/* $XFree86: xc/lib/GL/glx/pixel.c,v 1.4 2001/03/21 16:04:39 dawes Exp $ */ /* ** License Applicability. Except to the extent portions of this file are ** made subject to an alternative license as permitted in the SGI Free ** Software License B, Version 1.1 (the "License"), the contents of this ** file are subject only to the provisions of the License. You may not use ** this file except in compliance with the License. You may obtain a copy ** of the License at Silicon Graphics, Inc., attn: Legal Services, 1600 ** Amphitheatre Parkway, Mountain View, CA 94043-1351, or at: ** ** http://oss.sgi.com/projects/FreeB ** ** Note that, as provided in the License, the Software is distributed on an ** "AS IS" basis, with ALL EXPRESS AND IMPLIED WARRANTIES AND CONDITIONS ** DISCLAIMED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES AND ** CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A ** PARTICULAR PURPOSE, AND NON-INFRINGEMENT. ** ** Original Code. The Original Code is: OpenGL Sample Implementation, ** Version 1.2.1, released January 26, 2000, developed by Silicon Graphics, ** Inc. The Original Code is Copyright (c) 1991-2000 Silicon Graphics, Inc. ** Copyright in any portions created by third parties is as indicated ** elsewhere herein. All Rights Reserved. ** ** Additional Notice Provisions: The application programming interfaces ** established by SGI in conjunction with the Original Code are The ** OpenGL(R) Graphics System: A Specification (Version 1.2.1), released ** April 1, 1999; The OpenGL(R) Graphics System Utility Library (Version ** 1.3), released November 4, 1998; and OpenGL(R) Graphics with the X ** Window System(R) (Version 1.3), released October 19, 1998. This software ** was created using the OpenGL(R) version 1.2.1 Sample Implementation ** published by SGI, but has not been independently verified as being ** compliant with the OpenGL(R) version 1.2.1 Specification. ** */ #include "packrender.h" static GLubyte MsbToLsbTable[256] = { 0x00, 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0, 0x10, 0x90, 0x50, 0xd0, 0x30, 0xb0, 0x70, 0xf0, 0x08, 0x88, 0x48, 0xc8, 0x28, 0xa8, 0x68, 0xe8, 0x18, 0x98, 0x58, 0xd8, 0x38, 0xb8, 0x78, 0xf8, 0x04, 0x84, 0x44, 0xc4, 0x24, 0xa4, 0x64, 0xe4, 0x14, 0x94, 0x54, 0xd4, 0x34, 0xb4, 0x74, 0xf4, 0x0c, 0x8c, 0x4c, 0xcc, 0x2c, 0xac, 0x6c, 0xec, 0x1c, 0x9c, 0x5c, 0xdc, 0x3c, 0xbc, 0x7c, 0xfc, 0x02, 0x82, 0x42, 0xc2, 0x22, 0xa2, 0x62, 0xe2, 0x12, 0x92, 0x52, 0xd2, 0x32, 0xb2, 0x72, 0xf2, 0x0a, 0x8a, 0x4a, 0xca, 0x2a, 0xaa, 0x6a, 0xea, 0x1a, 0x9a, 0x5a, 0xda, 0x3a, 0xba, 0x7a, 0xfa, 0x06, 0x86, 0x46, 0xc6, 0x26, 0xa6, 0x66, 0xe6, 0x16, 0x96, 0x56, 0xd6, 0x36, 0xb6, 0x76, 0xf6, 0x0e, 0x8e, 0x4e, 0xce, 0x2e, 0xae, 0x6e, 0xee, 0x1e, 0x9e, 0x5e, 0xde, 0x3e, 0xbe, 0x7e, 0xfe, 0x01, 0x81, 0x41, 0xc1, 0x21, 0xa1, 0x61, 0xe1, 0x11, 0x91, 0x51, 0xd1, 0x31, 0xb1, 0x71, 0xf1, 0x09, 0x89, 0x49, 0xc9, 0x29, 0xa9, 0x69, 0xe9, 0x19, 0x99, 0x59, 0xd9, 0x39, 0xb9, 0x79, 0xf9, 0x05, 0x85, 0x45, 0xc5, 0x25, 0xa5, 0x65, 0xe5, 0x15, 0x95, 0x55, 0xd5, 0x35, 0xb5, 0x75, 0xf5, 0x0d, 0x8d, 0x4d, 0xcd, 0x2d, 0xad, 0x6d, 0xed, 0x1d, 0x9d, 0x5d, 0xdd, 0x3d, 0xbd, 0x7d, 0xfd, 0x03, 0x83, 0x43, 0xc3, 0x23, 0xa3, 0x63, 0xe3, 0x13, 0x93, 0x53, 0xd3, 0x33, 0xb3, 0x73, 0xf3, 0x0b, 0x8b, 0x4b, 0xcb, 0x2b, 0xab, 0x6b, 0xeb, 0x1b, 0x9b, 0x5b, 0xdb, 0x3b, 0xbb, 0x7b, 0xfb, 0x07, 0x87, 0x47, 0xc7, 0x27, 0xa7, 0x67, 0xe7, 0x17, 0x97, 0x57, 0xd7, 0x37, 0xb7, 0x77, 0xf7, 0x0f, 0x8f, 0x4f, 0xcf, 0x2f, 0xaf, 0x6f, 0xef, 0x1f, 0x9f, 0x5f, 0xdf, 0x3f, 0xbf, 0x7f, 0xff, }; static GLubyte LowBitsMask[9] = { 0x00, 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f, 0x7f, 0xff, }; static GLubyte HighBitsMask[9] = { 0x00, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff, }; /* ** Return the number of elements per group of a specified format */ static GLint ElementsPerGroup(GLenum format, GLenum type) { /* ** To make row length computation valid for image extraction, ** packed pixel types assume elements per group equals one. */ switch(type) { case GL_UNSIGNED_BYTE_3_3_2: case GL_UNSIGNED_BYTE_2_3_3_REV: case GL_UNSIGNED_SHORT_5_6_5: case GL_UNSIGNED_SHORT_5_6_5_REV: case GL_UNSIGNED_SHORT_4_4_4_4: case GL_UNSIGNED_SHORT_4_4_4_4_REV: case GL_UNSIGNED_SHORT_5_5_5_1: case GL_UNSIGNED_SHORT_1_5_5_5_REV: case GL_UNSIGNED_INT_8_8_8_8: case GL_UNSIGNED_INT_8_8_8_8_REV: case GL_UNSIGNED_INT_10_10_10_2: case GL_UNSIGNED_INT_2_10_10_10_REV: return 1; default: break; } switch(format) { case GL_RGB: case GL_BGR: return 3; case GL_LUMINANCE_ALPHA: return 2; case GL_RGBA: case GL_BGRA: case GL_ABGR_EXT: return 4; case GL_COLOR_INDEX: case GL_STENCIL_INDEX: case GL_DEPTH_COMPONENT: case GL_RED: case GL_GREEN: case GL_BLUE: case GL_ALPHA: case GL_LUMINANCE: return 1; default: return 0; } } /* ** Return the number of bytes per element, based on the element type (other ** than GL_BITMAP). */ static GLint BytesPerElement(GLenum type) { switch(type) { case GL_UNSIGNED_SHORT: case GL_SHORT: case GL_UNSIGNED_SHORT_5_6_5: case GL_UNSIGNED_SHORT_5_6_5_REV: case GL_UNSIGNED_SHORT_4_4_4_4: case GL_UNSIGNED_SHORT_4_4_4_4_REV: case GL_UNSIGNED_SHORT_5_5_5_1: case GL_UNSIGNED_SHORT_1_5_5_5_REV: return 2; case GL_UNSIGNED_BYTE: case GL_BYTE: case GL_UNSIGNED_BYTE_3_3_2: case GL_UNSIGNED_BYTE_2_3_3_REV: return 1; case GL_INT: case GL_UNSIGNED_INT: case GL_FLOAT: case GL_UNSIGNED_INT_8_8_8_8: case GL_UNSIGNED_INT_8_8_8_8_REV: case GL_UNSIGNED_INT_10_10_10_2: case GL_UNSIGNED_INT_2_10_10_10_REV: return 4; default: return 0; } } /* ** Compute memory required for internal packed array of data of given type ** and format. */ GLint __glImageSize(GLsizei width, GLsizei height, GLsizei depth, GLenum format, GLenum type) { int bytes_per_row; int components; if (width < 0 || height < 0 || depth < 0) { return 0; } /* ** Zero is returned if either format or type are invalid. */ components = ElementsPerGroup(format,type); if (type == GL_BITMAP) { bytes_per_row = (width + 7) >> 3; } else { bytes_per_row = BytesPerElement(type) * width; } return bytes_per_row * height * depth * components; } /* ** Copy bitmap data from clients packed memory applying unpacking modes as the ** data is transfered into the destImage buffer. Return in modes the ** set of pixel modes that are to be done by the server. */ static void FillBitmap(__GLXcontext *gc, GLint width, GLint height, GLenum format, const GLvoid *userdata, GLubyte *destImage) { GLint rowLength = gc->state.storeUnpack.rowLength; GLint imageHeight = gc->state.storeUnpack.imageHeight; GLint alignment = gc->state.storeUnpack.alignment; GLint skipPixels = gc->state.storeUnpack.skipPixels; GLint skipRows = gc->state.storeUnpack.skipRows; GLint lsbFirst = gc->state.storeUnpack.lsbFirst; GLint elementsLeft, bitOffset, currentByte, nextByte, highBitMask; GLint lowBitMask, i; GLint components, groupsPerRow, rowSize, padding, elementsPerRow; const GLubyte *start, *iter; if (rowLength > 0) { groupsPerRow = rowLength; } else { groupsPerRow = width; } components = ElementsPerGroup(format,GL_BITMAP); rowSize = (groupsPerRow * components + 7) >> 3; padding = (rowSize % alignment); if (padding) { rowSize += alignment - padding; } start = ((const GLubyte*) userdata) + skipRows * rowSize + ((skipPixels * components) >> 3); bitOffset = (skipPixels * components) & 7; highBitMask = LowBitsMask[8-bitOffset]; lowBitMask = HighBitsMask[bitOffset]; elementsPerRow = width * components; for (i = 0; i < height; i++) { elementsLeft = elementsPerRow; iter = start; while (elementsLeft) { /* First retrieve low bits from current byte */ if (lsbFirst) { currentByte = MsbToLsbTable[iter[0]]; } else { currentByte = iter[0]; } if (bitOffset) { /* Need to read next byte to finish current byte */ if (elementsLeft > (8 - bitOffset)) { if (lsbFirst) { nextByte = MsbToLsbTable[iter[1]]; } else { nextByte = iter[1]; } currentByte = ((currentByte & highBitMask) << bitOffset) | ((nextByte & lowBitMask) >> (8 - bitOffset)); } else { currentByte = ((currentByte & highBitMask) << bitOffset); } } if (elementsLeft >= 8) { *destImage = currentByte; elementsLeft -= 8; } else { *destImage = currentByte & HighBitsMask[elementsLeft]; elementsLeft = 0; } destImage++; iter++; } start += rowSize; } } /* ** Extract array from user's data applying all pixel store modes. ** The internal packed array format used has LSB_FIRST = FALSE and ** ALIGNMENT = 1. */ void __glFillImage(__GLXcontext *gc, GLint dim, GLint width, GLint height, GLint depth, GLenum format, GLenum type, const GLvoid *userdata, GLubyte *newimage, GLubyte *modes) { GLint rowLength = gc->state.storeUnpack.rowLength; GLint imageHeight = gc->state.storeUnpack.imageHeight; GLint imageDepth = gc->state.storeUnpack.imageDepth; GLint alignment = gc->state.storeUnpack.alignment; GLint skipPixels = gc->state.storeUnpack.skipPixels; GLint skipRows = gc->state.storeUnpack.skipRows; GLint skipImages = gc->state.storeUnpack.skipImages; GLint swapBytes = gc->state.storeUnpack.swapEndian; GLint components, elementSize, rowSize, padding, groupsPerRow, groupSize; GLint elementsPerRow, imageSize, rowsPerImage, h, i, j, k; const GLubyte *start, *iter, *itera, *iterb, *iterc; GLubyte *iter2; if (type == GL_BITMAP) { FillBitmap(gc, width, height, format, userdata, newimage); } else { components = ElementsPerGroup(format,type); if (rowLength > 0) { groupsPerRow = rowLength; } else { groupsPerRow = width; } if (imageHeight > 0) { rowsPerImage = imageHeight; } else { rowsPerImage = height; } elementSize = BytesPerElement(type); groupSize = elementSize * components; if (elementSize == 1) swapBytes = 0; rowSize = groupsPerRow * groupSize; padding = (rowSize % alignment); if (padding) { rowSize += alignment - padding; } imageSize = rowSize * rowsPerImage; start = ((const GLubyte*) userdata) + skipImages * imageSize + skipRows * rowSize + skipPixels * groupSize; iter2 = newimage; elementsPerRow = width * components; if (swapBytes) { itera = start; for (h = 0; h < depth; h++) { iterb = itera; for (i = 0; i < height; i++) { iterc = iterb; for (j = 0; j < elementsPerRow; j++) { for (k = 1; k <= elementSize; k++) { iter2[k-1] = iterc[elementSize - k]; } iter2 += elementSize; iterc += elementSize; } iterb += rowSize; } itera += imageSize; } } else { itera = start; for (h = 0; h < depth; h++) { if (rowSize == elementsPerRow * elementSize) { /* Ha! This is mondo easy! */ __GLX_MEM_COPY(iter2, itera, elementsPerRow * elementSize * height); iter2 += elementsPerRow * elementSize * height; } else { iter = itera; for (i = 0; i < height; i++) { __GLX_MEM_COPY(iter2, iter, elementsPerRow*elementSize); iter2 += elementsPerRow * elementSize; iter += rowSize; } } itera += imageSize; } } } /* Setup store modes that describe what we just did */ if (modes) { if (dim == 3) { GLubyte *pc = modes; __GLX_PUT_CHAR(0,GL_FALSE); __GLX_PUT_CHAR(1,GL_FALSE); __GLX_PUT_CHAR(2,0); __GLX_PUT_CHAR(3,0); __GLX_PUT_LONG(4,0); __GLX_PUT_LONG(8,0); __GLX_PUT_LONG(12,0); __GLX_PUT_LONG(16,0); __GLX_PUT_LONG(20,0); __GLX_PUT_LONG(24,0); __GLX_PUT_LONG(28,0); __GLX_PUT_LONG(32,1); } else { GLubyte *pc = modes; __GLX_PUT_CHAR(0,GL_FALSE); __GLX_PUT_CHAR(1,GL_FALSE); __GLX_PUT_CHAR(2,0); __GLX_PUT_CHAR(3,0); __GLX_PUT_LONG(4,0); __GLX_PUT_LONG(8,0); __GLX_PUT_LONG(12,0); __GLX_PUT_LONG(16,1); } } } /* ** Empty a bitmap in LSB_FIRST=GL_FALSE and ALIGNMENT=4 format packing it ** into the clients memory using the pixel store PACK modes. */ static void EmptyBitmap(__GLXcontext *gc, GLint width, GLint height, GLenum format, const GLubyte *sourceImage, GLvoid *userdata) { GLint rowLength = gc->state.storePack.rowLength; GLint alignment = gc->state.storePack.alignment; GLint skipPixels = gc->state.storePack.skipPixels; GLint skipRows = gc->state.storePack.skipRows; GLint lsbFirst = gc->state.storePack.lsbFirst; GLint components, groupsPerRow, rowSize, padding, elementsPerRow; GLint sourceRowSize, sourcePadding, sourceSkip; GLubyte *start, *iter; GLint elementsLeft, bitOffset, currentByte, highBitMask, lowBitMask; GLint writeMask, i; GLubyte writeByte; components = ElementsPerGroup(format,GL_BITMAP); if (rowLength > 0) { groupsPerRow = rowLength; } else { groupsPerRow = width; } rowSize = (groupsPerRow * components + 7) >> 3; padding = (rowSize % alignment); if (padding) { rowSize += alignment - padding; } sourceRowSize = (width * components + 7) >> 3; sourcePadding = (sourceRowSize % 4); if (sourcePadding) { sourceSkip = 4 - sourcePadding; } else { sourceSkip = 0; } start = ((GLubyte*) userdata) + skipRows * rowSize + ((skipPixels * components) >> 3); bitOffset = (skipPixels * components) & 7; highBitMask = LowBitsMask[8-bitOffset]; lowBitMask = HighBitsMask[bitOffset]; elementsPerRow = width * components; for (i = 0; i < height; i++) { elementsLeft = elementsPerRow; iter = start; writeMask = highBitMask; writeByte = 0; while (elementsLeft) { /* Set up writeMask (to write to current byte) */ if (elementsLeft + bitOffset < 8) { /* Need to trim writeMask */ writeMask &= HighBitsMask[bitOffset+elementsLeft]; } if (lsbFirst) { currentByte = MsbToLsbTable[iter[0]]; } else { currentByte = iter[0]; } if (bitOffset) { writeByte |= (sourceImage[0] >> bitOffset); currentByte = (currentByte & ~writeMask) | (writeByte & writeMask); writeByte = (sourceImage[0] << (8 - bitOffset)); } else { currentByte = (currentByte & ~writeMask) | (sourceImage[0] & writeMask); } if (lsbFirst) { iter[0] = MsbToLsbTable[currentByte]; } else { iter[0] = currentByte; } if (elementsLeft >= 8) { elementsLeft -= 8; } else { elementsLeft = 0; } sourceImage++; iter++; writeMask = 0xff; } if (writeByte) { /* Some data left over that still needs writing */ writeMask &= lowBitMask; if (lsbFirst) { currentByte = MsbToLsbTable[iter[0]]; } else { currentByte = iter[0]; } currentByte = (currentByte & ~writeMask) | (writeByte & writeMask); if (lsbFirst) { iter[0] = MsbToLsbTable[currentByte]; } else { iter[0] = currentByte; } } start += rowSize; sourceImage += sourceSkip; } } /* ** Insert array into user's data applying all pixel store modes. ** The packed array format from the server is LSB_FIRST = FALSE, ** SWAP_BYTES = the current pixel storage pack mode, and ALIGNMENT = 4. ** Named __glEmptyImage() because it is the opposite of __glFillImage(). */ /* ARGSUSED */ void __glEmptyImage(__GLXcontext *gc, GLint dim, GLint width, GLint height, GLint depth, GLenum format, GLenum type, const GLubyte *sourceImage, GLvoid *userdata) { GLint rowLength = gc->state.storePack.rowLength; GLint imageHeight = gc->state.storePack.imageHeight; GLint imageDepth = gc->state.storePack.imageDepth; GLint alignment = gc->state.storePack.alignment; GLint skipPixels = gc->state.storePack.skipPixels; GLint skipRows = gc->state.storePack.skipRows; GLint skipImages = gc->state.storePack.skipImages; GLint components, elementSize, rowSize, padding, groupsPerRow, groupSize; GLint elementsPerRow, sourceRowSize, sourcePadding, g, h, i; GLint imageSize, rowsPerImage; GLubyte *start, *iter, *itera; if (type == GL_BITMAP) { EmptyBitmap(gc, width, height, format, sourceImage, userdata); } else { components = ElementsPerGroup(format,type); if (rowLength > 0) { groupsPerRow = rowLength; } else { groupsPerRow = width; } if (imageHeight > 0) { rowsPerImage = imageHeight; } else { rowsPerImage = height; } elementSize = BytesPerElement(type); groupSize = elementSize * components; rowSize = groupsPerRow * groupSize; padding = (rowSize % alignment); if (padding) { rowSize += alignment - padding; } sourceRowSize = width * groupSize; sourcePadding = (sourceRowSize % 4); if (sourcePadding) { sourceRowSize += 4 - sourcePadding; } imageSize = sourceRowSize * rowsPerImage; start = ((GLubyte*) userdata) + skipImages * imageSize + skipRows * rowSize + skipPixels * groupSize; elementsPerRow = width * components; itera = start; for (h = 0; h < depth; h++) { if ((rowSize == sourceRowSize) && (sourcePadding == 0)) { /* Ha! This is mondo easy! */ __GLX_MEM_COPY(itera, sourceImage, elementsPerRow * elementSize * height); sourceImage += elementsPerRow * elementSize * height; } else { iter = itera; for (i = 0; i < height; i++) { __GLX_MEM_COPY(iter, sourceImage, elementsPerRow * elementSize); sourceImage += sourceRowSize; iter += rowSize; } } itera += imageSize; } } }