/* $Xorg: pl_lut.c,v 1.3 2000/08/17 19:44:24 cpqbld Exp $ */ /****************************************************************************** Copyright 1992, 1998 The Open Group All Rights Reserved. The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE OPEN GROUP BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. Except as contained in this notice, the name of The Open Group shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization from The Open Group. Copyright 1987,1991 by Digital Equipment Corporation, Maynard, Massachusetts All Rights Reserved Permission to use, copy, modify, distribute, and sell this software and its documentation for any purpose is hereby granted without fee, provided that the above copyright notice appear in all copies and that both that copyright notice and this permission notice appear in supporting documentation, and that the name of Digital not be used in advertising or publicity pertaining to distribution of the software without specific, written prior permission. Digital make no representations about the suitability of this software for any purpose. It is provided "as is" without express or implied warranty. DIGITAL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL DIGITAL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. ******************************************************************************/ #include "PEXlib.h" #include "PEXlibint.h" #include "pl_lut.h" PEXLookupTable PEXCreateLookupTable (display, drawable, type) INPUT Display *display; INPUT Drawable drawable; INPUT int type; { register pexCreateLookupTableReq *req; char *pBuf; PEXLookupTable id; /* * Get a lookup table resource id from X. */ id = XAllocID (display); /* * Lock around critical section, for multithreading. */ LockDisplay (display); /* * Put the request in the X request buffer. */ PEXGetReq (CreateLookupTable, pBuf); BEGIN_REQUEST_HEADER (CreateLookupTable, pBuf, req); PEXStoreReqHead (CreateLookupTable, req); req->drawableExample = drawable; req->lut = id; req->tableType = type; END_REQUEST_HEADER (CreateLookupTable, pBuf, req); /* * Done, so unlock and check for synchronous-ness. */ UnlockDisplay (display); PEXSyncHandle (display); return (id); } void PEXFreeLookupTable (display, lut) INPUT Display *display; INPUT PEXLookupTable lut; { register pexFreeLookupTableReq *req; char *pBuf; /* * Lock around the critical section, for multithreading. */ LockDisplay (display); /* * Put the request in the X request buffer. */ PEXGetReq (FreeLookupTable, pBuf); BEGIN_REQUEST_HEADER (FreeLookupTable, pBuf, req); PEXStoreReqHead (FreeLookupTable, req); req->id = lut; END_REQUEST_HEADER (FreeLookupTable, pBuf, req); /* * Done, so unlock and check for synchronous-ness. */ UnlockDisplay (display); PEXSyncHandle (display); } void PEXCopyLookupTable (display, srcLut, destLut) INPUT Display *display; INPUT PEXLookupTable srcLut; INPUT PEXLookupTable destLut; { register pexCopyLookupTableReq *req; char *pBuf; /* * Lock around critical section, for multithreading. */ LockDisplay (display); /* * Put the request in the X request buffer. */ PEXGetReq (CopyLookupTable, pBuf); BEGIN_REQUEST_HEADER (CopyLookupTable, pBuf, req); PEXStoreReqHead (CopyLookupTable, req); req->src = srcLut; req->dst = destLut; END_REQUEST_HEADER (CopyLookupTable, pBuf, req); /* * Done, so unlock and check for synchronous-ness. */ UnlockDisplay (display); PEXSyncHandle (display); } Status PEXGetTableInfo (display, drawable, type, info) INPUT Display *display; INPUT Drawable drawable; INPUT int type; INPUT PEXTableInfo *info; { register pexGetTableInfoReq *req; char *pBuf; pexGetTableInfoReply rep; /* * Lock around critical section, for multithreading. */ LockDisplay (display); /* * Put the request in the X request buffer and get a reply. */ PEXGetReq (GetTableInfo, pBuf); BEGIN_REQUEST_HEADER (GetTableInfo, pBuf, req); PEXStoreReqHead (GetTableInfo, req); req->drawableExample = drawable; req->tableType = type; END_REQUEST_HEADER (GetTableInfo, pBuf, req); if (_XReply (display, (xReply *)&rep, 0, xTrue) == 0) { UnlockDisplay (display); PEXSyncHandle (display); return (0); /* return an error */ } info->definable_entries = rep.definableEntries; info->predefined_count = rep.numPredefined; info->predefined_min = rep.predefinedMin; info->predefined_max = rep.predefinedMax; /* * Done, so unlock and check for synchronous-ness. */ UnlockDisplay (display); PEXSyncHandle (display); return (1); } Status PEXGetPredefinedEntries (display, drawable, type, start, count, entriesReturn) INPUT Display *display; INPUT Drawable drawable; INPUT int type; INPUT unsigned int start; INPUT unsigned int count; OUTPUT PEXPointer *entriesReturn; { register pexGetPredefinedEntriesReq *req; char *pBuf; pexGetPredefinedEntriesReply rep; int fpConvert; int fpFormat; /* * Lock around the critical section, for multithreading. */ LockDisplay (display); /* * Put the request in the X request buffer and get a reply. */ PEXGetReq (GetPredefinedEntries, pBuf); BEGIN_REQUEST_HEADER (GetPredefinedEntries, pBuf, req); CHECK_FP (fpConvert, fpFormat); PEXStoreFPReqHead (GetPredefinedEntries, fpFormat, req); req->drawableExample = drawable; req->tableType = type; req->start = start; req->count = count; END_REQUEST_HEADER (GetPredefinedEntries, pBuf, req); if (_XReply (display, (xReply *)&rep, 0, xFalse) == 0) { UnlockDisplay (display); PEXSyncHandle (display); *entriesReturn = NULL; return (0); /* return an error */ } /* * Read the reply data into a scratch buffer. */ XREAD_INTO_SCRATCH (display, pBuf, rep.length << 2); /* * Repack the entries into a buffer allocated for the application. */ *entriesReturn = _PEXRepackLUTEntries (pBuf, (int) rep.numEntries, type, fpConvert, fpFormat); FINISH_WITH_SCRATCH (display, pBuf, rep.length << 2); /* * Done, so unlock and check for synchronous-ness. */ UnlockDisplay (display); PEXSyncHandle (display); return (1); } Status PEXGetDefinedIndices (display, lut, numIndicesReturn, indicesReturn) INPUT Display *display; INPUT PEXLookupTable lut; OUTPUT unsigned long *numIndicesReturn; OUTPUT PEXTableIndex **indicesReturn; { register pexGetDefinedIndicesReq *req; char *pBuf; pexGetDefinedIndicesReply rep; unsigned count; /* * Lock around the critical section, for multithreading. */ LockDisplay (display); /* * Put the request in the X request buffer and get a reply. */ PEXGetReq (GetDefinedIndices, pBuf); BEGIN_REQUEST_HEADER (GetDefinedIndices, pBuf, req); PEXStoreReqHead (GetDefinedIndices, req); req->id = lut; END_REQUEST_HEADER (GetDefinedIndices, pBuf, req); if (_XReply (display, (xReply *)&rep, 0, xFalse) == 0) { UnlockDisplay (display); PEXSyncHandle (display); *numIndicesReturn = 0; *indicesReturn = NULL; return (0); /* return an error */ } *numIndicesReturn = rep.numIndices; /* * Allocate a buffer for the replies to pass back to the user. */ count = (rep.numIndices & 1) ? (rep.numIndices + 1) : rep.numIndices; *indicesReturn = (PEXTableIndex *) Xmalloc ( count * sizeof (PEXTableIndex)); XREAD_LISTOF_CARD16 (display, count, *indicesReturn); /* * Done, so unlock and check for synchronous-ness. */ UnlockDisplay (display); PEXSyncHandle (display); return (1); } PEXPointer PEXGetTableEntry (display, lut, index, valueType, statusReturn, table_type_return) INPUT Display *display; INPUT PEXLookupTable lut; INPUT unsigned int index; INPUT int valueType; OUTPUT int *statusReturn; OUTPUT int *table_type_return; { register pexGetTableEntryReq *req; char *pBuf; pexGetTableEntryReply rep; int fpConvert; int fpFormat; PEXPointer entryReturn; /* * Lock around the critical section, for multithreading. */ LockDisplay (display); /* * Put the request in the X request buffer and get a reply. */ PEXGetReq (GetTableEntry, pBuf); BEGIN_REQUEST_HEADER (GetTableEntry, pBuf, req); CHECK_FP (fpConvert, fpFormat); PEXStoreFPReqHead (GetTableEntry, fpFormat, req); req->valueType = valueType; req->lut = lut; req->index = index; END_REQUEST_HEADER (GetTableEntry, pBuf, req); if (_XReply (display, (xReply *)&rep, 0, xFalse) == 0) { UnlockDisplay (display); PEXSyncHandle (display); return (NULL); /* return an error */ } *statusReturn = rep.status; *table_type_return = rep.tableType; /* * Read the reply data into a scratch buffer. */ XREAD_INTO_SCRATCH (display, pBuf, rep.length << 2); /* * Repack the entries into a buffer allocated for the application. */ entryReturn = _PEXRepackLUTEntries (pBuf, 1, (int) rep.tableType, fpConvert, fpFormat); FINISH_WITH_SCRATCH (display, pBuf, rep.length << 2); /* * Done, so unlock and check for synchronous-ness. */ UnlockDisplay (display); PEXSyncHandle (display); return (entryReturn); } Status PEXGetTableEntries (display, lut, start, count, valueType, table_type_return, entriesReturn) INPUT Display *display; INPUT PEXLookupTable lut; INPUT unsigned int start; INPUT unsigned int count; INPUT int valueType; OUTPUT int *table_type_return; OUTPUT PEXPointer *entriesReturn; { register pexGetTableEntriesReq *req; char *pBuf; pexGetTableEntriesReply rep; int fpConvert; int fpFormat; /* * Lock around the critical section, for multithreading. */ LockDisplay (display); /* * Put the request in the X request buffer and get a reply. */ PEXGetReq (GetTableEntries, pBuf); BEGIN_REQUEST_HEADER (GetTableEntries, pBuf, req); CHECK_FP (fpConvert, fpFormat); PEXStoreFPReqHead (GetTableEntries, fpFormat, req); req->valueType = valueType; req->lut = lut; req->start = start; req->count = count; END_REQUEST_HEADER (GetTableEntries, pBuf, req); if (_XReply (display, (xReply *)&rep, 0, xFalse) == 0) { UnlockDisplay (display); PEXSyncHandle (display); *entriesReturn = NULL; return (0); /* return an error */ } *table_type_return = rep.tableType; /* * Read the reply data into a scratch buffer. */ XREAD_INTO_SCRATCH (display, pBuf, rep.length << 2); /* * Repack the entries into a buffer allocated for the application. */ *entriesReturn = _PEXRepackLUTEntries (pBuf, (int) rep.numEntries, (int) rep.tableType, fpConvert, fpFormat); FINISH_WITH_SCRATCH (display, pBuf, rep.length << 2); /* * Done, so unlock and check for synchronous-ness. */ UnlockDisplay (display); PEXSyncHandle (display); return (1); } void PEXSetTableEntries (display, lut, start, count, type, entries) INPUT Display *display; INPUT PEXLookupTable lut; INPUT unsigned int start; INPUT unsigned int count; INPUT int type; INPUT PEXPointer entries; { register pexSetTableEntriesReq *req; char *pBuf; char *scratch; char *firstEntry; int fpConvert; int fpFormat; int size, i; /* * Lock around the critical section, for multithreading. */ LockDisplay (display); /* * Put the request in the X request buffer. */ PEXGetReq (SetTableEntries, pBuf); BEGIN_REQUEST_HEADER (SetTableEntries, pBuf, req); CHECK_FP (fpConvert, fpFormat); PEXStoreFPReqHead (SetTableEntries, fpFormat, req); req->lut = lut; req->start = start; req->count = count; switch (type) { case PEXLUTLineBundle: { PEXLineBundleEntry *src = (PEXLineBundleEntry *) entries; pexLineBundleEntry *dst; scratch = firstEntry = (char *) _XAllocScratch (display, count * sizeof (PEXLineBundleEntry)); for (i = 0; i < count; i++, src++) { BEGIN_LUTENTRY_HEADER (pexLineBundleEntry, scratch, dst); dst->lineType = src->type; dst->polylineInterp = src->interp_method; dst->curveApprox_method = src->curve_approx.method; dst->lineColorType = src->color.type; if (fpConvert) { FP_CONVERT_HTON (src->curve_approx.tolerance, dst->curveApprox_tolerance, fpFormat); FP_CONVERT_HTON (src->width, dst->lineWidth, fpFormat); } else { dst->curveApprox_tolerance = src->curve_approx.tolerance; dst->lineWidth = src->width; } END_LUTENTRY_HEADER (pexLineBundleEntry, scratch, dst); STORE_COLOR_VAL (src->color.type, src->color.value, scratch, fpConvert, fpFormat); } break; } case PEXLUTMarkerBundle: { PEXMarkerBundleEntry *src = (PEXMarkerBundleEntry *) entries; pexMarkerBundleEntry *dst; scratch = firstEntry = (char *) _XAllocScratch (display, count * sizeof (PEXMarkerBundleEntry)); for (i = 0; i < count; i++, src++) { BEGIN_LUTENTRY_HEADER (pexMarkerBundleEntry, scratch, dst); dst->markerType = src->type; dst->markerColorType = src->color.type; if (fpConvert) { FP_CONVERT_HTON (src->scale, dst->markerScale, fpFormat); } else dst->markerScale = src->scale; END_LUTENTRY_HEADER (pexMarkerBundleEntry, scratch, dst); STORE_COLOR_VAL (src->color.type, src->color.value, scratch, fpConvert, fpFormat); } break; } case PEXLUTTextBundle: { PEXTextBundleEntry *src = (PEXTextBundleEntry *) entries; pexTextBundleEntry *dst; scratch = firstEntry = (char *) _XAllocScratch (display, count * sizeof (PEXTextBundleEntry)); for (i = 0; i < count; i++, src++) { BEGIN_LUTENTRY_HEADER (pexTextBundleEntry, scratch, dst); dst->textFontIndex = src->font_index; dst->textPrecision = src->precision; dst->textColorType = src->color.type; if (fpConvert) { FP_CONVERT_HTON (src->char_expansion, dst->charExpansion, fpFormat); FP_CONVERT_HTON (src->char_spacing, dst->charSpacing, fpFormat); } else { dst->charExpansion = src->char_expansion; dst->charSpacing = src->char_spacing; } END_LUTENTRY_HEADER (pexTextBundleEntry, scratch, dst); STORE_COLOR_VAL (src->color.type, src->color.value, scratch, fpConvert, fpFormat); } break; } case PEXLUTInteriorBundle: { PEXInteriorBundleEntry *src = (PEXInteriorBundleEntry *) entries; pexInteriorBundleEntry *dst; scratch = firstEntry = (char *) _XAllocScratch (display, count * sizeof (PEXInteriorBundleEntry)); for (i = 0; i < count; i++, src++) { BEGIN_LUTENTRY_HEADER (pexInteriorBundleEntry, scratch, dst); dst->interiorStyle = src->style; dst->interiorStyleIndex = src->style_index; dst->reflectionModel = src->reflection_model; dst->surfaceInterp = src->interp_method; dst->bfInteriorStyle = src->bf_style; dst->bfInteriorStyleIndex = src->bf_style_index; dst->bfReflectionModel = src->bf_reflection_model; dst->bfSurfaceInterp = src->bf_interp_method; dst->surfaceApprox_method = src->surface_approx.method; if (fpConvert) { FP_CONVERT_HTON (src->surface_approx.u_tolerance, dst->surfaceApproxuTolerance, fpFormat); FP_CONVERT_HTON (src->surface_approx.v_tolerance, dst->surfaceApproxvTolerance, fpFormat); } else { dst->surfaceApproxuTolerance = src->surface_approx.u_tolerance; dst->surfaceApproxvTolerance = src->surface_approx.v_tolerance; } END_LUTENTRY_HEADER (pexInteriorBundleEntry, scratch, dst); /* copy surfaceColor */ STORE_COLOR_SPEC (src->color, scratch, fpConvert, fpFormat); /* copy reflectionAttr */ STORE_REFLECTION_ATTR (src->reflection_attr, scratch, fpConvert, fpFormat); /* copy bfSurfaceColor */ STORE_COLOR_SPEC (src->bf_color, scratch, fpConvert, fpFormat); /* copy bfReflectionAttr */ STORE_REFLECTION_ATTR (src->bf_reflection_attr, scratch, fpConvert, fpFormat); } break; } case PEXLUTEdgeBundle: { PEXEdgeBundleEntry *src = (PEXEdgeBundleEntry *) entries; pexEdgeBundleEntry *dst; scratch = firstEntry = (char *) _XAllocScratch (display, count * sizeof (PEXEdgeBundleEntry)); for (i = 0; i < count; i++, src++) { BEGIN_LUTENTRY_HEADER (pexEdgeBundleEntry, scratch, dst); dst->edges = src->edge_flag; dst->edgeType = src->type; dst->edgeColorType = src->color.type; if (fpConvert) { FP_CONVERT_HTON (src->width, dst->edgeWidth, fpFormat); } else dst->edgeWidth = src->width; END_LUTENTRY_HEADER (pexEdgeBundleEntry, scratch, dst); STORE_COLOR_VAL (src->color.type, src->color.value, scratch, fpConvert, fpFormat); } break; } case PEXLUTPattern: { PEXPatternEntry *src = (PEXPatternEntry *) entries; pexPatternEntry *dst; size = count * sizeof (PEXPatternEntry); for (i = 0; i < count; i++) size += (src[i].col_count * src[i].row_count * sizeof (PEXColor)); scratch = firstEntry = (char *) _XAllocScratch (display, size); for (i = 0; i < count; i++, src++) { BEGIN_LUTENTRY_HEADER (pexPatternEntry, scratch, dst); dst->colorType = src->color_type; dst->numx = src->col_count; dst->numy = src->row_count; END_LUTENTRY_HEADER (pexPatternEntry, scratch, dst); STORE_LISTOF_COLOR_VAL (src->col_count * src->row_count, src->color_type, src->colors, scratch, fpConvert, fpFormat); } break; } case PEXLUTTextFont: { PEXTextFontEntry *src = (PEXTextFontEntry *) entries; pexTextFontEntry *dst; size = count * sizeof (PEXTextFontEntry); for (i = 0; i < count; i++) size += src[i].count * sizeof (PEXFont); scratch = firstEntry = (char *) _XAllocScratch (display, size); for (i = 0; i < count; i++, src++) { BEGIN_LUTENTRY_HEADER (pexTextFontEntry, scratch, dst); dst->numFonts = src->count; END_LUTENTRY_HEADER (pexTextFontEntry, scratch, dst); STORE_LISTOF_CARD32 (src->count, src->fonts, scratch); } break; } case PEXLUTColor: { PEXColorEntry *src = (PEXColorEntry *) entries; scratch = firstEntry = (char *) _XAllocScratch (display, count * sizeof (PEXColorEntry)); STORE_LISTOF_COLOR_SPEC (count, src, scratch, fpConvert, fpFormat); break; } case PEXLUTView: { PEXViewEntry *src = (PEXViewEntry *) entries; pexViewEntry *dst; char *tPtr; scratch = firstEntry = (char *) _XAllocScratch (display, count * sizeof (PEXViewEntry)); for (i = 0; i < count; i++, src++) { BEGIN_LUTENTRY_HEADER (pexViewEntry, scratch, dst); dst->clipFlags = src->clip_flags; if (fpConvert) { FP_CONVERT_HTON (src->clip_limits.min.x, dst->clipLimits_xmin, fpFormat); FP_CONVERT_HTON (src->clip_limits.min.y, dst->clipLimits_ymin, fpFormat); FP_CONVERT_HTON (src->clip_limits.min.z, dst->clipLimits_zmin, fpFormat); FP_CONVERT_HTON (src->clip_limits.max.x, dst->clipLimits_xmax, fpFormat); FP_CONVERT_HTON (src->clip_limits.max.y, dst->clipLimits_ymax, fpFormat); FP_CONVERT_HTON (src->clip_limits.max.z, dst->clipLimits_zmax, fpFormat); } else { dst->clipLimits_xmin = src->clip_limits.min.x; dst->clipLimits_ymin = src->clip_limits.min.y; dst->clipLimits_zmin = src->clip_limits.min.z; dst->clipLimits_xmax = src->clip_limits.max.x; dst->clipLimits_ymax = src->clip_limits.max.y; dst->clipLimits_zmax = src->clip_limits.max.z; } tPtr = (char *) dst->orientation; STORE_LISTOF_FLOAT32 (16, src->orientation, tPtr, fpConvert, fpFormat); tPtr = (char *) dst->mapping; STORE_LISTOF_FLOAT32 (16, src->mapping, tPtr, fpConvert, fpFormat); END_LUTENTRY_HEADER (pexViewEntry, scratch, dst); } break; } case PEXLUTLight: { PEXLightEntry *src = (PEXLightEntry *) entries; pexLightEntry *dst; scratch = firstEntry = (char *) _XAllocScratch (display, count * sizeof (PEXLightEntry)); for (i = 0; i < count; i++, src++) { BEGIN_LUTENTRY_HEADER (pexLightEntry, scratch, dst); dst->lightType = src->type; dst->lightColorType = src->color.type; if (fpConvert) { FP_CONVERT_HTON (src->direction.x, dst->direction_x, fpFormat); FP_CONVERT_HTON (src->direction.y, dst->direction_y, fpFormat); FP_CONVERT_HTON (src->direction.z, dst->direction_z, fpFormat); FP_CONVERT_HTON (src->point.x, dst->point_x, fpFormat); FP_CONVERT_HTON (src->point.y, dst->point_y, fpFormat); FP_CONVERT_HTON (src->point.z, dst->point_z, fpFormat); FP_CONVERT_HTON (src->concentration, dst->concentration, fpFormat); FP_CONVERT_HTON (src->spread_angle, dst->spreadAngle, fpFormat); FP_CONVERT_HTON (src->attenuation1, dst->attenuation1, fpFormat); FP_CONVERT_HTON (src->attenuation2, dst->attenuation2, fpFormat); } else { dst->direction_x = src->direction.x; dst->direction_y = src->direction.y; dst->direction_z = src->direction.z; dst->point_x = src->point.x; dst->point_y = src->point.y; dst->point_z = src->point.z; dst->concentration = src->concentration; dst->spreadAngle = src->spread_angle; dst->attenuation1 = src->attenuation1; dst->attenuation2 = src->attenuation2; } END_LUTENTRY_HEADER (pexLightEntry, scratch, dst); STORE_COLOR_VAL (src->color.type, src->color.value, scratch, fpConvert, fpFormat); } break; } case PEXLUTDepthCue: { PEXDepthCueEntry *src = (PEXDepthCueEntry *) entries; pexDepthCueEntry *dst; scratch = firstEntry = (char *) _XAllocScratch (display, count * sizeof (PEXDepthCueEntry)); for (i = 0; i < count; i++, src++) { BEGIN_LUTENTRY_HEADER (pexDepthCueEntry, scratch, dst); dst->mode = src->mode; dst->depthCueColorType = src->color.type; if (fpConvert) { FP_CONVERT_HTON (src->front_plane, dst->frontPlane, fpFormat); FP_CONVERT_HTON (src->back_plane, dst->backPlane, fpFormat); FP_CONVERT_HTON (src->front_scaling, dst->frontScaling, fpFormat); FP_CONVERT_HTON (src->back_scaling, dst->backScaling, fpFormat); } else { dst->frontPlane = src->front_plane; dst->backPlane = src->back_plane; dst->frontScaling = src->front_scaling; dst->backScaling = src->back_scaling; } END_LUTENTRY_HEADER (pexDepthCueEntry, scratch, dst); STORE_COLOR_VAL (src->color.type, src->color.value, scratch, fpConvert, fpFormat); } break; } case PEXLUTColorApprox: { PEXColorApproxEntry *src = (PEXColorApproxEntry *) entries; pexColorApproxEntry *dst; scratch = firstEntry = (char *) _XAllocScratch (display, count * sizeof (PEXColorApproxEntry)); for (i = 0; i < count; i++, src++) { BEGIN_LUTENTRY_HEADER (pexColorApproxEntry, scratch, dst); dst->approxType = src->type; dst->approxModel = src->model; dst->max1 = src->max1; dst->max2 = src->max2; dst->max3 = src->max3; dst->dither = src->dither; dst->mult1 = src->mult1; dst->mult2 = src->mult2; dst->mult3 = src->mult3; dst->basePixel = src->base_pixel; if (fpConvert) { FP_CONVERT_HTON (src->weight1, dst->weight1, fpFormat); FP_CONVERT_HTON (src->weight2, dst->weight2, fpFormat); FP_CONVERT_HTON (src->weight3, dst->weight3, fpFormat); } else { dst->weight1 = src->weight1; dst->weight2 = src->weight2; dst->weight3 = src->weight3; } END_LUTENTRY_HEADER (pexColorApproxEntry, scratch, dst); } break; } } /* * Update the request length. */ size = scratch - firstEntry; req->length += NUMWORDS (size); END_REQUEST_HEADER (SetTableEntries, pBuf, req); /* * Add the table entry data to the end of the X request. */ Data (display, firstEntry, size); /* * Done, so unlock and check for synchronous-ness. */ UnlockDisplay (display); PEXSyncHandle (display); } void PEXDeleteTableEntries (display, lut, start, count) INPUT Display *display; INPUT PEXLookupTable lut; INPUT unsigned int start; INPUT unsigned int count; { register pexDeleteTableEntriesReq *req; char *pBuf; /* * Lock around the critical section, for multithreading. */ LockDisplay (display); /* * Put the request in the X request buffer. */ PEXGetReq (DeleteTableEntries, pBuf); BEGIN_REQUEST_HEADER (DeleteTableEntries, pBuf, req); PEXStoreReqHead (DeleteTableEntries, req); req->lut = lut; req->start = start; req->count = count; END_REQUEST_HEADER (DeleteTableEntries, pBuf, req); /* * Done, so unlock and check for synchronous-ness. */ UnlockDisplay (display); PEXSyncHandle (display); } /* * This routine repacks the lut entries returned by PEXGetTableEntry, * PEXGetTableEntries, and PEXGetPredefinedEntries. This is mostly to * change the colors from fixed size to the PEXColor union format, * as well as to do floating point conversion. */ static PEXPointer _PEXRepackLUTEntries (pBuf, numEntries, tableType, fpConvert, fpFormat) INPUT char *pBuf; INPUT int numEntries; INPUT int tableType; INPUT int fpConvert; INPUT int fpFormat; { PEXPointer lutBuf; int i; switch (tableType) { case PEXLUTLineBundle: { pexLineBundleEntry *src; PEXLineBundleEntry *dst; GetLUTEntryBuffer (numEntries, PEXLineBundleEntry, lutBuf); dst = (PEXLineBundleEntry *) lutBuf; for (i = 0; i < numEntries; i++, dst++) { GET_STRUCT_PTR (pexLineBundleEntry, pBuf, src); pBuf += SIZEOF (pexLineBundleEntry); dst->type = src->lineType; dst->interp_method = src->polylineInterp; dst->curve_approx.method = src->curveApprox_method; dst->color.type = src->lineColorType; if (fpConvert) { FP_CONVERT_NTOH (src->curveApprox_tolerance, dst->curve_approx.tolerance, fpFormat); FP_CONVERT_NTOH (src->lineWidth, dst->width, fpFormat); } else { dst->curve_approx.tolerance = src->curveApprox_tolerance; dst->width = src->lineWidth; } EXTRACT_COLOR_VAL (pBuf, dst->color.type, dst->color.value, fpConvert, fpFormat); } break; } case PEXLUTMarkerBundle: { pexMarkerBundleEntry *src; PEXMarkerBundleEntry *dst; GetLUTEntryBuffer (numEntries, PEXMarkerBundleEntry, lutBuf); dst = (PEXMarkerBundleEntry *) lutBuf; for (i = 0; i < numEntries; i++, dst++) { GET_STRUCT_PTR (pexMarkerBundleEntry, pBuf, src); pBuf += SIZEOF (pexMarkerBundleEntry); dst->type = src->markerType; dst->color.type = src->markerColorType; if (fpConvert) { FP_CONVERT_NTOH (src->markerScale, dst->scale, fpFormat); } else dst->scale = src->markerScale; EXTRACT_COLOR_VAL (pBuf, dst->color.type, dst->color.value, fpConvert, fpFormat); } break; } case PEXLUTTextBundle: { pexTextBundleEntry *src; PEXTextBundleEntry *dst; GetLUTEntryBuffer (numEntries, PEXTextBundleEntry, lutBuf); dst = (PEXTextBundleEntry *) lutBuf; for (i = 0; i < numEntries; i++, dst++) { GET_STRUCT_PTR (pexTextBundleEntry, pBuf, src); pBuf += SIZEOF (pexTextBundleEntry); dst->font_index = src->textFontIndex; dst->precision = src->textPrecision; dst->color.type = src->textColorType; if (fpConvert) { FP_CONVERT_NTOH (src->charExpansion, dst->char_expansion, fpFormat); FP_CONVERT_NTOH (src->charSpacing, dst->char_spacing, fpFormat); } else { dst->char_expansion = src->charExpansion; dst->char_spacing = src->charSpacing; } EXTRACT_COLOR_VAL (pBuf, dst->color.type, dst->color.value, fpConvert, fpFormat); } break; } case PEXLUTInteriorBundle: { pexInteriorBundleEntry *src; PEXInteriorBundleEntry *dst; GetLUTEntryBuffer (numEntries, PEXInteriorBundleEntry, lutBuf); dst = (PEXInteriorBundleEntry *) lutBuf; for (i = 0; i < numEntries; i++, dst++) { GET_STRUCT_PTR (pexInteriorBundleEntry, pBuf, src); pBuf += SIZEOF (pexInteriorBundleEntry); dst->style = src->interiorStyle; dst->style_index = src->interiorStyleIndex; dst->reflection_model = src->reflectionModel; dst->interp_method = src->surfaceInterp; dst->bf_style = src->bfInteriorStyle; dst->bf_style_index = src->bfInteriorStyleIndex; dst->bf_reflection_model = src->bfReflectionModel; dst->bf_interp_method = src->bfSurfaceInterp; dst->surface_approx.method = src->surfaceApprox_method; if (fpConvert) { FP_CONVERT_NTOH (src->surfaceApproxuTolerance, dst->surface_approx.u_tolerance, fpFormat); FP_CONVERT_NTOH (src->surfaceApproxvTolerance, dst->surface_approx.v_tolerance, fpFormat); } else { dst->surface_approx.u_tolerance = src->surfaceApproxuTolerance; dst->surface_approx.v_tolerance = src->surfaceApproxvTolerance; } /* copy surfaceColor */ EXTRACT_COLOR_SPEC (pBuf, dst->color, fpConvert, fpFormat); /* copy reflectionAttr */ EXTRACT_REFLECTION_ATTR (pBuf, dst->reflection_attr, fpConvert, fpFormat); /* copy bfSurfaceColor */ EXTRACT_COLOR_SPEC (pBuf, dst->bf_color, fpConvert, fpFormat); /* copy bfReflectionAttr */ EXTRACT_REFLECTION_ATTR (pBuf, dst->bf_reflection_attr, fpConvert, fpFormat); } break; } case PEXLUTEdgeBundle: { pexEdgeBundleEntry *src; PEXEdgeBundleEntry *dst; GetLUTEntryBuffer (numEntries, PEXEdgeBundleEntry, lutBuf); dst = (PEXEdgeBundleEntry *) lutBuf; for (i = 0; i < numEntries; i++, dst++) { GET_STRUCT_PTR (pexEdgeBundleEntry, pBuf, src); pBuf += SIZEOF (pexEdgeBundleEntry); dst->edge_flag = src->edges; dst->type = src->edgeType; dst->color.type = src->edgeColorType; if (fpConvert) { FP_CONVERT_NTOH (src->edgeWidth, dst->width, fpFormat); } else dst->width = src->edgeWidth; EXTRACT_COLOR_VAL (pBuf, dst->color.type, dst->color.value, fpConvert, fpFormat); } break; } case PEXLUTPattern: { pexPatternEntry *src; PEXPatternEntry *dst; GetLUTEntryBuffer (numEntries, PEXPatternEntry, lutBuf); dst = (PEXPatternEntry *) lutBuf; for (i = 0; i < numEntries; i++, dst++) { GET_STRUCT_PTR (pexPatternEntry, pBuf, src); pBuf += SIZEOF (pexPatternEntry); dst->color_type = src->colorType; dst->col_count = src->numx; dst->row_count = src->numy; dst->colors.indexed = (PEXColorIndexed *) Xmalloc ( (unsigned) (GetClientColorSize (dst->color_type) * dst->row_count * dst->col_count)); EXTRACT_LISTOF_COLOR_VAL (dst->row_count * dst->col_count, pBuf, dst->color_type, dst->colors, fpConvert, fpFormat); } break; } case PEXLUTTextFont: { pexTextFontEntry *src; PEXTextFontEntry *dst; GetLUTEntryBuffer (numEntries, PEXTextFontEntry, lutBuf); dst = (PEXTextFontEntry *) lutBuf; for (i = 0; i < numEntries; i++, dst++) { GET_STRUCT_PTR (pexTextFontEntry, pBuf, src); pBuf += SIZEOF (pexTextFontEntry); dst->count = src->numFonts; dst->fonts = (PEXFont *) Xmalloc ((unsigned) (dst->count * sizeof (PEXFont))); EXTRACT_LISTOF_CARD32 (dst->count, pBuf, dst->fonts); } break; } case PEXLUTColor: { PEXColorEntry *dst; GetLUTEntryBuffer (numEntries, PEXColorEntry, lutBuf); dst = (PEXColorEntry *) lutBuf; EXTRACT_LISTOF_COLOR_SPEC (numEntries, pBuf, dst, fpConvert, fpFormat); break; } case PEXLUTView: { pexViewEntry *src; PEXViewEntry *dst; char *tPtr; GetLUTEntryBuffer (numEntries, PEXViewEntry, lutBuf); dst = (PEXViewEntry *) lutBuf; for (i = 0; i < numEntries; i++, dst++) { GET_STRUCT_PTR (pexViewEntry, pBuf, src); pBuf += SIZEOF (pexViewEntry); dst->clip_flags = src->clipFlags; if (fpConvert) { FP_CONVERT_NTOH (src->clipLimits_xmin, dst->clip_limits.min.x, fpFormat); FP_CONVERT_NTOH (src->clipLimits_ymin, dst->clip_limits.min.y, fpFormat); FP_CONVERT_NTOH (src->clipLimits_zmin, dst->clip_limits.min.z, fpFormat); FP_CONVERT_NTOH (src->clipLimits_xmax, dst->clip_limits.max.x, fpFormat); FP_CONVERT_NTOH (src->clipLimits_ymax, dst->clip_limits.max.y, fpFormat); FP_CONVERT_NTOH (src->clipLimits_zmax, dst->clip_limits.max.z, fpFormat); } else { dst->clip_limits.min.x = src->clipLimits_xmin; dst->clip_limits.min.y = src->clipLimits_ymin; dst->clip_limits.min.z = src->clipLimits_zmin; dst->clip_limits.max.x = src->clipLimits_xmax; dst->clip_limits.max.y = src->clipLimits_ymax; dst->clip_limits.max.z = src->clipLimits_zmax; } tPtr = (char *) src->orientation; EXTRACT_LISTOF_FLOAT32 (16, tPtr, dst->orientation, fpConvert, fpFormat); tPtr = (char *) src->mapping; EXTRACT_LISTOF_FLOAT32 (16, tPtr, dst->mapping, fpConvert, fpFormat); } break; } case PEXLUTLight: { pexLightEntry *src; PEXLightEntry *dst; GetLUTEntryBuffer (numEntries, PEXLightEntry, lutBuf); dst = (PEXLightEntry *) lutBuf; for (i = 0; i < numEntries; i++, dst++) { GET_STRUCT_PTR (pexLightEntry, pBuf, src); pBuf += SIZEOF (pexLightEntry); dst->type = src->lightType; dst->color.type = src->lightColorType; if (fpConvert) { FP_CONVERT_NTOH (src->direction_x, dst->direction.x, fpFormat); FP_CONVERT_NTOH (src->direction_y, dst->direction.y, fpFormat); FP_CONVERT_NTOH (src->direction_z, dst->direction.z, fpFormat); FP_CONVERT_NTOH (src->point_x, dst->point.x, fpFormat); FP_CONVERT_NTOH (src->point_y, dst->point.y, fpFormat); FP_CONVERT_NTOH (src->point_z, dst->point.z, fpFormat); FP_CONVERT_NTOH (src->concentration, dst->concentration, fpFormat); FP_CONVERT_NTOH (src->spreadAngle, dst->spread_angle, fpFormat); FP_CONVERT_NTOH (src->attenuation1, dst->attenuation1, fpFormat); FP_CONVERT_NTOH (src->attenuation2, dst->attenuation2, fpFormat); } else { dst->direction.x = src->direction_x; dst->direction.y = src->direction_y; dst->direction.z = src->direction_z; dst->point.x = src->point_x; dst->point.y = src->point_y; dst->point.z = src->point_z; dst->concentration = src->concentration; dst->spread_angle = src->spreadAngle; dst->attenuation1 = src->attenuation1; dst->attenuation2 = src->attenuation2; } EXTRACT_COLOR_VAL (pBuf, dst->color.type, dst->color.value, fpConvert, fpFormat); } break; } case PEXLUTDepthCue: { pexDepthCueEntry *src; PEXDepthCueEntry *dst; GetLUTEntryBuffer (numEntries, PEXDepthCueEntry, lutBuf); dst = (PEXDepthCueEntry *) lutBuf; for (i = 0; i < numEntries; i++, dst++) { GET_STRUCT_PTR (pexDepthCueEntry, pBuf, src); pBuf += SIZEOF (pexDepthCueEntry); dst->mode = src->mode; dst->color.type = src->depthCueColorType; if (fpConvert) { FP_CONVERT_NTOH (src->frontPlane, dst->front_plane, fpFormat); FP_CONVERT_NTOH (src->backPlane, dst->back_plane, fpFormat); FP_CONVERT_NTOH (src->frontScaling, dst->front_scaling, fpFormat); FP_CONVERT_NTOH (src->backScaling, dst->back_scaling, fpFormat); } else { dst->front_plane = src->frontPlane; dst->back_plane = src->backPlane; dst->front_scaling = src->frontScaling; dst->back_scaling = src->backScaling; } EXTRACT_COLOR_VAL (pBuf, dst->color.type, dst->color.value, fpConvert, fpFormat); } break; } case PEXLUTColorApprox: { pexColorApproxEntry *src; PEXColorApproxEntry *dst; GetLUTEntryBuffer (numEntries, PEXColorApproxEntry, lutBuf); dst = (PEXColorApproxEntry *) lutBuf; for (i = 0; i < numEntries; i++, dst++) { GET_STRUCT_PTR (pexColorApproxEntry, pBuf, src); pBuf += SIZEOF (pexColorApproxEntry); dst->type = src->approxType; dst->model = src->approxModel; dst->max1 = src->max1; dst->max2 = src->max2; dst->max3 = src->max3; dst->dither = src->dither; dst->mult1 = src->mult1; dst->mult2 = src->mult2; dst->mult3 = src->mult3; dst->base_pixel = src->basePixel; if (fpConvert) { FP_CONVERT_NTOH (src->weight1, dst->weight1, fpFormat); FP_CONVERT_NTOH (src->weight2, dst->weight2, fpFormat); FP_CONVERT_NTOH (src->weight3, dst->weight3, fpFormat); } else { dst->weight1 = src->weight1; dst->weight2 = src->weight2; dst->weight3 = src->weight3; } } break; } } return (lutBuf); }