/* $Xorg: miregion.c,v 1.3 2000/08/17 19:47:45 cpqbld Exp $ */ /**** module miregion.c ****/ /****************************************************************************** Copyright 1993, 1994, 1998 The Open Group All Rights Reserved. The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE OPEN GROUP BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. Except as contained in this notice, the name of The Open Group shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization from The Open Group. NOTICE This software is being provided by AGE Logic, Inc. under the following license. By obtaining, using and/or copying this software, you agree that you have read, understood, and will comply with these terms and conditions: Permission to use, copy, modify, distribute and sell this software and its documentation for any purpose and without fee or royalty and to grant others any or all rights granted herein is hereby granted, provided that you agree to comply with the following copyright notice and statements, including the disclaimer, and that the same appears on all copies and derivative works of the software and documentation you make. "Copyright 1993, 1994 by AGE Logic, Inc." THIS SOFTWARE IS PROVIDED "AS IS". AGE LOGIC MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. By way of example, but not limitation, AGE LOGIC MAKE NO REPRESENTATIONS OR WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE SOFTWARE DOES NOT INFRINGE THIRD-PARTY PROPRIETARY RIGHTS. AGE LOGIC SHALL BEAR NO LIABILITY FOR ANY USE OF THIS SOFTWARE. IN NO EVENT SHALL EITHER PARTY BE LIABLE FOR ANY INDIRECT, INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY EITHER PARTY OR ANY THIRD PARTY, WHETHER IN AN ACTION IN CONTRACT OR TORT OR BASED ON A WARRANTY, EVEN IF AGE LOGIC LICENSEES HEREUNDER HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. The name of AGE Logic, Inc. may not be used in advertising or publicity pertaining to this software without specific, written prior permission from AGE Logic. Title to this software shall at all times remain with AGE Logic, Inc. ***************************************************************************** miregion.c -- ddx/mi/miregion code converted over to XIE for rectangles of interest. "Minimal" conversion made to support rectangles defined by INT32s instead of shorts. Unused routines from the general code have been removed. Dean Verheiden -- AGE Logic, Inc. August, 1993 *****************************************************************************/ /*********************************************************** Copyright 1987, 1988, 1989 The Open Group Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE OPEN GROUP BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. Except as contained in this notice, the name of The Open Group shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization from The Open Group. Copyright 1987, 1988, 1989 by Digital Equipment Corporation, Maynard, Massachusetts. All Rights Reserved Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice and this permission notice appear in supporting documentation, and that the name of Digital not be used in advertising or publicity pertaining to distribution of the software without specific, written prior permission. DIGITAL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL DIGITAL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. ******************************************************************/ /* $XFree86: xc/programs/Xserver/XIE/mixie/import/miregion.c,v 3.6 2001/01/17 22:13:05 dawes Exp $ */ #define _XIEC_MIREGION #include #include "miscstruct.h" #include "regionstr.h" #include "Xprotostr.h" #include "gc.h" #include "microi.h" #include "macro.h" #if defined (__GNUC__) && !defined (NO_INLINES) #define INLINE __inline #else #define INLINE #endif /* * hack until callers of these functions can deal with out-of-memory */ extern Bool Must_have_memory; #undef assert #define assert(expr) #define good(reg) assert(miXieValidRegion(reg)) /* * The functions in this file implement the Region abstraction used extensively * throughout the X11 sample server. A Region is simply a set of disjoint * (non-overlapping) rectangles, plus an "extent" rectangle which is the * smallest single rectangle that contains all the non-overlapping rectangles. * * A Region is implemented as a "y-x-banded" array of rectangles. This array * imposes two degrees of order. First, all rectangles are sorted by top side * y coordinate first (y1), and then by left side x coordinate (x1). * * Furthermore, the rectangles are grouped into "bands". Each rectangle in a * band has the same top y coordinate (y1), and each has the same bottom y * coordinate (y2). Thus all rectangles in a band differ only in their left * and right side (x1 and x2). Bands are implicit in the array of rectangles: * there is no separate list of band start pointers. * * The y-x band representation does not minimize rectangles. In particular, * if a rectangle vertically crosses a band (the rectangle has scanlines in * the y1 to y2 area spanned by the band), then the rectangle may be broken * down into two or more smaller rectangles stacked one atop the other. * * ----------- ----------- * | | | | band 0 * | | -------- ----------- -------- * | | | | in y-x banded | | | | band 1 * | | | | form is | | | | * ----------- | | ----------- -------- * | | | | band 2 * -------- -------- * * An added constraint on the rectangles is that they must cover as much * horizontal area as possible: no two rectangles within a band are allowed * to touch. * * Whenever possible, bands will be merged together to cover a greater vertical * distance (and thus reduce the number of rectangles). Two bands can be merged * only if the bottom of one touches the top of the other and they have * rectangles in the same places (of the same width, of course). * * Adam de Boor wrote most of the original region code. Joel McCormack * substantially modified or rewrote most of the core arithmetic routines, * and added miXieRegionValidate in order to support several speed improvements * to miXieValidateTree. Bob Scheifler changed the representation to be more * compact when empty or a single rectangle, and did a bunch of gratuitous * reformatting. */ #define xallocData(n) (XieRegDataPtr)XieMalloc(XIEREGION_SZOF(n)) #define xfreeData(reg) if ((reg)->data && (reg)->data->size) XieFree((reg)->data) #define RECTALLOC(pReg,n) \ if (!(pReg)->data || (((pReg)->data->numRects + (n)) > (pReg)->data->size)) \ miXieRectAlloc(pReg, n) #define ADDRECT(pNextRect,nx1,ny1,nx2,ny2) \ { \ pNextRect->x1 = nx1; \ pNextRect->y1 = ny1; \ pNextRect->x2 = nx2; \ pNextRect->y2 = ny2; \ pNextRect++; \ } #define NEWRECT(pReg,pNextRect,nx1,ny1,nx2,ny2) \ { \ if (!(pReg)->data || ((pReg)->data->numRects == (pReg)->data->size))\ { \ miXieRectAlloc(pReg, 1); \ pNextRect = XIEREGION_TOP(pReg); \ } \ ADDRECT(pNextRect,nx1,ny1,nx2,ny2); \ pReg->data->numRects++; \ assert(pReg->data->numRects<=pReg->data->size); \ } #define DOWNSIZE(reg,numRects) \ if (((numRects) < ((reg)->data->size >> 1)) && ((reg)->data->size > 50)) \ { \ XieRegDataPtr NewData; \ NewData = (XieRegDataPtr)XieRealloc((reg)->data, XIEREGION_SZOF(numRects)); \ if (NewData) \ { \ NewData->size = (numRects); \ (reg)->data = NewData; \ } \ } static XieBoxRec EmptyBox = {0, 0, 0, 0}; static XieRegDataRec EmptyData = {0, 0}; /***************************************************************** * XieRegionCreate(rect, size) * This routine does a simple XieMalloc to make a structure of * REGION of "size" number of rectangles. *****************************************************************/ XieRegionPtr miXieRegionCreate(rect, size) XieBoxPtr rect; int size; { register XieRegionPtr pReg; Must_have_memory = TRUE; /* XXX */ pReg = (XieRegionPtr)XieMalloc(sizeof(XieRegionRec)); Must_have_memory = FALSE; /* XXX */ if (rect) { pReg->extents = *rect; pReg->data = (XieRegDataPtr)NULL; } else { pReg->extents = EmptyBox; if ((size > 1) && (pReg->data = xallocData(size))) { pReg->data->size = size; pReg->data->numRects = 0; } else pReg->data = &EmptyData; } return(pReg); } void miXieRegionDestroy(pReg) XieRegionPtr pReg; { good(pReg); xfreeData(pReg); XieFree(pReg); } Bool miXieRectAlloc(pRgn, n) register XieRegionPtr pRgn; int n; { Must_have_memory = TRUE; /* XXX */ if (!pRgn->data) { n++; pRgn->data = xallocData(n); pRgn->data->numRects = 1; *XIEREGION_BOXPTR(pRgn) = pRgn->extents; } else if (!pRgn->data->size) { pRgn->data = xallocData(n); pRgn->data->numRects = 0; } else { if (n == 1) { n = pRgn->data->numRects; if (n > 500) /* XXX pick numbers out of a hat */ n = 250; } n += pRgn->data->numRects; pRgn->data = (XieRegDataPtr)XieRealloc(pRgn->data, XIEREGION_SZOF(n)); } Must_have_memory = FALSE; /* XXX */ pRgn->data->size = n; return TRUE; } /*====================================================================== * Generic XieRegion Operator *====================================================================*/ /*- *----------------------------------------------------------------------- * miXieCoalesce -- * Attempt to merge the boxes in the current band with those in the * previous one. We are guaranteed that the current band extends to * the end of the rects array. Used only by miXieRegionOp. * * Results: * The new index for the previous band. * * Side Effects: * If coalescing takes place: * - rectangles in the previous band will have their y2 fields * altered. * - pReg->data->numRects will be decreased. * *----------------------------------------------------------------------- */ INLINE static int miXieCoalesce (pReg, prevStart, curStart) register XieRegionPtr pReg; /* Region to coalesce */ int prevStart; /* Index of start of previous band */ int curStart; /* Index of start of current band */ { register XieBoxPtr pPrevBox; /* Current box in previous band */ register XieBoxPtr pCurBox; /* Current box in current band */ register int numRects; /* Number rectangles in both bands */ register int y2; /* Bottom of current band */ /* * Figure out how many rectangles are in the band. */ numRects = curStart - prevStart; assert(numRects == pReg->data->numRects - curStart); if (!numRects) return curStart; /* * The bands may only be coalesced if the bottom of the previous * matches the top scanline of the current. */ pPrevBox = XIEREGION_BOX(pReg, prevStart); pCurBox = XIEREGION_BOX(pReg, curStart); if (pPrevBox->y2 != pCurBox->y1) return curStart; /* * Make sure the bands have boxes in the same places. This * assumes that boxes have been added in such a way that they * cover the most area possible. I.e. two boxes in a band must * have some horizontal space between them. */ y2 = pCurBox->y2; do { if ((pPrevBox->x1 != pCurBox->x1) || (pPrevBox->x2 != pCurBox->x2)) { return (curStart); } pPrevBox++; pCurBox++; numRects--; } while (numRects); /* * The bands may be merged, so set the bottom y of each box * in the previous band to the bottom y of the current band. */ numRects = curStart - prevStart; pReg->data->numRects -= numRects; do { pPrevBox--; pPrevBox->y2 = y2; numRects--; } while (numRects); return prevStart; } /* Quicky macro to avoid trivial reject procedure calls to miXieCoalesce */ #define Coalesce(newReg, prevBand, curBand) \ if (curBand - prevBand == newReg->data->numRects - curBand) { \ prevBand = miXieCoalesce(newReg, prevBand, curBand); \ } else { \ prevBand = curBand; \ } /*- *----------------------------------------------------------------------- * miXieAppendNonO -- * Handle a non-overlapping band for the union and subtract operations. * Just adds the (top/bottom-clipped) rectangles into the region. * Doesn't have to check for subsumption or anything. * * Results: * None. * * Side Effects: * pReg->data->numRects is incremented and the rectangles overwritten * with the rectangles we're passed. * *----------------------------------------------------------------------- */ INLINE static Bool miXieAppendNonO (pReg, r, rEnd, y1, y2) register XieRegionPtr pReg; register XieBoxPtr r; XieBoxPtr rEnd; register int y1; register int y2; { register XieBoxPtr pNextRect; register int newRects; newRects = rEnd - r; assert(y1 < y2); assert(newRects != 0); /* Make sure we have enough space for all rectangles to be added */ RECTALLOC(pReg, newRects); pNextRect = XIEREGION_TOP(pReg); pReg->data->numRects += newRects; do { assert(r->x1 < r->x2); ADDRECT(pNextRect, r->x1, y1, r->x2, y2); r++; } while (r != rEnd); return TRUE; } #define FindBand(r, rBandEnd, rEnd, ry1) \ { \ ry1 = r->y1; \ rBandEnd = r+1; \ while ((rBandEnd != rEnd) && (rBandEnd->y1 == ry1)) { \ rBandEnd++; \ } \ } #define AppendRegions(newReg, r, rEnd) \ { \ int newRects; \ if (newRects = rEnd - r) { \ RECTALLOC(newReg, newRects); \ memcpy((char *)XIEREGION_TOP(newReg), (char *)r, \ newRects * sizeof(XieBoxRec)); \ newReg->data->numRects += newRects; \ } \ } /*- *----------------------------------------------------------------------- * miXieRegionOp -- * Apply an operation to two regions. Called by miXieUnion, miXieInverse, * miXieSubtract, miXieIntersect.... Both regions MUST have at least one * rectangle, and cannot be the same object. * * Results: * TRUE if successful. * * Side Effects: * The new region is overwritten. * pOverlap set to TRUE if overlapFunc ever returns TRUE. * * Notes: * The idea behind this function is to view the two regions as sets. * Together they cover a rectangle of area that this function divides * into horizontal bands where points are covered only by one region * or by both. For the first case, the nonOverlapFunc is called with * each the band and the band's upper and lower extents. For the * second, the overlapFunc is called to process the entire band. It * is responsible for clipping the rectangles in the band, though * this function provides the boundaries. * At the end of each band, the new region is coalesced, if possible, * to reduce the number of rectangles in the region. * *----------------------------------------------------------------------- */ static Bool miXieRegionOp(newReg, reg1, reg2, overlapFunc, appendNon1, appendNon2, pOverlap) XieRegionPtr newReg; /* Place to store result */ XieRegionPtr reg1; /* First region in operation */ XieRegionPtr reg2; /* 2d region in operation */ Bool (*overlapFunc)(); /* Function to call for over- * lapping bands */ Bool appendNon1; /* Append non-overlapping bands */ /* in region 1 ? */ Bool appendNon2; /* Append non-overlapping bands */ /* in region 2 ? */ Bool *pOverlap; { register XieBoxPtr r1; /* Pointer into first region */ register XieBoxPtr r2; /* Pointer into 2d region */ XieBoxPtr r1End; /* End of 1st region */ XieBoxPtr r2End; /* End of 2d region */ INT32 ybot; /* Bottom of intersection */ INT32 ytop; /* Top of intersection */ XieRegDataPtr oldData; /* Old data for newReg */ int prevBand; /* Index of start of * previous band in newReg */ int curBand; /* Index of start of current * band in newReg */ register XieBoxPtr r1BandEnd; /* End of current band in r1 */ register XieBoxPtr r2BandEnd; /* End of current band in r2 */ INT32 top; /* Top of non-overlapping band */ INT32 bot; /* Bottom of non-overlapping band*/ register int r1y1; /* Temps for r1->y1 and r2->y1 */ register int r2y1; int newSize; int numRects; /* * Initialization: * set r1, r2, r1End and r2End appropriately, save the rectangles * of the destination region until the end in case it's one of * the two source regions, then mark the "new" region empty, allocating * another array of rectangles for it to use. */ r1 = XIEREGION_RECTS(reg1); newSize = XIEREGION_NUM_RECTS(reg1); r1End = r1 + newSize; numRects = XIEREGION_NUM_RECTS(reg2); r2 = XIEREGION_RECTS(reg2); r2End = r2 + numRects; assert(r1 != r1End); assert(r2 != r2End); oldData = (XieRegDataPtr)NULL; if (((newReg == reg1) && (newSize > 1)) || ((newReg == reg2) && (numRects > 1))) { oldData = newReg->data; newReg->data = &EmptyData; } /* guess at new size */ if (numRects > newSize) newSize = numRects; newSize <<= 1; if (!newReg->data) newReg->data = &EmptyData; else if (newReg->data->size) newReg->data->numRects = 0; if (newSize > newReg->data->size) miXieRectAlloc(newReg, newSize); /* * Initialize ybot. * In the upcoming loop, ybot and ytop serve different functions depending * on whether the band being handled is an overlapping or non-overlapping * band. * In the case of a non-overlapping band (only one of the regions * has points in the band), ybot is the bottom of the most recent * intersection and thus clips the top of the rectangles in that band. * ytop is the top of the next intersection between the two regions and * serves to clip the bottom of the rectangles in the current band. * For an overlapping band (where the two regions intersect), ytop clips * the top of the rectangles of both regions and ybot clips the bottoms. */ ybot = min(r1->y1, r2->y1); /* * prevBand serves to mark the start of the previous band so rectangles * can be coalesced into larger rectangles. qv. miXieCoalesce, above. * In the beginning, there is no previous band, so prevBand == curBand * (curBand is set later on, of course, but the first band will always * start at index 0). prevBand and curBand must be indices because of * the possible expansion, and resultant moving, of the new region's * array of rectangles. */ prevBand = 0; do { /* * This algorithm proceeds one source-band (as opposed to a * destination band, which is determined by where the two regions * intersect) at a time. r1BandEnd and r2BandEnd serve to mark the * rectangle after the last one in the current band for their * respective regions. */ assert(r1 != r1End); assert(r2 != r2End); FindBand(r1, r1BandEnd, r1End, r1y1); FindBand(r2, r2BandEnd, r2End, r2y1); /* * First handle the band that doesn't intersect, if any. * * Note that attention is restricted to one band in the * non-intersecting region at once, so if a region has n * bands between the current position and the next place it overlaps * the other, this entire loop will be passed through n times. */ if (r1y1 < r2y1) { if (appendNon1) { top = max(r1y1, ybot); bot = min(r1->y2, r2y1); if (top != bot) { curBand = newReg->data->numRects; miXieAppendNonO(newReg, r1, r1BandEnd, top, bot); Coalesce(newReg, prevBand, curBand); } } ytop = r2y1; } else if (r2y1 < r1y1) { if (appendNon2) { top = max(r2y1, ybot); bot = min(r2->y2, r1y1); if (top != bot) { curBand = newReg->data->numRects; miXieAppendNonO(newReg, r2, r2BandEnd, top, bot); Coalesce(newReg, prevBand, curBand); } } ytop = r1y1; } else { ytop = r1y1; } /* * Now see if we've hit an intersecting band. The two bands only * intersect if ybot > ytop */ ybot = min(r1->y2, r2->y2); if (ybot > ytop) { curBand = newReg->data->numRects; (* overlapFunc)(newReg, r1, r1BandEnd, r2, r2BandEnd, ytop, ybot, pOverlap); Coalesce(newReg, prevBand, curBand); } /* * If we've finished with a band (y2 == ybot) we skip forward * in the region to the next band. */ if (r1->y2 == ybot) r1 = r1BandEnd; if (r2->y2 == ybot) r2 = r2BandEnd; } while (r1 != r1End && r2 != r2End); /* * Deal with whichever region (if any) still has rectangles left. * * We only need to worry about banding and coalescing for the very first * band left. After that, we can just group all remaining boxes, * regardless of how many bands, into one final append to the list. */ if ((r1 != r1End) && appendNon1) { /* Do first nonOverlap1Func call, which may be able to coalesce */ FindBand(r1, r1BandEnd, r1End, r1y1); curBand = newReg->data->numRects; miXieAppendNonO(newReg, r1, r1BandEnd, max(r1y1, ybot), r1->y2); Coalesce(newReg, prevBand, curBand); /* Just append the rest of the boxes */ AppendRegions(newReg, r1BandEnd, r1End); } else if ((r2 != r2End) && appendNon2) { /* Do first nonOverlap2Func call, which may be able to coalesce */ FindBand(r2, r2BandEnd, r2End, r2y1); curBand = newReg->data->numRects; miXieAppendNonO(newReg, r2, r2BandEnd, max(r2y1, ybot), r2->y2); Coalesce(newReg, prevBand, curBand); /* Append rest of boxes */ AppendRegions(newReg, r2BandEnd, r2End); } if (oldData) XieFree(oldData); if (!(numRects = newReg->data->numRects)) { xfreeData(newReg); newReg->data = &EmptyData; } else if (numRects == 1) { newReg->extents = *XIEREGION_BOXPTR(newReg); xfreeData(newReg); newReg->data = (XieRegDataPtr)NULL; } else { DOWNSIZE(newReg, numRects); } return TRUE; } #define MERGERECT(r) \ { \ if (r->x1 <= x2) { \ /* Merge with current rectangle */ \ if (r->x1 < x2) *pOverlap = TRUE; \ if (x2 < r->x2) x2 = r->x2; \ } else { \ /* Add current rectangle, start new one */ \ NEWRECT(pReg, pNextRect, x1, y1, x2, y2); \ x1 = r->x1; \ x2 = r->x2; \ } \ r++; \ } /*====================================================================== * XieRegion Union *====================================================================*/ /*- *----------------------------------------------------------------------- * miXieUnionO -- * Handle an overlapping band for the union operation. Picks the * left-most rectangle each time and merges it into the region. * * Results: * TRUE if successful. * * Side Effects: * pReg is overwritten. * pOverlap is set to TRUE if any boxes overlap. * *----------------------------------------------------------------------- */ static Bool miXieUnionO (pReg, r1, r1End, r2, r2End, y1, y2, pOverlap) register XieRegionPtr pReg; register XieBoxPtr r1; XieBoxPtr r1End; register XieBoxPtr r2; XieBoxPtr r2End; INT32 y1; INT32 y2; Bool *pOverlap; { register XieBoxPtr pNextRect; register int x1; /* left and right side of current union */ register int x2; assert (y1 < y2); assert(r1 != r1End && r2 != r2End); pNextRect = XIEREGION_TOP(pReg); /* Start off current rectangle */ if (r1->x1 < r2->x1) { x1 = r1->x1; x2 = r1->x2; r1++; } else { x1 = r2->x1; x2 = r2->x2; r2++; } while (r1 != r1End && r2 != r2End) { if (r1->x1 < r2->x1) MERGERECT(r1) else MERGERECT(r2); } /* Finish off whoever (if any) is left */ if (r1 != r1End) { do { MERGERECT(r1); } while (r1 != r1End); } else if (r2 != r2End) { do { MERGERECT(r2); } while (r2 != r2End); } /* Add current rectangle */ NEWRECT(pReg, pNextRect, x1, y1, x2, y2); return TRUE; } #define ExchangeRects(a, b) \ { \ XieBoxRec t; \ t = rects[a]; \ rects[a] = rects[b]; \ rects[b] = t; \ } static void QuickSortRects(rects, numRects) register XieBoxRec rects[]; register int numRects; { register int y1; register int x1; register int i, j; register XieBoxPtr r; /* Always called with numRects > 1 */ do { if (numRects == 2) { if (rects[0].y1 > rects[1].y1 || (rects[0].y1 == rects[1].y1 && rects[0].x1 > rects[1].x1)) ExchangeRects(0, 1); return; } /* Choose partition element, stick in location 0 */ ExchangeRects(0, numRects >> 1); y1 = rects[0].y1; x1 = rects[0].x1; /* Partition array */ i = 0; j = numRects; do { r = &(rects[i]); do { r++; i++; } while (i != numRects && (r->y1 < y1 || (r->y1 == y1 && r->x1 < x1))); r = &(rects[j]); do { r--; j--; } while (y1 < r->y1 || (y1 == r->y1 && x1 < r->x1)); if (i < j) ExchangeRects(i, j); } while (i < j); /* Move partition element back to middle */ ExchangeRects(0, j); /* Recurse */ if (numRects-j-1 > 1) QuickSortRects(&rects[j+1], numRects-j-1); numRects = j; } while (numRects > 1); } /*- *----------------------------------------------------------------------- * miXieRegionValidate -- * * Take a ``region'' which is a non-y-x-banded random collection of * rectangles, and compute a nice region which is the union of all the * rectangles. * * Results: * TRUE if successful. * * Side Effects: * The passed-in ``region'' may be modified. * pOverlap set to TRUE if any retangles overlapped, else FALSE; * * Strategy: * Step 1. Sort the rectangles into ascending order with primary key y1 * and secondary key x1. * * Step 2. Split the rectangles into the minimum number of proper y-x * banded regions. This may require horizontally merging * rectangles, and vertically coalescing bands. With any luck, * this step in an identity tranformation (ala the Box widget), * or a coalescing into 1 box (ala Menus). * * Step 3. Merge the separate regions down to a single region by calling * miXieUnion. Maximize the work each miXieUnion call does by using * a binary merge. * *----------------------------------------------------------------------- */ Bool miXieRegionValidate(badreg, pOverlap) XieRegionPtr badreg; Bool *pOverlap; { /* Descriptor for regions under construction in Step 2. */ typedef struct { XieRegionRec reg; int prevBand; int curBand; } XieRegionInfo; int numRects; /* Original numRects for badreg */ XieRegionInfo *ri; /* Array of current regions */ int numRI; /* Number of entries used in ri */ int sizeRI; /* Number of entries available in ri */ int i; /* Index into rects */ register int j; /* Index into ri */ register XieRegionInfo *rit; /* &ri[j] */ register XieRegionPtr reg; /* ri[j].reg */ register XieBoxPtr box; /* Current box in rects */ register XieBoxPtr riBox; /* Last box in ri[j].reg */ register XieRegionPtr hreg; /* ri[j_half].reg */ *pOverlap = FALSE; if (!badreg->data) { good(badreg); return TRUE; } numRects = badreg->data->numRects; if (!numRects) { good(badreg); return TRUE; } if (badreg->extents.x1 < badreg->extents.x2) { if ((numRects) == 1) { xfreeData(badreg); badreg->data = (XieRegDataPtr) NULL; } else { DOWNSIZE(badreg, numRects); } good(badreg); return TRUE; } /* Step 1: Sort the rects array into ascending (y1, x1) order */ QuickSortRects(XIEREGION_BOXPTR(badreg), numRects); /* Step 2: Scatter the sorted array into the minimum number of regions */ /* Set up the first region to be the first rectangle in badreg */ /* Note that step 2 code will never overflow the ri[0].reg rects array */ Must_have_memory = TRUE; /* XXX */ ri = (XieRegionInfo *) XieMalloc(4 * sizeof(XieRegionInfo)); Must_have_memory = FALSE; /* XXX */ sizeRI = 4; numRI = 1; ri[0].prevBand = 0; ri[0].curBand = 0; ri[0].reg = *badreg; box = XIEREGION_BOXPTR(&ri[0].reg); ri[0].reg.extents = *box; ri[0].reg.data->numRects = 1; /* Now scatter rectangles into the minimum set of valid regions. If the next rectangle to be added to a region would force an existing rectangle in the region to be split up in order to maintain y-x banding, just forget it. Try the next region. If it doesn't fit cleanly into any region, make a new one. */ for (i = numRects; --i > 0;) { box++; /* Look for a region to append box to */ for (j = numRI, rit = ri; --j >= 0; rit++) { reg = &rit->reg; riBox = XIEREGION_END(reg); if (box->y1 == riBox->y1 && box->y2 == riBox->y2) { /* box is in same band as riBox. Merge or append it */ if (box->x1 <= riBox->x2) { /* Merge it with riBox */ if (box->x1 < riBox->x2) *pOverlap = TRUE; if (box->x2 > riBox->x2) riBox->x2 = box->x2; } else { RECTALLOC(reg, 1); *XIEREGION_TOP(reg) = *box; reg->data->numRects++; } goto NextRect; /* So sue me */ } else if (box->y1 >= riBox->y2) { /* Put box into new band */ if (reg->extents.x2 < riBox->x2) reg->extents.x2 = riBox->x2; if (reg->extents.x1 > box->x1) reg->extents.x1 = box->x1; Coalesce(reg, rit->prevBand, rit->curBand); rit->curBand = reg->data->numRects; RECTALLOC(reg, 1); *XIEREGION_TOP(reg) = *box; reg->data->numRects++; goto NextRect; } /* Well, this region was inappropriate. Try the next one. */ } /* for j */ /* Uh-oh. No regions were appropriate. Create a new one. */ if (sizeRI == numRI) { /* Oops, allocate space for new region information */ sizeRI <<= 1; Must_have_memory = TRUE; /* XXX */ ri = (XieRegionInfo *) XieRealloc(ri, sizeRI * sizeof(XieRegionInfo)); Must_have_memory = FALSE; /* XXX */ rit = &ri[numRI]; } numRI++; rit->prevBand = 0; rit->curBand = 0; rit->reg.extents = *box; rit->reg.data = (XieRegDataPtr)NULL; miXieRectAlloc(&rit->reg, (i+numRI) / numRI); /* MUST force allocation */ NextRect: ; } /* for i */ /* Make a final pass over each region in order to Coalesce and set extents.x2 and extents.y2 */ for (j = numRI, rit = ri; --j >= 0; rit++) { reg = &rit->reg; riBox = XIEREGION_END(reg); reg->extents.y2 = riBox->y2; if (reg->extents.x2 < riBox->x2) reg->extents.x2 = riBox->x2; Coalesce(reg, rit->prevBand, rit->curBand); if (reg->data->numRects == 1) /* keep unions happy below */ { xfreeData(reg); reg->data = (XieRegDataPtr)NULL; } } /* Step 3: Union all regions into a single region */ while (numRI > 1) { int half = numRI/2; for (j = numRI & 1; j < (half + (numRI & 1)); j++) { reg = &ri[j].reg; hreg = &ri[j+half].reg; miXieRegionOp(reg, reg, hreg, miXieUnionO, TRUE, TRUE, pOverlap); if (hreg->extents.x1 < reg->extents.x1) reg->extents.x1 = hreg->extents.x1; if (hreg->extents.y1 < reg->extents.y1) reg->extents.y1 = hreg->extents.y1; if (hreg->extents.x2 > reg->extents.x2) reg->extents.x2 = hreg->extents.x2; if (hreg->extents.y2 > reg->extents.y2) reg->extents.y2 = hreg->extents.y2; xfreeData(hreg); } numRI -= half; } *badreg = ri[0].reg; XieFree(ri); good(badreg); return TRUE; }