/* * Mesa 3-D graphics library * Version: 3.3 * * Copyright (C) 1999-2000 Brian Paul All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #ifdef PC_HEADER #include "all.h" #else #include "glheader.h" #include "context.h" #include "enums.h" #include "light.h" #include "macros.h" #include "matrix.h" #include "mem.h" #include "mmath.h" #include "simple_list.h" #include "types.h" #include "vb.h" #include "xform.h" #endif /* XXX this is a bit of a hack needed for compilation within XFree86 */ #ifndef FLT_MIN #define FLT_MIN 1e-37 #endif void _mesa_ShadeModel( GLenum mode ) { GET_CURRENT_CONTEXT(ctx); ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glShadeModel"); if (MESA_VERBOSE & VERBOSE_API) fprintf(stderr, "glShadeModel %s\n", gl_lookup_enum_by_nr(mode)); if (mode == GL_FLAT || mode == GL_SMOOTH) { if (ctx->Light.ShadeModel != mode) { ctx->Light.ShadeModel = mode; if (ctx->Light.ShadeModel == GL_FLAT) SET_BITS(ctx->TriangleCaps, DD_FLATSHADE); else CLEAR_BITS(ctx->TriangleCaps, DD_FLATSHADE); ctx->NewState |= NEW_RASTER_OPS; if (ctx->Driver.ShadeModel) (*ctx->Driver.ShadeModel)( ctx, mode ); } } else { gl_error( ctx, GL_INVALID_ENUM, "glShadeModel" ); } } void _mesa_Lightf( GLenum light, GLenum pname, GLfloat param ) { _mesa_Lightfv( light, pname, ¶m ); } void _mesa_Lightfv( GLenum light, GLenum pname, const GLfloat *params ) { GET_CURRENT_CONTEXT(ctx); GLint l; GLint nParams; ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glLight"); l = (GLint) (light - GL_LIGHT0); if (l < 0 || l >= MAX_LIGHTS) { gl_error( ctx, GL_INVALID_ENUM, "glLight" ); return; } switch (pname) { case GL_AMBIENT: COPY_4V( ctx->Light.Light[l].Ambient, params ); nParams = 4; break; case GL_DIFFUSE: COPY_4V( ctx->Light.Light[l].Diffuse, params ); nParams = 4; break; case GL_SPECULAR: COPY_4V( ctx->Light.Light[l].Specular, params ); nParams = 4; break; case GL_POSITION: /* transform position by ModelView matrix */ TRANSFORM_POINT( ctx->Light.Light[l].EyePosition, ctx->ModelView.m, params ); nParams = 4; break; case GL_SPOT_DIRECTION: /* transform direction by inverse modelview */ if (ctx->ModelView.flags & MAT_DIRTY_INVERSE) { gl_matrix_analyze( &ctx->ModelView ); } TRANSFORM_NORMAL( ctx->Light.Light[l].EyeDirection, params, ctx->ModelView.inv ); nParams = 3; break; case GL_SPOT_EXPONENT: if (params[0]<0.0 || params[0]>128.0) { gl_error( ctx, GL_INVALID_VALUE, "glLight" ); return; } if (ctx->Light.Light[l].SpotExponent != params[0]) { ctx->Light.Light[l].SpotExponent = params[0]; gl_compute_spot_exp_table( &ctx->Light.Light[l] ); } nParams = 1; break; case GL_SPOT_CUTOFF: if ((params[0]<0.0 || params[0]>90.0) && params[0]!=180.0) { gl_error( ctx, GL_INVALID_VALUE, "glLight" ); return; } ctx->Light.Light[l].SpotCutoff = params[0]; ctx->Light.Light[l].CosCutoff = cos(params[0]*DEG2RAD); if (ctx->Light.Light[l].CosCutoff < 0) ctx->Light.Light[l].CosCutoff = 0; nParams = 1; break; case GL_CONSTANT_ATTENUATION: if (params[0]<0.0) { gl_error( ctx, GL_INVALID_VALUE, "glLight" ); return; } ctx->Light.Light[l].ConstantAttenuation = params[0]; nParams = 1; break; case GL_LINEAR_ATTENUATION: if (params[0]<0.0) { gl_error( ctx, GL_INVALID_VALUE, "glLight" ); return; } ctx->Light.Light[l].LinearAttenuation = params[0]; nParams = 1; break; case GL_QUADRATIC_ATTENUATION: if (params[0]<0.0) { gl_error( ctx, GL_INVALID_VALUE, "glLight" ); return; } ctx->Light.Light[l].QuadraticAttenuation = params[0]; nParams = 1; break; default: gl_error( ctx, GL_INVALID_ENUM, "glLight" ); return; } if (ctx->Driver.Lightfv) ctx->Driver.Lightfv( ctx, light, pname, params, nParams ); ctx->NewState |= NEW_LIGHTING; } void _mesa_Lighti( GLenum light, GLenum pname, GLint param ) { _mesa_Lightiv( light, pname, ¶m ); } void _mesa_Lightiv( GLenum light, GLenum pname, const GLint *params ) { GLfloat fparam[4]; switch (pname) { case GL_AMBIENT: case GL_DIFFUSE: case GL_SPECULAR: fparam[0] = INT_TO_FLOAT( params[0] ); fparam[1] = INT_TO_FLOAT( params[1] ); fparam[2] = INT_TO_FLOAT( params[2] ); fparam[3] = INT_TO_FLOAT( params[3] ); break; case GL_POSITION: fparam[0] = (GLfloat) params[0]; fparam[1] = (GLfloat) params[1]; fparam[2] = (GLfloat) params[2]; fparam[3] = (GLfloat) params[3]; break; case GL_SPOT_DIRECTION: fparam[0] = (GLfloat) params[0]; fparam[1] = (GLfloat) params[1]; fparam[2] = (GLfloat) params[2]; break; case GL_SPOT_EXPONENT: case GL_SPOT_CUTOFF: case GL_CONSTANT_ATTENUATION: case GL_LINEAR_ATTENUATION: case GL_QUADRATIC_ATTENUATION: fparam[0] = (GLfloat) params[0]; break; default: /* error will be caught later in gl_Lightfv */ ; } _mesa_Lightfv( light, pname, fparam ); } void _mesa_GetLightfv( GLenum light, GLenum pname, GLfloat *params ) { GET_CURRENT_CONTEXT(ctx); GLint l = (GLint) (light - GL_LIGHT0); ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glGetLight"); if (l<0 || l>=MAX_LIGHTS) { gl_error( ctx, GL_INVALID_ENUM, "glGetLightfv" ); return; } switch (pname) { case GL_AMBIENT: COPY_4V( params, ctx->Light.Light[l].Ambient ); break; case GL_DIFFUSE: COPY_4V( params, ctx->Light.Light[l].Diffuse ); break; case GL_SPECULAR: COPY_4V( params, ctx->Light.Light[l].Specular ); break; case GL_POSITION: COPY_4V( params, ctx->Light.Light[l].EyePosition ); break; case GL_SPOT_DIRECTION: COPY_3V( params, ctx->Light.Light[l].EyeDirection ); break; case GL_SPOT_EXPONENT: params[0] = ctx->Light.Light[l].SpotExponent; break; case GL_SPOT_CUTOFF: params[0] = ctx->Light.Light[l].SpotCutoff; break; case GL_CONSTANT_ATTENUATION: params[0] = ctx->Light.Light[l].ConstantAttenuation; break; case GL_LINEAR_ATTENUATION: params[0] = ctx->Light.Light[l].LinearAttenuation; break; case GL_QUADRATIC_ATTENUATION: params[0] = ctx->Light.Light[l].QuadraticAttenuation; break; default: gl_error( ctx, GL_INVALID_ENUM, "glGetLightfv" ); break; } } void _mesa_GetLightiv( GLenum light, GLenum pname, GLint *params ) { GET_CURRENT_CONTEXT(ctx); GLint l = (GLint) (light - GL_LIGHT0); ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glGetLight"); if (l<0 || l>=MAX_LIGHTS) { gl_error( ctx, GL_INVALID_ENUM, "glGetLightiv" ); return; } switch (pname) { case GL_AMBIENT: params[0] = FLOAT_TO_INT(ctx->Light.Light[l].Ambient[0]); params[1] = FLOAT_TO_INT(ctx->Light.Light[l].Ambient[1]); params[2] = FLOAT_TO_INT(ctx->Light.Light[l].Ambient[2]); params[3] = FLOAT_TO_INT(ctx->Light.Light[l].Ambient[3]); break; case GL_DIFFUSE: params[0] = FLOAT_TO_INT(ctx->Light.Light[l].Diffuse[0]); params[1] = FLOAT_TO_INT(ctx->Light.Light[l].Diffuse[1]); params[2] = FLOAT_TO_INT(ctx->Light.Light[l].Diffuse[2]); params[3] = FLOAT_TO_INT(ctx->Light.Light[l].Diffuse[3]); break; case GL_SPECULAR: params[0] = FLOAT_TO_INT(ctx->Light.Light[l].Specular[0]); params[1] = FLOAT_TO_INT(ctx->Light.Light[l].Specular[1]); params[2] = FLOAT_TO_INT(ctx->Light.Light[l].Specular[2]); params[3] = FLOAT_TO_INT(ctx->Light.Light[l].Specular[3]); break; case GL_POSITION: params[0] = (GLint) ctx->Light.Light[l].EyePosition[0]; params[1] = (GLint) ctx->Light.Light[l].EyePosition[1]; params[2] = (GLint) ctx->Light.Light[l].EyePosition[2]; params[3] = (GLint) ctx->Light.Light[l].EyePosition[3]; break; case GL_SPOT_DIRECTION: params[0] = (GLint) ctx->Light.Light[l].EyeDirection[0]; params[1] = (GLint) ctx->Light.Light[l].EyeDirection[1]; params[2] = (GLint) ctx->Light.Light[l].EyeDirection[2]; break; case GL_SPOT_EXPONENT: params[0] = (GLint) ctx->Light.Light[l].SpotExponent; break; case GL_SPOT_CUTOFF: params[0] = (GLint) ctx->Light.Light[l].SpotCutoff; break; case GL_CONSTANT_ATTENUATION: params[0] = (GLint) ctx->Light.Light[l].ConstantAttenuation; break; case GL_LINEAR_ATTENUATION: params[0] = (GLint) ctx->Light.Light[l].LinearAttenuation; break; case GL_QUADRATIC_ATTENUATION: params[0] = (GLint) ctx->Light.Light[l].QuadraticAttenuation; break; default: gl_error( ctx, GL_INVALID_ENUM, "glGetLightiv" ); break; } } /**********************************************************************/ /*** Light Model ***/ /**********************************************************************/ void _mesa_LightModelfv( GLenum pname, const GLfloat *params ) { GET_CURRENT_CONTEXT(ctx); ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glLightModelfv"); switch (pname) { case GL_LIGHT_MODEL_AMBIENT: COPY_4V( ctx->Light.Model.Ambient, params ); break; case GL_LIGHT_MODEL_LOCAL_VIEWER: if (params[0]==0.0) ctx->Light.Model.LocalViewer = GL_FALSE; else ctx->Light.Model.LocalViewer = GL_TRUE; break; case GL_LIGHT_MODEL_TWO_SIDE: if (params[0]==0.0) ctx->Light.Model.TwoSide = GL_FALSE; else ctx->Light.Model.TwoSide = GL_TRUE; break; case GL_LIGHT_MODEL_COLOR_CONTROL: if (params[0] == (GLfloat) GL_SINGLE_COLOR) { ctx->Light.Model.ColorControl = GL_SINGLE_COLOR; CLEAR_BITS(ctx->TriangleCaps, DD_SEPERATE_SPECULAR); } else if (params[0] == (GLfloat) GL_SEPARATE_SPECULAR_COLOR) { ctx->Light.Model.ColorControl = GL_SEPARATE_SPECULAR_COLOR; SET_BITS(ctx->TriangleCaps, DD_SEPERATE_SPECULAR); } else { gl_error( ctx, GL_INVALID_ENUM, "glLightModel(param)" ); } ctx->NewState |= NEW_RASTER_OPS; break; default: gl_error( ctx, GL_INVALID_ENUM, "glLightModel" ); break; } if (ctx->Driver.LightModelfv) ctx->Driver.LightModelfv( ctx, pname, params ); ctx->NewState |= NEW_LIGHTING; } void _mesa_LightModeliv( GLenum pname, const GLint *params ) { GLfloat fparam[4]; GET_CURRENT_CONTEXT(ctx); ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glLightModeliv"); switch (pname) { case GL_LIGHT_MODEL_AMBIENT: fparam[0] = INT_TO_FLOAT( params[0] ); fparam[1] = INT_TO_FLOAT( params[1] ); fparam[2] = INT_TO_FLOAT( params[2] ); fparam[3] = INT_TO_FLOAT( params[3] ); break; case GL_LIGHT_MODEL_LOCAL_VIEWER: case GL_LIGHT_MODEL_TWO_SIDE: case GL_LIGHT_MODEL_COLOR_CONTROL: fparam[0] = (GLfloat) params[0]; break; default: /* Error will be caught later in gl_LightModelfv */ ; } _mesa_LightModelfv( pname, fparam ); } void _mesa_LightModeli( GLenum pname, GLint param ) { _mesa_LightModeliv( pname, ¶m ); } void _mesa_LightModelf( GLenum pname, GLfloat param ) { _mesa_LightModelfv( pname, ¶m ); } /********** MATERIAL **********/ /* * Given a face and pname value (ala glColorMaterial), compute a bitmask * of the targeted material values. */ GLuint gl_material_bitmask( GLcontext *ctx, GLenum face, GLenum pname, GLuint legal, const char *where ) { GLuint bitmask = 0; /* Make a bitmask indicating what material attribute(s) we're updating */ switch (pname) { case GL_EMISSION: bitmask |= FRONT_EMISSION_BIT | BACK_EMISSION_BIT; break; case GL_AMBIENT: bitmask |= FRONT_AMBIENT_BIT | BACK_AMBIENT_BIT; break; case GL_DIFFUSE: bitmask |= FRONT_DIFFUSE_BIT | BACK_DIFFUSE_BIT; break; case GL_SPECULAR: bitmask |= FRONT_SPECULAR_BIT | BACK_SPECULAR_BIT; break; case GL_SHININESS: bitmask |= FRONT_SHININESS_BIT | BACK_SHININESS_BIT; break; case GL_AMBIENT_AND_DIFFUSE: bitmask |= FRONT_AMBIENT_BIT | BACK_AMBIENT_BIT; bitmask |= FRONT_DIFFUSE_BIT | BACK_DIFFUSE_BIT; break; case GL_COLOR_INDEXES: bitmask |= FRONT_INDEXES_BIT | BACK_INDEXES_BIT; break; default: gl_error( ctx, GL_INVALID_ENUM, where ); return 0; } if (face==GL_FRONT) { bitmask &= FRONT_MATERIAL_BITS; } else if (face==GL_BACK) { bitmask &= BACK_MATERIAL_BITS; } else if (face != GL_FRONT_AND_BACK) { gl_error( ctx, GL_INVALID_ENUM, where ); return 0; } if (bitmask & ~legal) { gl_error( ctx, GL_INVALID_ENUM, where ); return 0; } return bitmask; } /* * Check if the global material has to be updated with info that was * associated with a vertex via glMaterial. * This function is used when any material values get changed between * glBegin/glEnd either by calling glMaterial() or by calling glColor() * when GL_COLOR_MATERIAL is enabled. * * src[0] is front material, src[1] is back material * * KW: Added code here to keep the precomputed variables uptodate. * This means we can use the faster shade functions when using * GL_COLOR_MATERIAL, and we can also now use the precomputed * values in the slower shading functions, which further offsets * the cost of doing this here. */ void gl_update_material( GLcontext *ctx, const struct gl_material src[2], GLuint bitmask ) { struct gl_light *light, *list = &ctx->Light.EnabledList; if (ctx->Light.ColorMaterialEnabled) bitmask &= ~ctx->Light.ColorMaterialBitmask; if (MESA_VERBOSE&VERBOSE_IMMEDIATE) fprintf(stderr, "gl_update_material, mask 0x%x\n", bitmask); if (!bitmask) return; /* update material emission */ if (bitmask & FRONT_EMISSION_BIT) { struct gl_material *mat = &ctx->Light.Material[0]; COPY_4FV( mat->Emission, src[0].Emission ); } if (bitmask & BACK_EMISSION_BIT) { struct gl_material *mat = &ctx->Light.Material[1]; COPY_4FV( mat->Emission, src[1].Emission ); } /* update material ambience */ if (bitmask & FRONT_AMBIENT_BIT) { struct gl_material *mat = &ctx->Light.Material[0]; COPY_4FV( mat->Ambient, src[0].Ambient ); foreach (light, list) { SCALE_3V( light->MatAmbient[0], light->Ambient, src[0].Ambient); } } if (bitmask & BACK_AMBIENT_BIT) { struct gl_material *mat = &ctx->Light.Material[1]; COPY_4FV( mat->Ambient, src[1].Ambient ); foreach (light, list) { SCALE_3V( light->MatAmbient[1], light->Ambient, src[1].Ambient); } } /* update BaseColor = emission + scene's ambience * material's ambience */ if (bitmask & (FRONT_EMISSION_BIT | FRONT_AMBIENT_BIT)) { struct gl_material *mat = &ctx->Light.Material[0]; COPY_3V( ctx->Light.BaseColor[0], mat->Emission ); ACC_SCALE_3V( ctx->Light.BaseColor[0], mat->Ambient, ctx->Light.Model.Ambient ); } if (bitmask & (BACK_EMISSION_BIT | BACK_AMBIENT_BIT)) { struct gl_material *mat = &ctx->Light.Material[1]; COPY_3V( ctx->Light.BaseColor[1], mat->Emission ); ACC_SCALE_3V( ctx->Light.BaseColor[1], mat->Ambient, ctx->Light.Model.Ambient ); } /* update material diffuse values */ if (bitmask & FRONT_DIFFUSE_BIT) { struct gl_material *mat = &ctx->Light.Material[0]; GLfloat tmp[4]; SUB_3V( tmp, src[0].Diffuse, mat->Diffuse ); foreach (light, list) { ACC_SCALE_3V( light->MatDiffuse[0], light->Diffuse, tmp ); } COPY_4FV( mat->Diffuse, src[0].Diffuse ); FLOAT_COLOR_TO_UBYTE_COLOR(ctx->Light.BaseAlpha[0], mat->Diffuse[3]); } if (bitmask & BACK_DIFFUSE_BIT) { struct gl_material *mat = &ctx->Light.Material[1]; GLfloat tmp[4]; SUB_3V( tmp, src[1].Diffuse, mat->Diffuse ); foreach (light, list) { ACC_SCALE_3V( light->MatDiffuse[1], light->Diffuse, tmp ); } COPY_4FV( mat->Diffuse, src[1].Diffuse ); FLOAT_COLOR_TO_UBYTE_COLOR(ctx->Light.BaseAlpha[1], mat->Diffuse[3]); } /* update material specular values */ if (bitmask & FRONT_SPECULAR_BIT) { struct gl_material *mat = &ctx->Light.Material[0]; GLfloat tmp[4]; SUB_3V( tmp, src[0].Specular, mat->Specular ); foreach (light, list) { if (light->Flags & LIGHT_SPECULAR) { ACC_SCALE_3V( light->MatSpecular[0], light->Specular, tmp ); light->IsMatSpecular[0] = (LEN_SQUARED_3FV(light->MatSpecular[0]) > 1e-16); } } COPY_4FV( mat->Specular, src[0].Specular ); } if (bitmask & BACK_SPECULAR_BIT) { struct gl_material *mat = &ctx->Light.Material[1]; GLfloat tmp[4]; SUB_3V( tmp, src[1].Specular, mat->Specular ); foreach (light, list) { if (light->Flags & LIGHT_SPECULAR) { ACC_SCALE_3V( light->MatSpecular[1], light->Specular, tmp ); light->IsMatSpecular[1] = (LEN_SQUARED_3FV(light->MatSpecular[1]) > 1e-16); } } COPY_4FV( mat->Specular, src[1].Specular ); } if (bitmask & FRONT_SHININESS_BIT) { GLfloat shininess = ctx->Light.Material[0].Shininess = src[0].Shininess; gl_compute_shine_table( ctx, 0, shininess ); gl_compute_shine_table( ctx, 2, shininess * .5 ); } if (bitmask & BACK_SHININESS_BIT) { GLfloat shininess = ctx->Light.Material[1].Shininess = src[1].Shininess; gl_compute_shine_table( ctx, 1, shininess ); gl_compute_shine_table( ctx, 3, shininess * .5 ); } if (bitmask & FRONT_INDEXES_BIT) { ctx->Light.Material[0].AmbientIndex = src[0].AmbientIndex; ctx->Light.Material[0].DiffuseIndex = src[0].DiffuseIndex; ctx->Light.Material[0].SpecularIndex = src[0].SpecularIndex; } if (bitmask & BACK_INDEXES_BIT) { ctx->Light.Material[1].AmbientIndex = src[1].AmbientIndex; ctx->Light.Material[1].DiffuseIndex = src[1].DiffuseIndex; ctx->Light.Material[1].SpecularIndex = src[1].SpecularIndex; } if (0) { struct gl_material *mat = &ctx->Light.Material[0]; fprintf(stderr, "update_mat emission : %f %f %f\n", mat->Emission[0], mat->Emission[1], mat->Emission[2]); fprintf(stderr, "update_mat specular : %f %f %f\n", mat->Specular[0], mat->Specular[1], mat->Specular[2]); fprintf(stderr, "update_mat diffuse : %f %f %f\n", mat->Diffuse[0], mat->Diffuse[1], mat->Diffuse[2]); fprintf(stderr, "update_mat ambient : %f %f %f\n", mat->Ambient[0], mat->Ambient[1], mat->Ambient[2]); } } /* * Update the current materials from the given rgba color * according to the bitmask in ColorMaterialBitmask, which is * set by glColorMaterial(). */ void gl_update_color_material( GLcontext *ctx, const GLubyte rgba[4] ) { struct gl_light *light, *list = &ctx->Light.EnabledList; GLuint bitmask = ctx->Light.ColorMaterialBitmask; GLfloat color[4]; UBYTE_RGBA_TO_FLOAT_RGBA( color, rgba ); if (MESA_VERBOSE&VERBOSE_IMMEDIATE) fprintf(stderr, "gl_update_color_material, mask 0x%x\n", bitmask); /* update emissive colors */ if (bitmask & FRONT_EMISSION_BIT) { struct gl_material *mat = &ctx->Light.Material[0]; COPY_4FV( mat->Emission, color ); } if (bitmask & BACK_EMISSION_BIT) { struct gl_material *mat = &ctx->Light.Material[1]; COPY_4FV( mat->Emission, color ); } /* update light->MatAmbient = light's ambient * material's ambient */ if (bitmask & FRONT_AMBIENT_BIT) { struct gl_material *mat = &ctx->Light.Material[0]; foreach (light, list) { SCALE_3V( light->MatAmbient[0], light->Ambient, color); } COPY_4FV( mat->Ambient, color ); } if (bitmask & BACK_AMBIENT_BIT) { struct gl_material *mat = &ctx->Light.Material[1]; foreach (light, list) { SCALE_3V( light->MatAmbient[1], light->Ambient, color); } COPY_4FV( mat->Ambient, color ); } /* update BaseColor = emission + scene's ambience * material's ambience */ if (bitmask & (FRONT_EMISSION_BIT | FRONT_AMBIENT_BIT)) { struct gl_material *mat = &ctx->Light.Material[0]; COPY_3V( ctx->Light.BaseColor[0], mat->Emission ); ACC_SCALE_3V( ctx->Light.BaseColor[0], mat->Ambient, ctx->Light.Model.Ambient ); } if (bitmask & (BACK_EMISSION_BIT | BACK_AMBIENT_BIT)) { struct gl_material *mat = &ctx->Light.Material[1]; COPY_3V( ctx->Light.BaseColor[1], mat->Emission ); ACC_SCALE_3V( ctx->Light.BaseColor[1], mat->Ambient, ctx->Light.Model.Ambient ); } /* update light->MatDiffuse = light's diffuse * material's diffuse */ if (bitmask & FRONT_DIFFUSE_BIT) { struct gl_material *mat = &ctx->Light.Material[0]; GLfloat tmp[4]; SUB_3V( tmp, color, mat->Diffuse ); foreach (light, list) { ACC_SCALE_3V( light->MatDiffuse[0], light->Diffuse, tmp ); } COPY_4FV( mat->Diffuse, color ); FLOAT_COLOR_TO_UBYTE_COLOR(ctx->Light.BaseAlpha[0], mat->Diffuse[3]); } if (bitmask & BACK_DIFFUSE_BIT) { struct gl_material *mat = &ctx->Light.Material[1]; GLfloat tmp[4]; SUB_3V( tmp, color, mat->Diffuse ); foreach (light, list) { ACC_SCALE_3V( light->MatDiffuse[1], light->Diffuse, tmp ); } COPY_4FV( mat->Diffuse, color ); FLOAT_COLOR_TO_UBYTE_COLOR(ctx->Light.BaseAlpha[1], mat->Diffuse[3]); } /* update light->MatSpecular = light's specular * material's specular */ if (bitmask & FRONT_SPECULAR_BIT) { struct gl_material *mat = &ctx->Light.Material[0]; GLfloat tmp[4]; SUB_3V( tmp, color, mat->Specular ); foreach (light, list) { if (light->Flags & LIGHT_SPECULAR) { ACC_SCALE_3V( light->MatSpecular[0], light->Specular, tmp ); light->IsMatSpecular[0] = (LEN_SQUARED_3FV(light->MatSpecular[0]) > 1e-16); } } COPY_4FV( mat->Specular, color ); } if (bitmask & BACK_SPECULAR_BIT) { struct gl_material *mat = &ctx->Light.Material[1]; GLfloat tmp[4]; SUB_3V( tmp, color, mat->Specular ); foreach (light, list) { if (light->Flags & LIGHT_SPECULAR) { ACC_SCALE_3V( light->MatSpecular[1], light->Specular, tmp ); light->IsMatSpecular[1] = (LEN_SQUARED_3FV(light->MatSpecular[1]) > 1e-16); } } COPY_4FV( mat->Specular, color ); } if (0) { struct gl_material *mat = &ctx->Light.Material[0]; fprintf(stderr, "update_color_mat emission : %f %f %f\n", mat->Emission[0], mat->Emission[1], mat->Emission[2]); fprintf(stderr, "update_color_mat specular : %f %f %f\n", mat->Specular[0], mat->Specular[1], mat->Specular[2]); fprintf(stderr, "update_color_mat diffuse : %f %f %f\n", mat->Diffuse[0], mat->Diffuse[1], mat->Diffuse[2]); fprintf(stderr, "update_color_mat ambient : %f %f %f\n", mat->Ambient[0], mat->Ambient[1], mat->Ambient[2]); } } void _mesa_ColorMaterial( GLenum face, GLenum mode ) { GET_CURRENT_CONTEXT(ctx); GLuint bitmask; GLuint legal = (FRONT_EMISSION_BIT | BACK_EMISSION_BIT | FRONT_SPECULAR_BIT | BACK_SPECULAR_BIT | FRONT_DIFFUSE_BIT | BACK_DIFFUSE_BIT | FRONT_AMBIENT_BIT | BACK_AMBIENT_BIT); ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glColorMaterial"); if (MESA_VERBOSE&VERBOSE_API) fprintf(stderr, "glColorMaterial %s %s\n", gl_lookup_enum_by_nr(face), gl_lookup_enum_by_nr(mode)); bitmask = gl_material_bitmask( ctx, face, mode, legal, "glColorMaterial" ); if (bitmask != 0) { ctx->Light.ColorMaterialBitmask = bitmask; ctx->Light.ColorMaterialFace = face; ctx->Light.ColorMaterialMode = mode; } if (ctx->Light.ColorMaterialEnabled) gl_update_color_material( ctx, ctx->Current.ByteColor ); } void _mesa_Materialf( GLenum face, GLenum pname, GLfloat param ) { _mesa_Materialfv( face, pname, ¶m ); } /* KW: This is now called directly (ie by name) from the glMaterial* * API functions. */ void _mesa_Materialfv( GLenum face, GLenum pname, const GLfloat *params ) { GET_CURRENT_CONTEXT(ctx); struct immediate *IM; struct gl_material *mat; GLuint bitmask; GLuint count; bitmask = gl_material_bitmask( ctx, face, pname, ~0, "gl_Materialfv" ); if (bitmask == 0) return; IM = ctx->input; count = IM->Count; if (!IM->Material) { IM->Material = (struct gl_material (*)[2]) MALLOC( sizeof(struct gl_material) * VB_SIZE * 2 ); IM->MaterialMask = (GLuint *) MALLOC( sizeof(GLuint) * VB_SIZE ); } if (!(IM->Flag[count] & VERT_MATERIAL)) { IM->Flag[count] |= VERT_MATERIAL; IM->MaterialMask[count] = 0; } IM->MaterialMask[count] |= bitmask; mat = IM->Material[count]; if (bitmask & FRONT_AMBIENT_BIT) { COPY_4FV( mat[0].Ambient, params ); } if (bitmask & BACK_AMBIENT_BIT) { COPY_4FV( mat[1].Ambient, params ); } if (bitmask & FRONT_DIFFUSE_BIT) { COPY_4FV( mat[0].Diffuse, params ); } if (bitmask & BACK_DIFFUSE_BIT) { COPY_4FV( mat[1].Diffuse, params ); } if (bitmask & FRONT_SPECULAR_BIT) { COPY_4FV( mat[0].Specular, params ); } if (bitmask & BACK_SPECULAR_BIT) { COPY_4FV( mat[1].Specular, params ); } if (bitmask & FRONT_EMISSION_BIT) { COPY_4FV( mat[0].Emission, params ); } if (bitmask & BACK_EMISSION_BIT) { COPY_4FV( mat[1].Emission, params ); } if (bitmask & FRONT_SHININESS_BIT) { GLfloat shininess = CLAMP( params[0], 0.0F, 128.0F ); mat[0].Shininess = shininess; } if (bitmask & BACK_SHININESS_BIT) { GLfloat shininess = CLAMP( params[0], 0.0F, 128.0F ); mat[1].Shininess = shininess; } if (bitmask & FRONT_INDEXES_BIT) { mat[0].AmbientIndex = params[0]; mat[0].DiffuseIndex = params[1]; mat[0].SpecularIndex = params[2]; } if (bitmask & BACK_INDEXES_BIT) { mat[1].AmbientIndex = params[0]; mat[1].DiffuseIndex = params[1]; mat[1].SpecularIndex = params[2]; } } void _mesa_Materiali(GLenum face, GLenum pname, GLint param ) { _mesa_Materialiv(face, pname, ¶m); } void _mesa_Materialiv(GLenum face, GLenum pname, const GLint *params ) { GLfloat fparam[4]; switch (pname) { case GL_AMBIENT: case GL_DIFFUSE: case GL_SPECULAR: case GL_EMISSION: case GL_AMBIENT_AND_DIFFUSE: fparam[0] = INT_TO_FLOAT( params[0] ); fparam[1] = INT_TO_FLOAT( params[1] ); fparam[2] = INT_TO_FLOAT( params[2] ); fparam[3] = INT_TO_FLOAT( params[3] ); break; case GL_SHININESS: fparam[0] = (GLfloat) params[0]; break; case GL_COLOR_INDEXES: fparam[0] = (GLfloat) params[0]; fparam[1] = (GLfloat) params[1]; fparam[2] = (GLfloat) params[2]; break; default: /* Error will be caught later in gl_Materialfv */ ; } _mesa_Materialfv(face, pname, fparam); } void _mesa_GetMaterialfv( GLenum face, GLenum pname, GLfloat *params ) { GET_CURRENT_CONTEXT(ctx); GLuint f; ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glGetMaterialfv"); if (face==GL_FRONT) { f = 0; } else if (face==GL_BACK) { f = 1; } else { gl_error( ctx, GL_INVALID_ENUM, "glGetMaterialfv(face)" ); return; } switch (pname) { case GL_AMBIENT: COPY_4FV( params, ctx->Light.Material[f].Ambient ); break; case GL_DIFFUSE: COPY_4FV( params, ctx->Light.Material[f].Diffuse ); break; case GL_SPECULAR: COPY_4FV( params, ctx->Light.Material[f].Specular ); break; case GL_EMISSION: COPY_4FV( params, ctx->Light.Material[f].Emission ); break; case GL_SHININESS: *params = ctx->Light.Material[f].Shininess; break; case GL_COLOR_INDEXES: params[0] = ctx->Light.Material[f].AmbientIndex; params[1] = ctx->Light.Material[f].DiffuseIndex; params[2] = ctx->Light.Material[f].SpecularIndex; break; default: gl_error( ctx, GL_INVALID_ENUM, "glGetMaterialfv(pname)" ); } } void _mesa_GetMaterialiv( GLenum face, GLenum pname, GLint *params ) { GET_CURRENT_CONTEXT(ctx); GLuint f; ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx, "glGetMaterialiv"); if (face==GL_FRONT) { f = 0; } else if (face==GL_BACK) { f = 1; } else { gl_error( ctx, GL_INVALID_ENUM, "glGetMaterialiv(face)" ); return; } switch (pname) { case GL_AMBIENT: params[0] = FLOAT_TO_INT( ctx->Light.Material[f].Ambient[0] ); params[1] = FLOAT_TO_INT( ctx->Light.Material[f].Ambient[1] ); params[2] = FLOAT_TO_INT( ctx->Light.Material[f].Ambient[2] ); params[3] = FLOAT_TO_INT( ctx->Light.Material[f].Ambient[3] ); break; case GL_DIFFUSE: params[0] = FLOAT_TO_INT( ctx->Light.Material[f].Diffuse[0] ); params[1] = FLOAT_TO_INT( ctx->Light.Material[f].Diffuse[1] ); params[2] = FLOAT_TO_INT( ctx->Light.Material[f].Diffuse[2] ); params[3] = FLOAT_TO_INT( ctx->Light.Material[f].Diffuse[3] ); break; case GL_SPECULAR: params[0] = FLOAT_TO_INT( ctx->Light.Material[f].Specular[0] ); params[1] = FLOAT_TO_INT( ctx->Light.Material[f].Specular[1] ); params[2] = FLOAT_TO_INT( ctx->Light.Material[f].Specular[2] ); params[3] = FLOAT_TO_INT( ctx->Light.Material[f].Specular[3] ); break; case GL_EMISSION: params[0] = FLOAT_TO_INT( ctx->Light.Material[f].Emission[0] ); params[1] = FLOAT_TO_INT( ctx->Light.Material[f].Emission[1] ); params[2] = FLOAT_TO_INT( ctx->Light.Material[f].Emission[2] ); params[3] = FLOAT_TO_INT( ctx->Light.Material[f].Emission[3] ); break; case GL_SHININESS: *params = ROUNDF( ctx->Light.Material[f].Shininess ); break; case GL_COLOR_INDEXES: params[0] = ROUNDF( ctx->Light.Material[f].AmbientIndex ); params[1] = ROUNDF( ctx->Light.Material[f].DiffuseIndex ); params[2] = ROUNDF( ctx->Light.Material[f].SpecularIndex ); break; default: gl_error( ctx, GL_INVALID_ENUM, "glGetMaterialfv(pname)" ); } } /**********************************************************************/ /***** Lighting computation *****/ /**********************************************************************/ /* * Notes: * When two-sided lighting is enabled we compute the color (or index) * for both the front and back side of the primitive. Then, when the * orientation of the facet is later learned, we can determine which * color (or index) to use for rendering. * * KW: We now know orientation in advance and only shade for * the side or sides which are actually required. * * Variables: * n = normal vector * V = vertex position * P = light source position * Pe = (0,0,0,1) * * Precomputed: * IF P[3]==0 THEN * // light at infinity * IF local_viewer THEN * VP_inf_norm = unit vector from V to P // Precompute * ELSE * // eye at infinity * h_inf_norm = Normalize( VP + <0,0,1> ) // Precompute * ENDIF * ENDIF * * Functions: * Normalize( v ) = normalized vector v * Magnitude( v ) = length of vector v */ /* * Whenever the spotlight exponent for a light changes we must call * this function to recompute the exponent lookup table. */ void gl_compute_spot_exp_table( struct gl_light *l ) { GLint i; GLdouble exponent = l->SpotExponent; GLdouble tmp = 0; GLint clamp = 0; l->SpotExpTable[0][0] = 0.0; for (i = EXP_TABLE_SIZE - 1; i > 0 ;i--) { if (clamp == 0) { tmp = pow(i / (GLdouble) (EXP_TABLE_SIZE - 1), exponent); if (tmp < FLT_MIN * 100.0) { tmp = 0.0; clamp = 1; } } l->SpotExpTable[i][0] = tmp; } for (i = 0; i < EXP_TABLE_SIZE - 1; i++) { l->SpotExpTable[i][1] = l->SpotExpTable[i+1][0] - l->SpotExpTable[i][0]; } l->SpotExpTable[EXP_TABLE_SIZE-1][1] = 0.0; } /* Calculate a new shine table. Doing this here saves a branch in * lighting, and the cost of doing it early may be partially offset * by keeping a MRU cache of shine tables for various shine values. */ static void compute_shine_table( struct gl_shine_tab *tab, GLfloat shininess ) { GLint i; GLfloat *m = tab->tab; m[0] = 0.0; if (shininess == 0.0) { for (i = 1 ; i <= SHINE_TABLE_SIZE ; i++) m[i] = 1.0; } else { for (i = 1 ; i < SHINE_TABLE_SIZE ; i++) { GLdouble t = pow(i / (GLfloat) (SHINE_TABLE_SIZE - 1), shininess); if (t > 1e-20) m[i] = t; else m[i] = 0.0; } m[SHINE_TABLE_SIZE] = 1.0; } tab->shininess = shininess; } void gl_compute_shine_table( GLcontext *ctx, GLuint i, GLfloat shininess ) { #define DISTSQR(a,b) ((a-b)*(a-b)) struct gl_shine_tab *list = ctx->ShineTabList; struct gl_shine_tab *s; foreach(s, list) if ( DISTSQR(s->shininess, shininess) < 1e-4 ) break; if (s == list) { foreach(s, list) if (s->refcount == 0) break; compute_shine_table( s, shininess ); } ctx->ShineTable[i]->refcount--; ctx->ShineTable[i] = s; move_to_tail( list, s ); s->refcount++; #undef DISTSQR } #if 0 static void gl_reinit_light_attrib( GLcontext *ctx, struct gl_light_attrib *l ) { GLuint i; if (ctx->ShineTable[0]->shininess != l->Material[0].Shininess) { gl_compute_shine_table( ctx, 0, l->Material[0].Shininess ); gl_compute_shine_table( ctx, 2, l->Material[0].Shininess * .5 ); } if (ctx->ShineTable[1]->shininess != l->Material[1].Shininess) { gl_compute_shine_table( ctx, 1, l->Material[1].Shininess ); gl_compute_shine_table( ctx, 3, l->Material[1].Shininess * .5 ); } make_empty_list( &l->EnabledList ); for (i = 0 ; i < MAX_LIGHTS ; i++) { if (l->Light[i].Enabled) insert_at_tail( &l->EnabledList, &l->Light[i] ); } } #endif /* * Examine current lighting parameters to determine if the optimized lighting * function can be used. * Also, precompute some lighting values such as the products of light * source and material ambient, diffuse and specular coefficients. */ void gl_update_lighting( GLcontext *ctx ) { struct gl_light *light; ctx->Light.Flags = 0; foreach(light, &ctx->Light.EnabledList) { light->Flags = 0; if (light->EyePosition[3] != 0.0F) light->Flags |= LIGHT_POSITIONAL; if (LEN_SQUARED_3FV(light->Specular) > 1e-16) light->Flags |= LIGHT_SPECULAR; if (light->SpotCutoff != 180.0F) light->Flags |= LIGHT_SPOT; ctx->Light.Flags |= light->Flags; } ctx->Light.NeedVertices = ((ctx->Light.Flags & (LIGHT_POSITIONAL|LIGHT_SPOT)) || (ctx->Light.Model.ColorControl == GL_SEPARATE_SPECULAR_COLOR) || (ctx->Light.Model.LocalViewer && (ctx->Light.Flags & LIGHT_SPECULAR))); /* Precompute some shading values. */ if (ctx->Visual->RGBAflag) { GLuint sides = ((ctx->TriangleCaps & DD_TRI_LIGHT_TWOSIDE) ? 2 : 1); GLuint side; for (side=0; side < sides; side++) { struct gl_material *mat = &ctx->Light.Material[side]; COPY_3V(ctx->Light.BaseColor[side], mat->Emission); ACC_SCALE_3V(ctx->Light.BaseColor[side], ctx->Light.Model.Ambient, mat->Ambient); FLOAT_COLOR_TO_UBYTE_COLOR(ctx->Light.BaseAlpha[side], ctx->Light.Material[side].Diffuse[3] ); } foreach (light, &ctx->Light.EnabledList) { for (side=0; side< sides; side++) { const struct gl_material *mat = &ctx->Light.Material[side]; SCALE_3V( light->MatDiffuse[side], light->Diffuse, mat->Diffuse ); SCALE_3V( light->MatAmbient[side], light->Ambient, mat->Ambient ); if (light->Flags & LIGHT_SPECULAR) { SCALE_3V( light->MatSpecular[side], light->Specular, mat->Specular); light->IsMatSpecular[side] = (LEN_SQUARED_3FV(light->MatSpecular[side]) > 1e-16); } else light->IsMatSpecular[side] = 0; } } } else { static const GLfloat ci[3] = { .30, .59, .11 }; foreach(light, &ctx->Light.EnabledList) { light->dli = DOT3(ci, light->Diffuse); light->sli = DOT3(ci, light->Specular); } } } /* Need to seriously restrict the circumstances under which these * calc's are performed. */ void gl_compute_light_positions( GLcontext *ctx ) { struct gl_light *light; if (1 /*ctx->Light.NeedVertices && !ctx->Light.Model.LocalViewer*/) { static const GLfloat eye_z[3] = { 0, 0, 1 }; if (ctx->NeedEyeCoords) { COPY_3V( ctx->EyeZDir, eye_z ); } else { TRANSFORM_NORMAL( ctx->EyeZDir, eye_z, ctx->ModelView.m ); } } foreach (light, &ctx->Light.EnabledList) { if (ctx->NeedEyeCoords) { COPY_4FV( light->Position, light->EyePosition ); } else { TRANSFORM_POINT( light->Position, ctx->ModelView.inv, light->EyePosition ); } if (!(light->Flags & LIGHT_POSITIONAL)) { /* VP (VP) = Normalize( Position ) */ COPY_3V( light->VP_inf_norm, light->Position ); NORMALIZE_3FV( light->VP_inf_norm ); if (!ctx->Light.Model.LocalViewer) { /* h_inf_norm = Normalize( V_to_P + <0,0,1> ) */ ADD_3V( light->h_inf_norm, light->VP_inf_norm, ctx->EyeZDir); NORMALIZE_3FV( light->h_inf_norm ); } light->VP_inf_spot_attenuation = 1.0; } if (light->Flags & LIGHT_SPOT) { if (ctx->NeedEyeNormals) { COPY_3V( light->NormDirection, light->EyeDirection ); } else { TRANSFORM_NORMAL( light->NormDirection, light->EyeDirection, ctx->ModelView.m); } NORMALIZE_3FV( light->NormDirection ); /* Unlikely occurrance? */ if (!(light->Flags & LIGHT_POSITIONAL)) { GLfloat PV_dot_dir = - DOT3(light->VP_inf_norm, light->NormDirection); if (PV_dot_dir > light->CosCutoff) { double x = PV_dot_dir * (EXP_TABLE_SIZE-1); int k = (int) x; light->VP_inf_spot_attenuation = (light->SpotExpTable[k][0] + (x-k)*light->SpotExpTable[k][1]); } else { light->VP_inf_spot_attenuation = 0; } } } } } void gl_update_normal_transform( GLcontext *ctx ) { GLuint new_flag = 0; normal_func *last = ctx->NormalTransform; ctx->vb_rescale_factor = 1.0; if (ctx->NeedEyeCoords) { if (ctx->NeedNormals) { GLuint transform = NORM_TRANSFORM_NO_ROT; if (ctx->ModelView.flags & (MAT_FLAG_GENERAL | MAT_FLAG_ROTATION | MAT_FLAG_GENERAL_3D | MAT_FLAG_PERSPECTIVE)) transform = NORM_TRANSFORM; new_flag = ctx->NewState & NEW_MODELVIEW; ctx->vb_rescale_factor = ctx->rescale_factor; if (ctx->Transform.Normalize) { ctx->NormalTransform = gl_normal_tab[transform | NORM_NORMALIZE]; } else if (ctx->Transform.RescaleNormals && ctx->rescale_factor != 1.0) { ctx->NormalTransform = gl_normal_tab[transform | NORM_RESCALE]; } else { ctx->NormalTransform = gl_normal_tab[transform]; } } else { ctx->NormalTransform = 0; } } else { if (ctx->NeedNormals) { ctx->vb_rescale_factor = 1.0/ctx->rescale_factor; if (ctx->Transform.Normalize) { ctx->NormalTransform = gl_normal_tab[NORM_NORMALIZE]; } else if (!ctx->Transform.RescaleNormals && ctx->rescale_factor != 1.0) { ctx->NormalTransform = gl_normal_tab[NORM_RESCALE]; } else { ctx->NormalTransform = 0; } } else { ctx->NormalTransform = 0; } } if (last != ctx->NormalTransform || new_flag) ctx->NewState |= NEW_NORMAL_TRANSFORM; }