/* ** License Applicability. Except to the extent portions of this file are ** made subject to an alternative license as permitted in the SGI Free ** Software License B, Version 1.1 (the "License"), the contents of this ** file are subject only to the provisions of the License. You may not use ** this file except in compliance with the License. You may obtain a copy ** of the License at Silicon Graphics, Inc., attn: Legal Services, 1600 ** Amphitheatre Parkway, Mountain View, CA 94043-1351, or at: ** ** http://oss.sgi.com/projects/FreeB ** ** Note that, as provided in the License, the Software is distributed on an ** "AS IS" basis, with ALL EXPRESS AND IMPLIED WARRANTIES AND CONDITIONS ** DISCLAIMED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES AND ** CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A ** PARTICULAR PURPOSE, AND NON-INFRINGEMENT. ** ** Original Code. The Original Code is: OpenGL Sample Implementation, ** Version 1.2.1, released January 26, 2000, developed by Silicon Graphics, ** Inc. The Original Code is Copyright (c) 1991-2000 Silicon Graphics, Inc. ** Copyright in any portions created by third parties is as indicated ** elsewhere herein. All Rights Reserved. ** ** Additional Notice Provisions: The application programming interfaces ** established by SGI in conjunction with the Original Code are The ** OpenGL(R) Graphics System: A Specification (Version 1.2.1), released ** April 1, 1999; The OpenGL(R) Graphics System Utility Library (Version ** 1.3), released November 4, 1998; and OpenGL(R) Graphics with the X ** Window System(R) (Version 1.3), released October 19, 1998. This software ** was created using the OpenGL(R) version 1.2.1 Sample Implementation ** published by SGI, but has not been independently verified as being ** compliant with the OpenGL(R) version 1.2.1 Specification. ** */ /* ** Author: Eric Veach, July 1994. ** */ /* $XFree86: xc/extras/ogl-sample/main/gfx/lib/glu/libtess/tess.c,v 1.2 2001/04/03 02:18:40 dawes Exp $ */ #include "gluos.h" #include #include #include #include "memalloc.h" #include "tess.h" #include "mesh.h" #include "normal.h" #include "sweep.h" #include "tessmono.h" #include "render.h" #define GLU_TESS_DEFAULT_TOLERANCE 0.0 #define GLU_TESS_MESH 100112 /* void (*)(GLUmesh *mesh) */ #define TRUE 1 #define FALSE 0 /*ARGSUSED*/ static void GLAPIENTRY noBegin( GLenum type ) {} /*ARGSUSED*/ static void GLAPIENTRY noEdgeFlag( GLboolean boundaryEdge ) {} /*ARGSUSED*/ static void GLAPIENTRY noVertex( void *data ) {} /*ARGSUSED*/ static void GLAPIENTRY noEnd( void ) {} /*ARGSUSED*/ static void GLAPIENTRY noError( GLenum errnum ) {} /*ARGSUSED*/ static void GLAPIENTRY noCombine( GLdouble coords[3], void *data[4], GLfloat weight[4], void **dataOut ) {} /*ARGSUSED*/ static void GLAPIENTRY noMesh( GLUmesh *mesh ) {} /*ARGSUSED*/ void GLAPIENTRY __gl_noBeginData( GLenum type, void *polygonData ) {} /*ARGSUSED*/ void GLAPIENTRY __gl_noEdgeFlagData( GLboolean boundaryEdge, void *polygonData ) {} /*ARGSUSED*/ void GLAPIENTRY __gl_noVertexData( void *data, void *polygonData ) {} /*ARGSUSED*/ void GLAPIENTRY __gl_noEndData( void *polygonData ) {} /*ARGSUSED*/ void GLAPIENTRY __gl_noErrorData( GLenum errnum, void *polygonData ) {} /*ARGSUSED*/ void GLAPIENTRY __gl_noCombineData( GLdouble coords[3], void *data[4], GLfloat weight[4], void **outData, void *polygonData ) {} /* Half-edges are allocated in pairs (see mesh.c) */ typedef struct { GLUhalfEdge e, eSym; } EdgePair; #define MAX(a,b) ((a) > (b) ? (a) : (b)) #define MAX_FAST_ALLOC (MAX(sizeof(EdgePair), \ MAX(sizeof(GLUvertex),sizeof(GLUface)))) GLUtesselator * GLAPIENTRY gluNewTess( void ) { GLUtesselator *tess; /* Only initialize fields which can be changed by the api. Other fields * are initialized where they are used. */ if (memInit( MAX_FAST_ALLOC ) == 0) { return 0; /* out of memory */ } tess = (GLUtesselator *)memAlloc( sizeof( GLUtesselator )); if (tess == NULL) { return 0; /* out of memory */ } tess->state = T_DORMANT; tess->normal[0] = 0; tess->normal[1] = 0; tess->normal[2] = 0; tess->relTolerance = GLU_TESS_DEFAULT_TOLERANCE; tess->windingRule = GLU_TESS_WINDING_ODD; tess->flagBoundary = FALSE; tess->boundaryOnly = FALSE; tess->callBegin = &noBegin; tess->callEdgeFlag = &noEdgeFlag; tess->callVertex = &noVertex; tess->callEnd = &noEnd; tess->callError = &noError; tess->callCombine = &noCombine; tess->callMesh = &noMesh; tess->callBeginData= &__gl_noBeginData; tess->callEdgeFlagData= &__gl_noEdgeFlagData; tess->callVertexData= &__gl_noVertexData; tess->callEndData= &__gl_noEndData; tess->callErrorData= &__gl_noErrorData; tess->callCombineData= &__gl_noCombineData; tess->polygonData= NULL; return tess; } static void MakeDormant( GLUtesselator *tess ) { /* Return the tessellator to its original dormant state. */ if( tess->mesh != NULL ) { __gl_meshDeleteMesh( tess->mesh ); } tess->state = T_DORMANT; tess->lastEdge = NULL; tess->mesh = NULL; } #define RequireState( tess, s ) if( tess->state != s ) GotoState(tess,s) static void GotoState( GLUtesselator *tess, enum TessState newState ) { while( tess->state != newState ) { /* We change the current state one level at a time, to get to * the desired state. */ if( tess->state < newState ) { switch( tess->state ) { case T_DORMANT: CALL_ERROR_OR_ERROR_DATA( GLU_TESS_MISSING_BEGIN_POLYGON ); gluTessBeginPolygon( tess, NULL ); break; case T_IN_POLYGON: CALL_ERROR_OR_ERROR_DATA( GLU_TESS_MISSING_BEGIN_CONTOUR ); gluTessBeginContour( tess ); break; } } else { switch( tess->state ) { case T_IN_CONTOUR: CALL_ERROR_OR_ERROR_DATA( GLU_TESS_MISSING_END_CONTOUR ); gluTessEndContour( tess ); break; case T_IN_POLYGON: CALL_ERROR_OR_ERROR_DATA( GLU_TESS_MISSING_END_POLYGON ); /* gluTessEndPolygon( tess ) is too much work! */ MakeDormant( tess ); break; } } } } void GLAPIENTRY gluDeleteTess( GLUtesselator *tess ) { RequireState( tess, T_DORMANT ); memFree( tess ); } void GLAPIENTRY gluTessProperty( GLUtesselator *tess, GLenum which, GLdouble value ) { GLenum windingRule; switch( which ) { case GLU_TESS_TOLERANCE: if( value < 0.0 || value > 1.0 ) break; tess->relTolerance = value; return; case GLU_TESS_WINDING_RULE: windingRule = (GLenum) value; if( windingRule != value ) break; /* not an integer */ switch( windingRule ) { case GLU_TESS_WINDING_ODD: case GLU_TESS_WINDING_NONZERO: case GLU_TESS_WINDING_POSITIVE: case GLU_TESS_WINDING_NEGATIVE: case GLU_TESS_WINDING_ABS_GEQ_TWO: tess->windingRule = windingRule; return; default: break; } case GLU_TESS_BOUNDARY_ONLY: tess->boundaryOnly = (value != 0); return; default: CALL_ERROR_OR_ERROR_DATA( GLU_INVALID_ENUM ); return; } CALL_ERROR_OR_ERROR_DATA( GLU_INVALID_VALUE ); } /* Returns tessellator property */ void GLAPIENTRY gluGetTessProperty( GLUtesselator *tess, GLenum which, GLdouble *value ) { switch (which) { case GLU_TESS_TOLERANCE: /* tolerance should be in range [0..1] */ assert(0.0 <= tess->relTolerance && tess->relTolerance <= 1.0); *value= tess->relTolerance; break; case GLU_TESS_WINDING_RULE: assert(tess->windingRule == GLU_TESS_WINDING_ODD || tess->windingRule == GLU_TESS_WINDING_NONZERO || tess->windingRule == GLU_TESS_WINDING_POSITIVE || tess->windingRule == GLU_TESS_WINDING_NEGATIVE || tess->windingRule == GLU_TESS_WINDING_ABS_GEQ_TWO); *value= tess->windingRule; break; case GLU_TESS_BOUNDARY_ONLY: assert(tess->boundaryOnly == TRUE || tess->boundaryOnly == FALSE); *value= tess->boundaryOnly; break; default: *value= 0.0; CALL_ERROR_OR_ERROR_DATA( GLU_INVALID_ENUM ); break; } } /* gluGetTessProperty() */ void GLAPIENTRY gluTessNormal( GLUtesselator *tess, GLdouble x, GLdouble y, GLdouble z ) { tess->normal[0] = x; tess->normal[1] = y; tess->normal[2] = z; } void GLAPIENTRY gluTessCallback( GLUtesselator *tess, GLenum which, GLvoid (GLAPIENTRY *fn)(GLvoid)) { switch( which ) { case GLU_TESS_BEGIN: tess->callBegin = (fn == NULL) ? &noBegin : (void (GLAPIENTRY *)(GLenum)) fn; return; case GLU_TESS_BEGIN_DATA: tess->callBeginData = (fn == NULL) ? &__gl_noBeginData : (void (GLAPIENTRY *)(GLenum, void *)) fn; return; case GLU_TESS_EDGE_FLAG: tess->callEdgeFlag = (fn == NULL) ? &noEdgeFlag : (void (GLAPIENTRY *)(GLboolean)) fn; /* If the client wants boundary edges to be flagged, * we render everything as separate triangles (no strips or fans). */ tess->flagBoundary = (fn != NULL); return; case GLU_TESS_EDGE_FLAG_DATA: tess->callEdgeFlagData= (fn == NULL) ? &__gl_noEdgeFlagData : (void (GLAPIENTRY *)(GLboolean, void *)) fn; /* If the client wants boundary edges to be flagged, * we render everything as separate triangles (no strips or fans). */ tess->flagBoundary = (fn != NULL); return; case GLU_TESS_VERTEX: tess->callVertex = (fn == NULL) ? &noVertex : (void (GLAPIENTRY *)(void *)) fn; return; case GLU_TESS_VERTEX_DATA: tess->callVertexData = (fn == NULL) ? &__gl_noVertexData : (void (GLAPIENTRY *)(void *, void *)) fn; return; case GLU_TESS_END: tess->callEnd = (fn == NULL) ? &noEnd : (void (GLAPIENTRY *)(void)) fn; return; case GLU_TESS_END_DATA: tess->callEndData = (fn == NULL) ? &__gl_noEndData : (void (GLAPIENTRY *)(void *)) fn; return; case GLU_TESS_ERROR: tess->callError = (fn == NULL) ? &noError : (void (GLAPIENTRY *)(GLenum)) fn; return; case GLU_TESS_ERROR_DATA: tess->callErrorData = (fn == NULL) ? &__gl_noErrorData : (void (GLAPIENTRY *)(GLenum, void *)) fn; return; case GLU_TESS_COMBINE: tess->callCombine = (fn == NULL) ? &noCombine : (void (GLAPIENTRY *)(GLdouble [3],void *[4], GLfloat [4], void ** )) fn; return; case GLU_TESS_COMBINE_DATA: tess->callCombineData = (fn == NULL) ? &__gl_noCombineData : (void (GLAPIENTRY *)(GLdouble [3], void *[4], GLfloat [4], void **, void *)) fn; return; case GLU_TESS_MESH: tess->callMesh = (fn == NULL) ? &noMesh : (void (GLAPIENTRY *)(GLUmesh *)) fn; return; default: CALL_ERROR_OR_ERROR_DATA( GLU_INVALID_ENUM ); return; } } static int AddVertex( GLUtesselator *tess, GLdouble coords[3], void *data ) { GLUhalfEdge *e; e = tess->lastEdge; if( e == NULL ) { /* Make a self-loop (one vertex, one edge). */ e = __gl_meshMakeEdge( tess->mesh ); if (e == NULL) return 0; if ( !__gl_meshSplice( e, e->Sym ) ) return 0; } else { /* Create a new vertex and edge which immediately follow e * in the ordering around the left face. */ if (__gl_meshSplitEdge( e ) == NULL) return 0; e = e->Lnext; } /* The new vertex is now e->Org. */ e->Org->data = data; e->Org->coords[0] = coords[0]; e->Org->coords[1] = coords[1]; e->Org->coords[2] = coords[2]; /* The winding of an edge says how the winding number changes as we * cross from the edge''s right face to its left face. We add the * vertices in such an order that a CCW contour will add +1 to * the winding number of the region inside the contour. */ e->winding = 1; e->Sym->winding = -1; tess->lastEdge = e; return 1; } static void CacheVertex( GLUtesselator *tess, GLdouble coords[3], void *data ) { CachedVertex *v = &tess->cache[tess->cacheCount]; v->data = data; v->coords[0] = coords[0]; v->coords[1] = coords[1]; v->coords[2] = coords[2]; ++tess->cacheCount; } static int EmptyCache( GLUtesselator *tess ) { CachedVertex *v = tess->cache; CachedVertex *vLast; tess->mesh = __gl_meshNewMesh(); if (tess->mesh == NULL) return 0; for( vLast = v + tess->cacheCount; v < vLast; ++v ) { if ( !AddVertex( tess, v->coords, v->data ) ) return 0; } tess->cacheCount = 0; tess->emptyCache = FALSE; return 1; } void GLAPIENTRY gluTessVertex( GLUtesselator *tess, GLdouble coords[3], void *data ) { int i, tooLarge = FALSE; GLdouble x, clamped[3]; RequireState( tess, T_IN_CONTOUR ); if( tess->emptyCache ) { if ( !EmptyCache( tess ) ) { CALL_ERROR_OR_ERROR_DATA( GLU_OUT_OF_MEMORY ); return; } tess->lastEdge = NULL; } for( i = 0; i < 3; ++i ) { x = coords[i]; if( x < - GLU_TESS_MAX_COORD ) { x = - GLU_TESS_MAX_COORD; tooLarge = TRUE; } if( x > GLU_TESS_MAX_COORD ) { x = GLU_TESS_MAX_COORD; tooLarge = TRUE; } clamped[i] = x; } if( tooLarge ) { CALL_ERROR_OR_ERROR_DATA( GLU_TESS_COORD_TOO_LARGE ); } if( tess->mesh == NULL ) { if( tess->cacheCount < TESS_MAX_CACHE ) { CacheVertex( tess, clamped, data ); return; } if ( !EmptyCache( tess ) ) { CALL_ERROR_OR_ERROR_DATA( GLU_OUT_OF_MEMORY ); return; } } if ( !AddVertex( tess, clamped, data ) ) { CALL_ERROR_OR_ERROR_DATA( GLU_OUT_OF_MEMORY ); } } void GLAPIENTRY gluTessBeginPolygon( GLUtesselator *tess, void *data ) { RequireState( tess, T_DORMANT ); tess->state = T_IN_POLYGON; tess->cacheCount = 0; tess->emptyCache = FALSE; tess->mesh = NULL; tess->polygonData= data; } void GLAPIENTRY gluTessBeginContour( GLUtesselator *tess ) { RequireState( tess, T_IN_POLYGON ); tess->state = T_IN_CONTOUR; tess->lastEdge = NULL; if( tess->cacheCount > 0 ) { /* Just set a flag so we don't get confused by empty contours * -- these can be generated accidentally with the obsolete * NextContour() interface. */ tess->emptyCache = TRUE; } } void GLAPIENTRY gluTessEndContour( GLUtesselator *tess ) { RequireState( tess, T_IN_CONTOUR ); tess->state = T_IN_POLYGON; } void GLAPIENTRY gluTessEndPolygon( GLUtesselator *tess ) { GLUmesh *mesh; if (setjmp(tess->env) != 0) { /* come back here if out of memory */ CALL_ERROR_OR_ERROR_DATA( GLU_OUT_OF_MEMORY ); return; } RequireState( tess, T_IN_POLYGON ); tess->state = T_DORMANT; if( tess->mesh == NULL ) { if( ! tess->flagBoundary && tess->callMesh == &noMesh ) { /* Try some special code to make the easy cases go quickly * (eg. convex polygons). This code does NOT handle multiple contours, * intersections, edge flags, and of course it does not generate * an explicit mesh either. */ if( __gl_renderCache( tess )) { tess->polygonData= NULL; return; } } if ( !EmptyCache( tess ) ) longjmp(tess->env,1); /* could've used a label*/ } /* Determine the polygon normal and project vertices onto the plane * of the polygon. */ __gl_projectPolygon( tess ); /* __gl_computeInterior( tess ) computes the planar arrangement specified * by the given contours, and further subdivides this arrangement * into regions. Each region is marked "inside" if it belongs * to the polygon, according to the rule given by tess->windingRule. * Each interior region is guaranteed be monotone. */ if ( !__gl_computeInterior( tess ) ) { longjmp(tess->env,1); /* could've used a label */ } mesh = tess->mesh; if( ! tess->fatalError ) { int rc = 1; /* If the user wants only the boundary contours, we throw away all edges * except those which separate the interior from the exterior. * Otherwise we tessellate all the regions marked "inside". */ if( tess->boundaryOnly ) { rc = __gl_meshSetWindingNumber( mesh, 1, TRUE ); } else { rc = __gl_meshTessellateInterior( mesh ); } if (rc == 0) longjmp(tess->env,1); /* could've used a label */ __gl_meshCheckMesh( mesh ); if( tess->callBegin != &noBegin || tess->callEnd != &noEnd || tess->callVertex != &noVertex || tess->callEdgeFlag != &noEdgeFlag || tess->callBeginData != &__gl_noBeginData || tess->callEndData != &__gl_noEndData || tess->callVertexData != &__gl_noVertexData || tess->callEdgeFlagData != &__gl_noEdgeFlagData ) { if( tess->boundaryOnly ) { __gl_renderBoundary( tess, mesh ); /* output boundary contours */ } else { __gl_renderMesh( tess, mesh ); /* output strips and fans */ } } if( tess->callMesh != &noMesh ) { /* Throw away the exterior faces, so that all faces are interior. * This way the user doesn't have to check the "inside" flag, * and we don't need to even reveal its existence. It also leaves * the freedom for an implementation to not generate the exterior * faces in the first place. */ __gl_meshDiscardExterior( mesh ); (*tess->callMesh)( mesh ); /* user wants the mesh itself */ tess->mesh = NULL; tess->polygonData= NULL; return; } } __gl_meshDeleteMesh( mesh ); tess->polygonData= NULL; tess->mesh = NULL; } /*XXXblythe unused function*/ #if 0 void GLAPIENTRY gluDeleteMesh( GLUmesh *mesh ) { __gl_meshDeleteMesh( mesh ); } #endif /*******************************************************/ /* Obsolete calls -- for backward compatibility */ void GLAPIENTRY gluBeginPolygon( GLUtesselator *tess ) { gluTessBeginPolygon( tess, NULL ); gluTessBeginContour( tess ); } /*ARGSUSED*/ void GLAPIENTRY gluNextContour( GLUtesselator *tess, GLenum type ) { gluTessEndContour( tess ); gluTessBeginContour( tess ); } void GLAPIENTRY gluEndPolygon( GLUtesselator *tess ) { gluTessEndContour( tess ); gluTessEndPolygon( tess ); }