return: coverage in [0, 1]. */ static GLfloat compute_coveragef(const GLfloat v0[3], const GLfloat v1[3], const GLfloat v2[3], GLint winx, GLint winy) { #define B 0.125 static const GLfloat samples[16][2] = { /* start with the four corners */ { 0.00+B, 0.00+B }, { 0.75+B, 0.00+B }, { 0.00+B, 0.75+B }, { 0.75+B, 0.75+B }, /* continue with interior samples */ { 0.25+B, 0.00+B }, { 0.50+B, 0.00+B }, { 0.00+B, 0.25+B }, { 0.25+B, 0.25+B }, { 0.50+B, 0.25+B }, { 0.75+B, 0.25+B }, { 0.00+B, 0.50+B }, { 0.25+B, 0.50+B }, { 0.50+B, 0.50+B }, { 0.75+B, 0.50+B }, { 0.25+B, 0.75+B }, { 0.50+B, 0.75+B } }; const GLfloat x = (GLfloat) winx; const GLfloat y = (GLfloat) winy; const GLfloat dx0 = v1[0] - v0[0]; const GLfloat dy0 = v1[1] - v0[1]; const GLfloat dx1 = v2[0] - v1[0]; const GLfloat dy1 = v2[1] - v1[1]; const GLfloat dx2 = v0[0] - v2[0]; const GLfloat dy2 = v0[1] - v2[1]; GLint stop = 4, i; GLfloat insideCount = 16.0F; #ifdef DEBUG { const GLfloat area = dx0 * dy1 - dx1 * dy0; assert(area >= 0.0); } #endif for (i = 0; i < stop; i++) { const GLfloat sx = x + samples[i][0]; const GLfloat sy = y + samples[i][1]; const GLfloat fx0 = sx - v0[0]; const GLfloat fy0 = sy - v0[1]; const GLfloat fx1 = sx - v1[0]; const GLfloat fy1 = sy - v1[1]; const GLfloat fx2 = sx - v2[0]; const GLfloat fy2 = sy - v2[1]; /* cross product determines if sample is inside or outside each edge */ GLfloat cross0 = (dx0 * fy0 - dy0 * fx0); GLfloat cross1 = (dx1 * fy1 - dy1 * fx1); GLfloat cross2 = (dx2 * fy2 - dy2 * fx2); /* Check if the sample is exactly on an edge. If so, let cross be a * positive or negative value depending on the direction of the edge. */ if (cross0 == 0.0F) cross0 = dx0 + dy0; if (cross1 == 0.0F) cross1 = dx1 + dy1; if (cross2 == 0.0F) cross2 = dx2 + dy2; if (cross0 < 0.0F || cross1 < 0.0F || cross2 < 0.0F) { /* point is outside triangle */ insideCount -= 1.0F; stop = 16; } } if (stop == 4) return 1.0F; else return insideCount * (1.0F / 16.0F); } /* * Compute how much (area) of the given pixel is inside the triangle. * Vertices MUST be specified in counter-clockwise order. * Return: coverage in [0, 15]. */ static GLint compute_coveragei(const GLfloat v0[3], const GLfloat v1[3], const GLfloat v2[3], GLint winx, GLint winy) { /* NOTE: 15 samples instead of 16. * A better sample distribution could be used. */ static const GLfloat samples[15][2] = { /* start with the four corners */ { 0.00+B, 0.00+B }, { 0.75+B, 0.00+B }, { 0.00+B, 0.75+B }, { 0.75+B, 0.75+B }, /* continue with interior samples */ { 0.25+B, 0.00+B }, { 0.50+B, 0.00+B }, { 0.00+B, 0.25+B }, { 0.25+B, 0.25+B }, { 0.50+B, 0.25+B }, { 0.75+B, 0.25+B }, { 0.00+B, 0.50+B }, { 0.25+B, 0.50+B }, /*{ 0.50, 0.50 },*/ { 0.75+B, 0.50+B }, { 0.25+B, 0.75+B }, { 0.50+B, 0.75+B } }; const GLfloat x = (GLfloat) winx; const GLfloat y = (GLfloat) winy; const GLfloat dx0 = v1[0] - v0[0]; const GLfloat dy0 = v1[1] - v0[1]; const GLfloat dx1 = v2[0] - v1[0]; const GLfloat dy1 = v2[1] - v1[1]; const GLfloat dx2 = v0[0] - v2[0]; const GLfloat dy2 = v0[1] - v2[1]; GLint stop = 4, i; GLint insideCount = 15; #ifdef DEBUG { const GLfloat area = dx0 * dy1 - dx1 * dy0; assert(area >= 0.0); } #endif for (i = 0; i < stop; i++) { const GLfloat sx = x + samples[i][0]; const GLfloat sy = y + samples[i][1]; const GLfloat fx0 = sx - v0[0]; const GLfloat fy0 = sy - v0[1]; const GLfloat fx1 = sx - v1[0]; const GLfloat fy1 = sy - v1[1]; const GLfloat fx2 = sx - v2[0]; const GLfloat fy2 = sy - v2[1]; /* cross product determines if sample is inside or outside each edge */ GLfloat cross0 = (dx0 * fy0 - dy0 * fx0); GLfloat cross1 = (dx1 * fy1 - dy1 * fx1); GLfloat cross2 = (dx2 * fy2 - dy2 * fx2); /* Check if the sample is exactly on an edge. If so, let cross be a * positive or negative value depending on the direction of the edge. */ if (cross0 == 0.0F) cross0 = dx0 + dy0; if (cross1 == 0.0F) cross1 = dx1 + dy1; if (cross2 == 0.0F) cross2 = dx2 + dy2; if (cross0 < 0.0F || cross1 < 0.0F || cross2 < 0.0F) { /* point is outside triangle */ insideCount--; stop = 15; } } if (stop == 4) return 15; else return insideCount; } static void rgba_aa_tri(GLcontext *ctx, GLuint v0, GLuint v1, GLuint v2, GLuint pv) { #define DO_Z #define DO_RGBA #include "aatritemp.h" } static void index_aa_tri(GLcontext *ctx, GLuint v0, GLuint v1, GLuint v2, GLuint pv) { #define DO_Z #define DO_INDEX #include "aatritemp.h" } /* * Compute mipmap level of detail. */ static INLINE GLfloat compute_lambda(const GLfloat sPlane[4], const GLfloat tPlane[4], GLfloat invQ, GLfloat width, GLfloat height) { GLfloat dudx = sPlane[0] / sPlane[2] * invQ * width; GLfloat dudy = sPlane[1] / sPlane[2] * invQ * width; GLfloat dvdx = tPlane[0] / tPlane[2] * invQ * height; GLfloat dvdy = tPlane[1] / tPlane[2] * invQ * height; GLfloat r1 = dudx * dudx + dudy * dudy; GLfloat r2 = dvdx * dvdx + dvdy * dvdy; GLfloat rho2 = r1 + r2; /* return log base 2 of rho */ return log(rho2) * 1.442695 * 0.5; /* 1.442695 = 1/log(2) */ } static void tex_aa_tri(GLcontext *ctx, GLuint v0, GLuint v1, GLuint v2, GLuint pv) { #define DO_Z #define DO_RGBA #define DO_STUV0 #include "aatritemp.h" } static void spec_tex_aa_tri(GLcontext *ctx, GLuint v0, GLuint v1, GLuint v2, GLuint pv) { #define DO_Z #define DO_RGBA #define DO_STUV0 #define DO_SPEC #include "aatritemp.h" } static void multitex_aa_tri(GLcontext *ctx, GLuint v0, GLuint v1, GLuint v2, GLuint pv) { #define DO_Z #define DO_RGBA #define DO_STUV0 #define DO_STUV1 #include "aatritemp.h" } static void spec_multitex_aa_tri(GLcontext *ctx, GLuint v0, GLuint v1, GLuint v2, GLuint pv) { #define DO_Z #define DO_RGBA #define DO_STUV0 #define DO_STUV1 #define DO_SPEC #include "aatritemp.h" } /* * Examine GL state and set ctx->Driver.TriangleFunc to an * appropriate antialiased triangle rasterizer function. */ void _mesa_set_aa_triangle_function(GLcontext *ctx) { ASSERT(ctx->Polygon.SmoothFlag); if (ctx->Texture.ReallyEnabled) { if (ctx->Light.Enabled && ctx->Light.Model.ColorControl==GL_SEPARATE_SPECULAR_COLOR) { if (ctx->Texture.ReallyEnabled >= TEXTURE1_1D) { ctx->Driver.TriangleFunc = spec_multitex_aa_tri; } else { ctx->Driver.TriangleFunc = spec_tex_aa_tri; } } else { if (ctx->Texture.ReallyEnabled >= TEXTURE1_1D) { ctx->Driver.TriangleFunc = multitex_aa_tri; } else { ctx->Driver.TriangleFunc = tex_aa_tri; } } } else { if (ctx->Visual->RGBAflag) { ctx->Driver.TriangleFunc = rgba_aa_tri; } else { ctx->Driver.TriangleFunc = index_aa_tri; } } ASSERT(ctx->Driver.TriangleFunc); }