/* * Mesa 3-D graphics library * Version: 3.3 * * Copyright (C) 1999-2000 Brian Paul All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /* * Updated for P6 architecture by Gareth Hughes. */ #ifdef PC_HEADER #include "all.h" #else #include "glheader.h" #include "context.h" #include "types.h" #include "mem.h" #include "xform.h" #include "debug_xform.h" #endif #ifdef DEBUG /* This code only used for debugging */ /* Comment this out to deactivate the cycle counter. * NOTE: it works only on CPUs which know the 'rdtsc' command (586 or higher) * (hope, you don't try to debug Mesa on a 386 ;) */ #if defined(__GNUC__) && defined(__i386__) && defined(USE_X86_ASM) #define RUN_XFORM_BENCHMARK #endif #define TEST_COUNT 128 /* size of the tested vector array */ #define REQUIRED_PRECISION 10 /* allow 4 bits to miss */ #define MAX_PRECISION 24 /* max. precision possible */ #ifdef RUN_XFORM_BENCHMARK /* Overhead of profiling counter in cycles. Automatically adjusted to * your machine at run time - counter initialization should give very * consistent results. */ static int need_counter = 1; static long counter_overhead = 0; /* Modify the the number of tests if you like. * We take the minimum of all results, because every error should be * positive (time used by other processes, task switches etc). * It is assumed that all calculations are done in the cache. */ #if 1 /* PPro, PII, PIII version */ /* Profiling on the P6 architecture requires a little more work, due to * the internal out-of-order execution. We must perform a serializing * 'cpuid' instruction before and after the 'rdtsc' instructions to make * sure no other uops are executed when we sample the timestamp counter. */ #define INIT_COUNTER() \ do { \ int cycle_i; \ counter_overhead = LONG_MAX; \ for ( cycle_i = 0 ; cycle_i < 4 ; cycle_i++ ) { \ long cycle_tmp1 = 0, cycle_tmp2 = 0; \ __asm__ ( "push %%ebx \n" \ "xor %%eax, %%eax \n" \ "cpuid \n" \ "rdtsc \n" \ "mov %%eax, %0 \n" \ "xor %%eax, %%eax \n" \ "cpuid \n" \ "pop %%ebx \n" \ "push %%ebx \n" \ "xor %%eax, %%eax \n" \ "cpuid \n" \ "rdtsc \n" \ "mov %%eax, %1 \n" \ "xor %%eax, %%eax \n" \ "cpuid \n" \ "pop %%ebx \n" \ : "=m" (cycle_tmp1), "=m" (cycle_tmp2) \ : : "eax", "ecx", "edx" ); \ if ( counter_overhead > (cycle_tmp2 - cycle_tmp1) ) { \ counter_overhead = cycle_tmp2 - cycle_tmp1; \ } \ } \ } while (0) #define BEGIN_RACE(x) \ x = LONG_MAX; \ for ( cycle_i = 0 ; cycle_i < 10 ; cycle_i++ ) { \ long cycle_tmp1 = 0, cycle_tmp2 = 0; \ __asm__ ( "push %%ebx \n" \ "xor %%eax, %%eax \n" \ "cpuid \n" \ "rdtsc \n" \ "mov %%eax, %0 \n" \ "xor %%eax, %%eax \n" \ "cpuid \n" \ "pop %%ebx \n" \ : "=m" (cycle_tmp1) \ : : "eax", "ecx", "edx" ); #define END_RACE(x) \ __asm__ ( "push %%ebx \n" \ "xor %%eax, %%eax \n" \ "cpuid \n" \ "rdtsc \n" \ "mov %%eax, %0 \n" \ "xor %%eax, %%eax \n" \ "cpuid \n" \ "pop %%ebx \n" \ : "=m" (cycle_tmp2) \ : : "eax", "ecx", "edx" ); \ if ( x > (cycle_tmp2 - cycle_tmp1) ) { \ x = cycle_tmp2 - cycle_tmp1; \ } \ } \ x -= counter_overhead; #else /* PPlain, PMMX version */ /* To ensure accurate results, we stall the pipelines with the * non-pairable 'cdq' instruction. This ensures all the code being * profiled is complete when the 'rdtsc' instruction executes. */ #define INIT_COUNTER(x) \ do { \ int cycle_i; \ x = LONG_MAX; \ for ( cycle_i = 0 ; cycle_i < 32 ; cycle_i++ ) { \ long cycle_tmp1, cycle_tmp2, dummy; \ __asm__ ( "mov %%eax, %0" : "=a" (cycle_tmp1) ); \ __asm__ ( "mov %%eax, %0" : "=a" (cycle_tmp2) ); \ __asm__ ( "cdq" ); \ __asm__ ( "cdq" ); \ __asm__ ( "rdtsc" : "=a" (cycle_tmp1), "=d" (dummy) ); \ __asm__ ( "cdq" ); \ __asm__ ( "cdq" ); \ __asm__ ( "rdtsc" : "=a" (cycle_tmp2), "=d" (dummy) ); \ if ( x > (cycle_tmp2 - cycle_tmp1) ) \ x = cycle_tmp2 - cycle_tmp1; \ } \ } while (0) #define BEGIN_RACE(x) \ x = LONG_MAX; \ for ( cycle_i = 0 ; cycle_i < 16 ; cycle_i++ ) { \ long cycle_tmp1, cycle_tmp2, dummy; \ __asm__ ( "mov %%eax, %0" : "=a" (cycle_tmp1) ); \ __asm__ ( "mov %%eax, %0" : "=a" (cycle_tmp2) ); \ __asm__ ( "cdq" ); \ __asm__ ( "cdq" ); \ __asm__ ( "rdtsc" : "=a" (cycle_tmp1), "=d" (dummy) ); #define END_RACE(x) \ __asm__ ( "cdq" ); \ __asm__ ( "cdq" ); \ __asm__ ( "rdtsc" : "=a" (cycle_tmp2), "=d" (dummy) ); \ if ( x > (cycle_tmp2 - cycle_tmp1) ) \ x = cycle_tmp2 - cycle_tmp1; \ } \ x -= counter_overhead; #endif #else #define INIT_COUNTER(x) #define BEGIN_RACE(x) #define END_RACE(x) #endif static char *mesa_profile = NULL; enum { NIL=0, ONE=1, NEG=-1, VAR=2 }; static int m_general[16] = { VAR, VAR, VAR, VAR, VAR, VAR, VAR, VAR, VAR, VAR, VAR, VAR, VAR, VAR, VAR, VAR }; static int m_identity[16] = { ONE, NIL, NIL, NIL, NIL, ONE, NIL, NIL, NIL, NIL, ONE, NIL, NIL, NIL, NIL, ONE }; static int m_2d[16] = { VAR, VAR, NIL, VAR, VAR, VAR, NIL, VAR, NIL, NIL, ONE, NIL, NIL, NIL, NIL, ONE }; static int m_2d_no_rot[16] = { VAR, NIL, NIL, VAR, NIL, VAR, NIL, VAR, NIL, NIL, ONE, NIL, NIL, NIL, NIL, ONE }; static int m_3d[16] = { VAR, VAR, VAR, VAR, VAR, VAR, VAR, VAR, VAR, VAR, VAR, VAR, NIL, NIL, NIL, ONE }; static int m_3d_no_rot[16] = { VAR, NIL, NIL, VAR, NIL, VAR, NIL, VAR, NIL, NIL, VAR, VAR, NIL, NIL, NIL, ONE }; static int m_perspective[16] = { VAR, NIL, VAR, NIL, NIL, VAR, VAR, NIL, NIL, NIL, VAR, VAR, NIL, NIL, NEG, NIL }; static int *templates[7] = { m_general, m_identity, m_3d_no_rot, m_perspective, m_2d, m_2d_no_rot, m_3d }; static int mtypes[7] = { MATRIX_GENERAL, MATRIX_IDENTITY, MATRIX_3D_NO_ROT, MATRIX_PERSPECTIVE, MATRIX_2D, MATRIX_2D_NO_ROT, MATRIX_3D }; static char *mstrings[7] = { "MATRIX_GENERAL", "MATRIX_IDENTITY", "MATRIX_3D_NO_ROT", "MATRIX_PERSPECTIVE", "MATRIX_2D", "MATRIX_2D_NO_ROT", "MATRIX_3D" }; static int m_norm_identity[16] = { ONE, NIL, NIL, NIL, NIL, ONE, NIL, NIL, NIL, NIL, ONE, NIL, NIL, NIL, NIL, NIL }; static int m_norm_general[16] = { VAR, VAR, VAR, NIL, VAR, VAR, VAR, NIL, VAR, VAR, VAR, NIL, NIL, NIL, NIL, NIL }; static int m_norm_no_rot[16] = { VAR, NIL, NIL, NIL, NIL, VAR, NIL, NIL, NIL, NIL, VAR, NIL, NIL, NIL, NIL, NIL }; static int *norm_templates[8] = { m_norm_no_rot, m_norm_no_rot, m_norm_no_rot, m_norm_general, m_norm_general, m_norm_general, m_norm_identity, m_norm_identity }; static int norm_types[8] = { NORM_TRANSFORM_NO_ROT, NORM_TRANSFORM_NO_ROT | NORM_RESCALE, NORM_TRANSFORM_NO_ROT | NORM_NORMALIZE, NORM_TRANSFORM, NORM_TRANSFORM | NORM_RESCALE, NORM_TRANSFORM | NORM_NORMALIZE, NORM_RESCALE, NORM_NORMALIZE }; static int norm_scale_types[8] = { /* rescale factor */ NIL, /* NIL disables rescaling */ VAR, NIL, NIL, VAR, NIL, VAR, NIL }; static int norm_normalize_types[8] = { /* normalizing ?? (no = 0) */ 0, 0, 1, 0, 0, 1, 0, 1 }; static char *norm_strings[8] = { "NORM_TRANSFORM_NO_ROT", "NORM_TRANSFORM_NO_ROT | NORM_RESCALE", "NORM_TRANSFORM_NO_ROT | NORM_NORMALIZE", "NORM_TRANSFORM", "NORM_TRANSFORM | NORM_RESCALE", "NORM_TRANSFORM | NORM_NORMALIZE", "NORM_RESCALE", "NORM_NORMALIZE" }; /* ================================================================ * Helper functions */ static GLfloat rnd( void ) { GLfloat f = (GLfloat)rand() / (GLfloat)RAND_MAX; GLfloat gran = (GLfloat)(1 << 13); f = (GLfloat)(GLint)(f * gran) / gran; return f * 2.0 - 1.0; } static int significand_match( GLfloat a, GLfloat b ) { GLfloat d = a - b; int a_ex, b_ex, d_ex; if ( d == 0.0F ) { return MAX_PRECISION; /* Exact match */ } if ( a == 0.0F || b == 0.0F ) { /* It would probably be better to check if the * non-zero number is denormalized and return * the index of the highest set bit here. */ return 0; } frexp( a, &a_ex ); frexp( b, &b_ex ); frexp( d, &d_ex ); if ( a_ex < b_ex ) return a_ex - d_ex; else return b_ex - d_ex; } /* ================================================================ * Reference transformations */ static void ref_transform( GLvector4f *dst, const GLmatrix *mat, const GLvector4f *src, const GLubyte *clipmask, const GLubyte flag ) { GLuint i; GLfloat *s = (GLfloat *)src->start; GLfloat (*d)[4] = (GLfloat (*)[4])dst->start; const GLfloat *m = mat->m; (void) clipmask; (void) flag; for ( i = 0 ; i < src->count ; i++ ) { GLfloat x = s[0], y = s[1], z = s[2], w = s[3]; d[i][0] = m[0]*x + m[4]*y + m[ 8]*z + m[12]*w; d[i][1] = m[1]*x + m[5]*y + m[ 9]*z + m[13]*w; d[i][2] = m[2]*x + m[6]*y + m[10]*z + m[14]*w; d[i][3] = m[3]*x + m[7]*y + m[11]*z + m[15]*w; s = (GLfloat *)((char *)s + src->stride); } } static void ref_norm_transform_rescale( const GLmatrix *mat, GLfloat scale, const GLvector3f *in, const GLfloat *lengths, const GLubyte mask[], GLvector3f *dest ) { GLuint i; const GLfloat *s = in->start; const GLfloat *m = mat->inv; GLfloat (*out)[3] = (GLfloat (*)[3])dest->start; (void) mask; (void) lengths; for ( i = 0 ; i < in->count ; i++ ) { GLfloat x = s[0], y = s[1], z = s[2] ; GLfloat tx = m[0]*x + m[1]*y + m[ 2]*z ; GLfloat ty = m[4]*x + m[5]*y + m[ 6]*z ; GLfloat tz = m[8]*x + m[9]*y + m[10]*z ; out[i][0] = tx * scale; out[i][1] = ty * scale; out[i][2] = tz * scale; s = (GLfloat *)((char *)s + in->stride); } } static void ref_norm_transform_normalize( const GLmatrix *mat, GLfloat scale, const GLvector3f *in, const GLfloat *lengths, const GLubyte mask[], GLvector3f *dest ) { GLuint i; const GLfloat *s = in->start; const GLfloat *m = mat->inv; GLfloat (*out)[3] = (GLfloat (*)[3])dest->start; (void) mask; for ( i = 0 ; i < in->count ; i++ ) { GLfloat x = s[0], y = s[1], z = s[2] ; GLfloat tx = m[0]*x + m[1]*y + m[ 2]*z ; GLfloat ty = m[4]*x + m[5]*y + m[ 6]*z ; GLfloat tz = m[8]*x + m[9]*y + m[10]*z ; if ( !lengths ) { GLfloat len = tx*tx + ty*ty + tz*tz; if ( len > 1e-20 ) { /* Hmmm, don't know how we could test the precalculated * length case... */ scale = 1.0 / sqrt( len ); out[i][0] = tx * scale; out[i][1] = ty * scale; out[i][2] = tz * scale; } else { out[i][0] = out[i][1] = out[i][2] = 0; } } else { scale = lengths[i];; out[i][0] = tx * scale; out[i][1] = ty * scale; out[i][2] = tz * scale; } s = (GLfloat *)((char *)s + in->stride); } } /* ================================================================ * Vertex transformation tests */ /* Ensure our arrays are correctly aligned. */ #if defined(__GNUC__) #define ALIGN16(x) x __attribute__ ((aligned (16))) #else #define ALIGN16(x) x #endif static GLfloat ALIGN16(s[TEST_COUNT][5]); static GLfloat ALIGN16(d[TEST_COUNT][4]); static GLfloat ALIGN16(r[TEST_COUNT][4]); static int test_transform_function( transform_func func, int psize, int mtype, int masked, long *cycles ) { GLvector4f source[1], dest[1], ref[1]; GLmatrix mat[1]; GLfloat *m; GLubyte mask[TEST_COUNT]; int i, j; #ifdef RUN_XFORM_BENCHMARK int cycle_i; /* the counter for the benchmarks we run */ #endif (void) cycles; if ( psize > 4 ) { gl_problem( NULL, "test_transform_function called with psize > 4\n" ); return 0; } mat->m = (GLfloat *) ALIGN_MALLOC( 16 * sizeof(GLfloat), 16 ); mat->type = mtypes[mtype]; m = mat->m; m[0] = 63.0; m[4] = 43.0; m[ 8] = 29.0; m[12] = 43.0; m[1] = 55.0; m[5] = 17.0; m[ 9] = 31.0; m[13] = 7.0; m[2] = 44.0; m[6] = 9.0; m[10] = 7.0; m[14] = 3.0; m[3] = 11.0; m[7] = 23.0; m[11] = 91.0; m[15] = 9.0; for ( i = 0 ; i < 4 ; i++ ) { for ( j = 0 ; j < 4 ; j++ ) { switch ( templates[mtype][i * 4 + j] ) { case NIL: m[j * 4 + i] = 0.0; break; case ONE: m[j * 4 + i] = 1.0; break; case NEG: m[j * 4 + i] = -1.0; break; case VAR: break; default: abort(); } } } for ( i = 0 ; i < TEST_COUNT ; i++) { mask[i] = i % 2; /* mask every 2nd element */ d[i][0] = s[i][0] = 0.0; d[i][1] = s[i][1] = 0.0; d[i][2] = s[i][2] = 0.0; d[i][3] = s[i][3] = 1.0; for ( j = 0 ; j < psize ; j++ ) s[i][j] = rnd(); } source->data = (GLfloat(*)[4])s; source->start = (GLfloat *)s; source->count = TEST_COUNT; source->stride = sizeof(s[0]); source->size = 4; source->flags = 0; dest->data = (GLfloat(*)[4])d; dest->start = (GLfloat *)d; dest->count = TEST_COUNT; dest->stride = sizeof(float[4]); dest->size = 0; dest->flags = 0; ref->data = (GLfloat(*)[4])r; ref->start = (GLfloat *)r; ref->count = TEST_COUNT; ref->stride = sizeof(float[4]); ref->size = 0; ref->flags = 0; ref_transform( ref, mat, source, NULL, 0 ); if ( mesa_profile ) { if ( masked ) { BEGIN_RACE( *cycles ); func( dest, mat->m, source, mask, 1 ); END_RACE( *cycles ); } else { BEGIN_RACE( *cycles ); func( dest, mat->m, source, NULL, 0 ); END_RACE( *cycles ); } } else { if ( masked ) { func( dest, mat->m, source, mask, 1 ); } else { func( dest, mat->m, source, NULL, 0 ); } } for ( i = 0 ; i < TEST_COUNT ; i++ ) { if ( masked && (mask[i] & 1) ) continue; for ( j = 0 ; j < 4 ; j++ ) { if ( significand_match( d[i][j], r[i][j] ) < REQUIRED_PRECISION ) { printf( "-----------------------------\n" ); printf( "(i = %i, j = %i)\n", i, j ); printf( "%f \t %f \t [diff = %e - %i bit missed]\n", d[i][0], r[i][0], r[i][0]-d[i][0], MAX_PRECISION - significand_match( d[i][0], r[i][0] ) ); printf( "%f \t %f \t [diff = %e - %i bit missed]\n", d[i][1], r[i][1], r[i][1]-d[i][1], MAX_PRECISION - significand_match( d[i][1], r[i][1] ) ); printf( "%f \t %f \t [diff = %e - %i bit missed]\n", d[i][2], r[i][2], r[i][2]-d[i][2], MAX_PRECISION - significand_match( d[i][2], r[i][2] ) ); printf( "%f \t %f \t [diff = %e - %i bit missed]\n", d[i][3], r[i][3], r[i][3]-d[i][3], MAX_PRECISION - significand_match( d[i][3], r[i][3] ) ); return 0; } } } ALIGN_FREE( mat->m ); return 1; } void gl_test_all_transform_functions( char *description ) { int masked, psize, mtype; long benchmark_tab[2][4][7]; static int first_time = 1; if ( first_time ) { first_time = 0; mesa_profile = getenv( "MESA_PROFILE" ); } #ifdef RUN_XFORM_BENCHMARK if ( mesa_profile ) { if ( need_counter ) { need_counter = 0; INIT_COUNTER(); printf( "counter overhead: %ld cycles\n\n", counter_overhead ); } printf( "transform results after hooking in %s functions:\n", description ); } #endif for ( masked = 0 ; masked <= 1 ; masked++ ) { int cma = masked ? CULL_MASK_ACTIVE : 0; char *cmastring = masked ? "CULL_MASK_ACTIVE" : "0"; #ifdef RUN_XFORM_BENCHMARK if ( mesa_profile ) { printf( "\n culling: %s \n", masked ? "CULL_MASK_ACTIVE" : "0" ); for ( psize = 1 ; psize <= 4 ; psize++ ) { printf( " p%d\t", psize ); } printf( "\n--------------------------------------------------------\n" ); } #endif for ( mtype = 0 ; mtype < 7 ; mtype++ ) { for ( psize = 1 ; psize <= 4 ; psize++ ) { transform_func func = gl_transform_tab[cma][psize][mtypes[mtype]]; long *cycles = &(benchmark_tab[cma][psize-1][mtype]); if ( test_transform_function( func, psize, mtype, masked, cycles ) == 0 ) { char buf[100]; sprintf( buf, "gl_transform_tab[%s][%d][%s] failed test (%s)", cmastring, psize, mstrings[mtype], description ); gl_problem( NULL, buf ); } #ifdef RUN_XFORM_BENCHMARK if ( mesa_profile ) printf( " %li\t", benchmark_tab[cma][psize-1][mtype] ); #endif } #ifdef RUN_XFORM_BENCHMARK if ( mesa_profile ) printf( " | [%s]\n", mstrings[mtype] ); #endif } #ifdef RUN_XFORM_BENCHMARK if ( mesa_profile ) printf( "\n" ); #endif } } /* ================================================================ * Normal transformation tests */ static int test_norm_function( normal_func func, int mtype, int masked, long *cycles ) { GLvector3f source[1], dest[1], dest2[1], ref[1], ref2[1]; GLmatrix mat[1]; GLfloat s[TEST_COUNT][5], d[TEST_COUNT][3], r[TEST_COUNT][3]; GLfloat d2[TEST_COUNT][3], r2[TEST_COUNT][3], length[TEST_COUNT]; GLfloat scale; GLfloat *m; GLubyte mask[TEST_COUNT]; int i, j; #ifdef RUN_XFORM_BENCHMARK int cycle_i; /* the counter for the benchmarks we run */ #endif (void) cycles; mat->m = (GLfloat *) ALIGN_MALLOC( 16 * sizeof(GLfloat), 16 ); mat->inv = m = mat->m; m[0] = 63.0; m[4] = 43.0; m[ 8] = 29.0; m[12] = 43.0; m[1] = 55.0; m[5] = 17.0; m[ 9] = 31.0; m[13] = 7.0; m[2] = 44.0; m[6] = 9.0; m[10] = 7.0; m[14] = 3.0; m[3] = 11.0; m[7] = 23.0; m[11] = 91.0; m[15] = 9.0; scale = 1.0F + rnd () * norm_scale_types[mtype]; for ( i = 0 ; i < 4 ; i++ ) { for ( j = 0 ; j < 4 ; j++ ) { switch ( norm_templates[mtype][i * 4 + j] ) { case NIL: m[j * 4 + i] = 0.0; break; case ONE: m[j * 4 + i] = 1.0; break; case NEG: m[j * 4 + i] = -1.0; break; case VAR: break; default: abort(); } } } for ( i = 0 ; i < TEST_COUNT ; i++ ) { mask[i] = i % 2; /* mask every 2nd element */ d[i][0] = s[i][0] = d2[i][0] = 0.0; d[i][1] = s[i][1] = d2[i][1] = 0.0; d[i][2] = s[i][2] = d2[i][2] = 0.0; for ( j = 0 ; j < 3 ; j++ ) s[i][j] = rnd(); length[i] = 1 / sqrt( s[i][0]*s[i][0] + s[i][1]*s[i][1] + s[i][2]*s[i][2] ); } source->data = (GLfloat(*)[3])s; source->start = (GLfloat *)s; source->count = TEST_COUNT; source->stride = sizeof(s[0]); source->flags = 0; dest->data = (GLfloat(*)[3])d; dest->start = (GLfloat *)d; dest->count = TEST_COUNT; dest->stride = sizeof(float[3]); dest->flags = 0; dest2->data = (GLfloat(*)[3])d2; dest2->start = (GLfloat *)d2; dest2->count = TEST_COUNT; dest2->stride = sizeof(float[3]); dest2->flags = 0; ref->data = (GLfloat(*)[3])r; ref->start = (GLfloat *)r; ref->count = TEST_COUNT; ref->stride = sizeof(float[3]); ref->flags = 0; ref2->data = (GLfloat(*)[3])r2; ref2->start = (GLfloat *)r2; ref2->count = TEST_COUNT; ref2->stride = sizeof(float[3]); ref2->flags = 0; if ( norm_normalize_types[mtype] == 0 ) { ref_norm_transform_rescale( mat, scale, source, NULL, NULL, ref ); } else { ref_norm_transform_normalize( mat, scale, source, NULL, NULL, ref ); ref_norm_transform_normalize( mat, scale, source, length, NULL, ref2 ); } if ( mesa_profile ) { if ( masked ) { BEGIN_RACE( *cycles ); func( mat, scale, source, NULL, mask, dest ); END_RACE( *cycles ); func( mat, scale, source, length, mask, dest2 ); } else { BEGIN_RACE( *cycles ); func( mat, scale, source, NULL, NULL, dest ); END_RACE( *cycles ); func( mat, scale, source, length, NULL, dest2 ); } } else { if ( masked ) { func( mat, scale, source, NULL, mask, dest ); func( mat, scale, source, length, mask, dest2 ); } else { func( mat, scale, source, NULL, NULL, dest ); func( mat, scale, source, length, NULL, dest2 ); } } for ( i = 0 ; i < TEST_COUNT ; i++ ) { if ( masked && !(mask[i] & 1) ) continue; for ( j = 0 ; j < 3 ; j++ ) { if ( significand_match( d[i][j], r[i][j] ) < REQUIRED_PRECISION ) { printf( "-----------------------------\n" ); printf( "(i = %i, j = %i)\n", i, j ); printf( "%f \t %f \t [ratio = %e - %i bit missed]\n", d[i][0], r[i][0], r[i][0]/d[i][0], MAX_PRECISION - significand_match( d[i][0], r[i][0] ) ); printf( "%f \t %f \t [ratio = %e - %i bit missed]\n", d[i][1], r[i][1], r[i][1]/d[i][1], MAX_PRECISION - significand_match( d[i][1], r[i][1] ) ); printf( "%f \t %f \t [ratio = %e - %i bit missed]\n", d[i][2], r[i][2], r[i][2]/d[i][2], MAX_PRECISION - significand_match( d[i][2], r[i][2] ) ); return 0; } if ( norm_normalize_types[mtype] != 0 ) { if ( significand_match( d2[i][j], r2[i][j] ) < REQUIRED_PRECISION ) { printf( "------------------- precalculated length case ------\n" ); printf( "(i = %i, j = %i)\n", i, j ); printf( "%f \t %f \t [ratio = %e - %i bit missed]\n", d2[i][0], r2[i][0], r2[i][0]/d2[i][0], MAX_PRECISION - significand_match( d2[i][0], r2[i][0] ) ); printf( "%f \t %f \t [ratio = %e - %i bit missed]\n", d2[i][1], r2[i][1], r2[i][1]/d2[i][1], MAX_PRECISION - significand_match( d2[i][1], r2[i][1] ) ); printf( "%f \t %f \t [ratio = %e - %i bit missed]\n", d2[i][2], r2[i][2], r2[i][2]/d2[i][2], MAX_PRECISION - significand_match( d2[i][2], r2[i][2] ) ); return 0; } } } } ALIGN_FREE( mat->m ); return 1; } void gl_test_all_normal_transform_functions( char *description ) { int masked; int mtype; long benchmark_tab[0xf][0x4]; static int first_time = 1; if ( first_time ) { first_time = 0; mesa_profile = getenv( "MESA_PROFILE" ); } #ifdef RUN_XFORM_BENCHMARK if ( mesa_profile ) { if ( need_counter ) { need_counter = 0; INIT_COUNTER(); printf( "counter overhead: %ld cycles\n\n", counter_overhead ); } printf( "normal transform results after hooking in %s functions:\n", description ); } #endif for ( masked = 0 ; masked <= 1 ; masked++ ) { int cma = masked ? CULL_MASK_ACTIVE : 0; char *cmastring = masked ? "CULL_MASK_ACTIVE" : "0"; #ifdef RUN_XFORM_BENCHMARK if ( mesa_profile ) { printf( "\n culling: %s \n", masked ? "CULL_MASK_ACTIVE" : "0" ); printf( "\n-------------------------------------------------------\n" ); } #endif for ( mtype = 0 ; mtype < 8 ; mtype++ ) { normal_func func = gl_normal_tab[norm_types[mtype]][cma]; long *cycles = &(benchmark_tab[mtype][cma]); if ( test_norm_function( func, mtype, masked, cycles ) == 0 ) { char buf[100]; sprintf( buf, "gl_normal_tab[%s][%s] failed test (%s)", cmastring, norm_strings[mtype], description ); gl_problem( NULL, buf ); } #ifdef RUN_XFORM_BENCHMARK if ( mesa_profile ) { printf( " %li\t", benchmark_tab[mtype][cma] ); printf( " | [%s]\n", norm_strings[mtype] ); } } if ( mesa_profile ) printf( "\n" ); #else } #endif } #ifdef RUN_XFORM_BENCHMARK if ( mesa_profile ) fflush( stdout ); #endif } #endif /* DEBUG */