/* ** License Applicability. Except to the extent portions of this file are ** made subject to an alternative license as permitted in the SGI Free ** Software License B, Version 1.1 (the "License"), the contents of this ** file are subject only to the provisions of the License. You may not use ** this file except in compliance with the License. You may obtain a copy ** of the License at Silicon Graphics, Inc., attn: Legal Services, 1600 ** Amphitheatre Parkway, Mountain View, CA 94043-1351, or at: ** ** http://oss.sgi.com/projects/FreeB ** ** Note that, as provided in the License, the Software is distributed on an ** "AS IS" basis, with ALL EXPRESS AND IMPLIED WARRANTIES AND CONDITIONS ** DISCLAIMED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES AND ** CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A ** PARTICULAR PURPOSE, AND NON-INFRINGEMENT. ** ** Original Code. The Original Code is: OpenGL Sample Implementation, ** Version 1.2.1, released January 26, 2000, developed by Silicon Graphics, ** Inc. The Original Code is Copyright (c) 1991-2000 Silicon Graphics, Inc. ** Copyright in any portions created by third parties is as indicated ** elsewhere herein. All Rights Reserved. ** ** Additional Notice Provisions: The application programming interfaces ** established by SGI in conjunction with the Original Code are The ** OpenGL(R) Graphics System: A Specification (Version 1.2.1), released ** April 1, 1999; The OpenGL(R) Graphics System Utility Library (Version ** 1.3), released November 4, 1998; and OpenGL(R) Graphics with the X ** Window System(R) (Version 1.3), released October 19, 1998. This software ** was created using the OpenGL(R) version 1.2.1 Sample Implementation ** published by SGI, but has not been independently verified as being ** compliant with the OpenGL(R) version 1.2.1 Specification. ** */ /* ** Author: Eric Veach, July 1994. ** ** $Date$ $Revision$ ** $Header: //depot/main/gfx/lib/glu/libtess/normal.c#5 $ */ #include "gluos.h" #include "mesh.h" #include "tess.h" #include "normal.h" #include #include #define TRUE 1 #define FALSE 0 #define Dot(u,v) (u[0]*v[0] + u[1]*v[1] + u[2]*v[2]) static void Normalize( GLdouble v[3] ) { GLdouble len = v[0]*v[0] + v[1]*v[1] + v[2]*v[2]; assert( len > 0 ); len = sqrt( len ); v[0] /= len; v[1] /= len; v[2] /= len; } #define ABS(x) ((x) < 0 ? -(x) : (x)) static int LongAxis( GLdouble v[3] ) { int i = 0; if( ABS(v[1]) > ABS(v[0]) ) { i = 1; } if( ABS(v[2]) > ABS(v[i]) ) { i = 2; } return i; } static void ComputeNormal( GLUtesselator *tess, GLdouble norm[3] ) { GLUvertex *v, *v1, *v2; GLdouble c, tLen2, maxLen2; GLdouble maxVal[3], minVal[3], d1[3], d2[3], tNorm[3]; GLUvertex *maxVert[3], *minVert[3]; GLUvertex *vHead = &tess->mesh->vHead; int i; maxVal[0] = maxVal[1] = maxVal[2] = -2 * GLU_TESS_MAX_COORD; minVal[0] = minVal[1] = minVal[2] = 2 * GLU_TESS_MAX_COORD; for( v = vHead->next; v != vHead; v = v->next ) { for( i = 0; i < 3; ++i ) { c = v->coords[i]; if( c < minVal[i] ) { minVal[i] = c; minVert[i] = v; } if( c > maxVal[i] ) { maxVal[i] = c; maxVert[i] = v; } } } /* Find two vertices separated by at least 1/sqrt(3) of the maximum * distance between any two vertices */ i = 0; if( maxVal[1] - minVal[1] > maxVal[0] - minVal[0] ) { i = 1; } if( maxVal[2] - minVal[2] > maxVal[i] - minVal[i] ) { i = 2; } if( minVal[i] >= maxVal[i] ) { /* All vertices are the same -- normal doesn't matter */ norm[0] = 0; norm[1] = 0; norm[2] = 1; return; } /* Look for a third vertex which forms the triangle with maximum area * (Length of normal == twice the triangle area) */ maxLen2 = 0; v1 = minVert[i]; v2 = maxVert[i]; d1[0] = v1->coords[0] - v2->coords[0]; d1[1] = v1->coords[1] - v2->coords[1]; d1[2] = v1->coords[2] - v2->coords[2]; for( v = vHead->next; v != vHead; v = v->next ) { d2[0] = v->coords[0] - v2->coords[0]; d2[1] = v->coords[1] - v2->coords[1]; d2[2] = v->coords[2] - v2->coords[2]; tNorm[0] = d1[1]*d2[2] - d1[2]*d2[1]; tNorm[1] = d1[2]*d2[0] - d1[0]*d2[2]; tNorm[2] = d1[0]*d2[1] - d1[1]*d2[0]; tLen2 = tNorm[0]*tNorm[0] + tNorm[1]*tNorm[1] + tNorm[2]*tNorm[2]; if( tLen2 > maxLen2 ) { maxLen2 = tLen2; norm[0] = tNorm[0]; norm[1] = tNorm[1]; norm[2] = tNorm[2]; } } if( maxLen2 <= 0 ) { /* All points lie on a single line -- any decent normal will do */ norm[0] = norm[1] = norm[2] = 0; norm[LongAxis(d1)] = 1; } } static void CheckOrientation( GLUtesselator *tess ) { GLdouble area; GLUface *f, *fHead = &tess->mesh->fHead; GLUvertex *v, *vHead = &tess->mesh->vHead; GLUhalfEdge *e; /* When we compute the normal automatically, we choose the orientation * so that the the sum of the signed areas of all contours is non-negative. */ area = 0; for( f = fHead->next; f != fHead; f = f->next ) { e = f->anEdge; if( e->winding <= 0 ) continue; do { area += (e->Org->s - e->Dst->s) * (e->Org->t + e->Dst->t); e = e->Lnext; } while( e != f->anEdge ); } if( area < 0 ) { /* Reverse the orientation by flipping all the t-coordinates */ for( v = vHead->next; v != vHead; v = v->next ) { v->t = - v->t; } tess->tUnit[0] = - tess->tUnit[0]; tess->tUnit[1] = - tess->tUnit[1]; tess->tUnit[2] = - tess->tUnit[2]; } } #ifdef FOR_TRITE_TEST_PROGRAM #include extern int RandomSweep; #define S_UNIT_X (RandomSweep ? (2*drand48()-1) : 1.0) #define S_UNIT_Y (RandomSweep ? (2*drand48()-1) : 0.0) #else #if defined(SLANTED_SWEEP) /* The "feature merging" is not intended to be complete. There are * special cases where edges are nearly parallel to the sweep line * which are not implemented. The algorithm should still behave * robustly (ie. produce a reasonable tesselation) in the presence * of such edges, however it may miss features which could have been * merged. We could minimize this effect by choosing the sweep line * direction to be something unusual (ie. not parallel to one of the * coordinate axes). */ #define S_UNIT_X 0.50941539564955385 /* Pre-normalized */ #define S_UNIT_Y 0.86052074622010633 #else #define S_UNIT_X 1.0 #define S_UNIT_Y 0.0 #endif #endif /* Determine the polygon normal and project vertices onto the plane * of the polygon. */ void __gl_projectPolygon( GLUtesselator *tess ) { GLUvertex *v, *vHead = &tess->mesh->vHead; GLdouble w, norm[3]; GLdouble *sUnit, *tUnit; int i, computedNormal = FALSE; norm[0] = tess->normal[0]; norm[1] = tess->normal[1]; norm[2] = tess->normal[2]; if( norm[0] == 0 && norm[1] == 0 && norm[2] == 0 ) { ComputeNormal( tess, norm ); computedNormal = TRUE; } sUnit = tess->sUnit; tUnit = tess->tUnit; i = LongAxis( norm ); #if defined(FOR_TRITE_TEST_PROGRAM) || defined(TRUE_PROJECT) /* Choose the initial sUnit vector to be approximately perpendicular * to the normal. */ Normalize( norm ); sUnit[i] = 0; sUnit[(i+1)%3] = S_UNIT_X; sUnit[(i+2)%3] = S_UNIT_Y; /* Now make it exactly perpendicular */ w = Dot( sUnit, norm ); sUnit[0] -= w * norm[0]; sUnit[1] -= w * norm[1]; sUnit[2] -= w * norm[2]; Normalize( sUnit ); /* Choose tUnit so that (sUnit,tUnit,norm) form a right-handed frame */ tUnit[0] = norm[1]*sUnit[2] - norm[2]*sUnit[1]; tUnit[1] = norm[2]*sUnit[0] - norm[0]*sUnit[2]; tUnit[2] = norm[0]*sUnit[1] - norm[1]*sUnit[0]; Normalize( tUnit ); #else /* Project perpendicular to a coordinate axis -- better numerically */ sUnit[i] = 0; sUnit[(i+1)%3] = S_UNIT_X; sUnit[(i+2)%3] = S_UNIT_Y; tUnit[i] = 0; tUnit[(i+1)%3] = (norm[i] > 0) ? -S_UNIT_Y : S_UNIT_Y; tUnit[(i+2)%3] = (norm[i] > 0) ? S_UNIT_X : -S_UNIT_X; #endif /* Project the vertices onto the sweep plane */ for( v = vHead->next; v != vHead; v = v->next ) { v->s = Dot( v->coords, sUnit ); v->t = Dot( v->coords, tUnit ); } if( computedNormal ) { CheckOrientation( tess ); } }