/* $XFree86: xc/programs/Xserver/hw/xfree86/int10/helper_exec.c,v 1.16 2001/04/30 14:34:57 tsi Exp $ */ /* * XFree86 int10 module * execute BIOS int 10h calls in x86 real mode environment * Copyright 1999 Egbert Eich * * Part of this is based on code taken from DOSEMU * (C) Copyright 1992, ..., 1999 the "DOSEMU-Development-Team" */ /* * To debug port accesses define PRINT_PORT. * Note! You also have to comment out ioperm() * in xf86EnableIO(). Otherwise we won't trap * on PIO. */ #include "xf86.h" #include "xf86_OSproc.h" #include "xf86_ansic.h" #include "compiler.h" #include "xf86Pci.h" #define _INT10_PRIVATE #include "int10Defines.h" #include "xf86int10.h" #if !defined (_PC) && !defined (_PC_PCI) static int pciCfg1in(CARD16 addr, CARD32 *val); static int pciCfg1out(CARD16 addr, CARD32 val); #endif #define REG pInt int setup_int(xf86Int10InfoPtr pInt) { if (pInt != Int10Current) { if (!MapCurrentInt10(pInt)) return -1; Int10Current = pInt; } X86_EAX = (CARD32) pInt->ax; X86_EBX = (CARD32) pInt->bx; X86_ECX = (CARD32) pInt->cx; X86_EDX = (CARD32) pInt->dx; X86_ESI = (CARD32) pInt->si; X86_EDI = (CARD32) pInt->di; X86_EBP = (CARD32) pInt->bp; X86_ESP = 0x1000; X86_SS = pInt->stackseg >> 4; X86_EIP = 0x0600; X86_CS = 0x0; /* address of 'hlt' */ X86_DS = 0x40; /* standard pc ds */ X86_ES = pInt->es; X86_FS = 0; X86_GS = 0; X86_EFLAGS = X86_IF_MASK | X86_IOPL_MASK; return xf86BlockSIGIO(); } void finish_int(xf86Int10InfoPtr pInt, int sig) { xf86UnblockSIGIO(sig); pInt->ax = (CARD16) X86_EAX; pInt->bx = (CARD16) X86_EBX; pInt->cx = (CARD16) X86_ECX; pInt->dx = (CARD16) X86_EDX; pInt->si = (CARD16) X86_ESI; pInt->di = (CARD16) X86_EDI; pInt->es = (CARD16) X86_ES; pInt->bp = (CARD16) X86_EBP; pInt->flags = (CARD16) X86_FLAGS; } /* general software interrupt handler */ CARD32 getIntVect(xf86Int10InfoPtr pInt,int num) { return MEM_RW(pInt, num << 2) + (MEM_RW(pInt, (num << 2) + 2) << 4); } void pushw(xf86Int10InfoPtr pInt, CARD16 val) { X86_ESP -= 2; MEM_WW(pInt, ((CARD32) X86_SS << 4) + X86_SP, val); } int run_bios_int(int num, xf86Int10InfoPtr pInt) { CARD32 eflags; #ifndef _PC /* check if bios vector is initialized */ if (MEM_RW(pInt, (num << 2) + 2) == (SYS_BIOS >> 4)) { /* SYS_BIOS_SEG ?*/ ErrorF("Card BIOS on non-PC like platform not loaded\n"); return 0; } #endif #ifdef PRINT_INT ErrorF("calling card BIOS at: "); #endif eflags = X86_EFLAGS; #if 0 eflags = eflags | IF_MASK; X86_EFLAGS = X86_EFLAGS & ~(VIF_MASK | TF_MASK | IF_MASK | NT_MASK); #endif pushw(pInt, eflags); pushw(pInt, X86_CS); pushw(pInt, X86_IP); X86_CS = MEM_RW(pInt, (num << 2) + 2); X86_IP = MEM_RW(pInt, num << 2); #ifdef PRINT_INT ErrorF("0x%x:%lx\n", X86_CS, X86_EIP); #endif return 1; } /* Debugging stuff */ void dump_code(xf86Int10InfoPtr pInt) { int i; CARD32 lina = SEG_ADR((CARD32), X86_CS, IP); xf86DrvMsgVerb(pInt->scrnIndex, X_INFO, 3, "code at 0x%8.8lx:\n", lina); for (i=0; i<0x10; i++) xf86ErrorFVerb(3, " %2.2x", MEM_RB(pInt, lina + i)); xf86ErrorFVerb(3, "\n"); for (; i<0x20; i++) xf86ErrorFVerb(3, " %2.2x", MEM_RB(pInt, lina + i)); xf86ErrorFVerb(3, "\n"); } void dump_registers(xf86Int10InfoPtr pInt) { xf86DrvMsgVerb(pInt->scrnIndex, X_INFO, 3, "EAX=0x%8.8x, EBX=0x%8.8x, ECX=0x%8.8x, EDX=0x%8.8x\n", X86_EAX, X86_EBX, X86_ECX, X86_EDX); xf86DrvMsgVerb(pInt->scrnIndex, X_INFO, 3, "ESP=0x%8.8x, EBP=0x%8.8x, ESI=0x%8.8x, EDI=0x%8.8x\n", X86_ESP, X86_EBP, X86_ESI, X86_EDI); xf86DrvMsgVerb(pInt->scrnIndex, X_INFO, 3, "CS=0x%4.4x, SS=0x%4.4x," " DS=0x%4.4x, ES=0x%4.4x, FS=0x%4.4x, GS=0x%4.4x\n", X86_CS, X86_SS, X86_DS, X86_ES, X86_FS, X86_GS); xf86DrvMsgVerb(pInt->scrnIndex, X_INFO, 3, "EIP=0x%8.8x, EFLAGS=0x%8.8x\n", X86_EIP, X86_EFLAGS); } void stack_trace(xf86Int10InfoPtr pInt) { int i = 0; CARD32 stack = SEG_ADR((CARD32), X86_SS, SP); CARD32 tail = (CARD32)((X86_SS << 4) + 0x1000); if (stack >= tail) return; xf86MsgVerb(X_INFO, 3, "stack at 0x%8.8lx:\n", stack); for (; stack < tail; stack++) { xf86ErrorFVerb(3, " %2.2x", MEM_RB(pInt, stack)); i = (i + 1) % 0x10; if (!i) xf86ErrorFVerb(3, "\n"); } if (i) xf86ErrorFVerb(3, "\n"); } int port_rep_inb(xf86Int10InfoPtr pInt, CARD16 port, CARD32 base, int d_f, CARD32 count) { register int inc = d_f ? -1 : 1; CARD32 dst = base; #ifdef PRINT_PORT ErrorF(" rep_insb(%#x) %d bytes at %p %s\n", port, count, base, d_f ? "up" : "down"); #endif while (count--) { MEM_WB(pInt, dst, x_inb(port)); dst += inc; } return dst - base; } int port_rep_inw(xf86Int10InfoPtr pInt, CARD16 port, CARD32 base, int d_f, CARD32 count) { register int inc = d_f ? -2 : 2; CARD32 dst = base; #ifdef PRINT_PORT ErrorF(" rep_insw(%#x) %d bytes at %p %s\n", port, count, base, d_f ? "up" : "down"); #endif while (count--) { MEM_WW(pInt, dst, x_inw(port)); dst += inc; } return dst - base; } int port_rep_inl(xf86Int10InfoPtr pInt, CARD16 port, CARD32 base, int d_f, CARD32 count) { register int inc = d_f ? -4 : 4; CARD32 dst = base; #ifdef PRINT_PORT ErrorF(" rep_insl(%#x) %d bytes at %p %s\n", port, count, base, d_f ? "up" : "down"); #endif while (count--) { MEM_WL(pInt, dst, x_inl(port)); dst += inc; } return dst - base; } int port_rep_outb(xf86Int10InfoPtr pInt, CARD16 port, CARD32 base, int d_f, CARD32 count) { register int inc = d_f ? -1 : 1; CARD32 dst = base; #ifdef PRINT_PORT ErrorF(" rep_outb(%#x) %d bytes at %p %s\n", port, count, base, d_f ? "up" : "down"); #endif while (count--) { x_outb(port, MEM_RB(pInt, dst)); dst += inc; } return dst - base; } int port_rep_outw(xf86Int10InfoPtr pInt, CARD16 port, CARD32 base, int d_f, CARD32 count) { register int inc = d_f ? -2 : 2; CARD32 dst = base; #ifdef PRINT_PORT ErrorF(" rep_outw(%#x) %d bytes at %p %s\n", port, count, base, d_f ? "up" : "down"); #endif while (count--) { x_outw(port, MEM_RW(pInt, dst)); dst += inc; } return dst - base; } int port_rep_outl(xf86Int10InfoPtr pInt, CARD16 port, CARD32 base, int d_f, CARD32 count) { register int inc = d_f ? -4 : 4; CARD32 dst = base; #ifdef PRINT_PORT ErrorF(" rep_outl(%#x) %d bytes at %p %s\n", port, count, base, d_f ? "up" : "down"); #endif while (count--) { x_outl(port, MEM_RL(pInt, dst)); dst += inc; } return dst - base; } CARD8 x_inb(CARD16 port) { CARD8 val; if (port == 0x40) { Int10Current->inb40time++; val = (CARD8)(Int10Current->inb40time >> ((Int10Current->inb40time & 1) << 3)); #ifdef PRINT_PORT ErrorF(" inb(%#x) = %2.2x\n", port, val); #endif #ifdef __NOT_YET__ } else if (port < 0x0100) { /* Don't interfere with mainboard */ val = 0; xf86DrvMsgVerb(Int10Current->scrnIndex, X_NOT_IMPLEMENTED, 2, "inb 0x%4.4x\n", port); if (xf86GetVerbosity() > 3) { dump_registers(Int10Current); stack_trace(Int10Current); } #endif /* __NOT_YET__ */ } else { val = inb(port); #ifdef PRINT_PORT ErrorF(" inb(%#x) = %2.2x\n", port, val); #endif } return val; } CARD16 x_inw(CARD16 port) { CARD16 val; if (port == 0x5c) { /* * Emulate a PC98's timer. Typical resolution is 3.26 usec. * Approximate this by dividing by 3. */ long sec, usec; (void)getsecs(&sec, &usec); val = (CARD16)(usec / 3); } else { val = inw(port); } #ifdef PRINT_PORT ErrorF(" inw(%#x) = %4.4x\n", port, val); #endif return val; } void x_outb(CARD16 port, CARD8 val) { if ((port == 0x43) && (val == 0)) { /* * Emulate a PC's timer 0. Such timers typically have a resolution of * some .838 usec per tick, but this can only provide 1 usec per tick. * (Not that this matters much, given inherent emulation delays.) Use * the bottom bit as a byte select. See inb(0x40) above. */ long sec, usec; (void) getsecs(&sec, &usec); Int10Current->inb40time = (CARD16)(usec | 1); #ifdef PRINT_PORT ErrorF(" outb(%#x, %2.2x)\n", port, val); #endif #ifdef __NOT_YET__ } else if (port < 0x0100) { /* Don't interfere with mainboard */ xf86DrvMsgVerb(Int10Current->scrnIndex, X_NOT_IMPLEMENTED, 2, "outb 0x%4.4x,0x%2.2x\n", port, val); if (xf86GetVerbosity() > 3) { dump_registers(Int10Current); stack_trace(Int10Current); } #endif /* __NOT_YET__ */ } else { #ifdef PRINT_PORT ErrorF(" outb(%#x, %2.2x)\n", port, val); #endif outb(port, val); } } void x_outw(CARD16 port, CARD16 val) { #ifdef PRINT_PORT ErrorF(" outw(%#x, %4.4x)\n", port, val); #endif outw(port, val); } CARD32 x_inl(CARD16 port) { CARD32 val; #if !defined(_PC) && !defined(_PC_PCI) if (!pciCfg1in(port, &val)) #endif val = inl(port); #ifdef PRINT_PORT ErrorF(" inl(%#x) = %8.8x\n", port, val); #endif return val; } void x_outl(CARD16 port, CARD32 val) { #ifdef PRINT_PORT ErrorF(" outl(%#x, %8.8x)\n", port, val); #endif #if !defined(_PC) && !defined(_PC_PCI) if (!pciCfg1out(port, val)) #endif outl(port, val); } CARD8 Mem_rb(int addr) { return (*Int10Current->mem->rb)(Int10Current, addr); } CARD16 Mem_rw(int addr) { return (*Int10Current->mem->rw)(Int10Current, addr); } CARD32 Mem_rl(int addr) { return (*Int10Current->mem->rl)(Int10Current, addr); } void Mem_wb(int addr, CARD8 val) { (*Int10Current->mem->wb)(Int10Current, addr, val); } void Mem_ww(int addr, CARD16 val) { (*Int10Current->mem->ww)(Int10Current, addr, val); } void Mem_wl(int addr, CARD32 val) { (*Int10Current->mem->wl)(Int10Current, addr, val); } #if !defined(_PC) && !defined(_PC_PCI) static CARD32 PciCfg1Addr = 0; #define TAG(Cfg1Addr) (Cfg1Addr & 0xffff00) #define OFFSET(Cfg1Addr) (Cfg1Addr & 0xff) static int pciCfg1in(CARD16 addr, CARD32 *val) { if (addr == 0xCF8) { *val = PciCfg1Addr; return 1; } if (addr == 0xCFC) { *val = pciReadLong(TAG(PciCfg1Addr), OFFSET(PciCfg1Addr)); return 1; } return 0; } static int pciCfg1out(CARD16 addr, CARD32 val) { if (addr == 0xCF8) { PciCfg1Addr = val; return 1; } if (addr == 0xCFC) { pciWriteLong(TAG(PciCfg1Addr), OFFSET(PciCfg1Addr),val); return 1; } return 0; } #endif CARD8 bios_checksum(CARD8 *start, int size) { CARD8 sum = 0; while (size-- > 0) sum += *start++; return sum; } /* * Lock/Unlock legacy VGA. Some Bioses try to be very clever and make * an attempt to detect a legacy ISA card. If they find one they might * act very strange: for example they might configure the card as a * monochrome card. This might cause some drivers to choke. * To avoid this we attempt legacy VGA by writing to all know VGA * disable registers before we call the BIOS initialization and * restore the original values afterwards. In beween we hold our * breath. To get to a (possibly exising) ISA card need to disable * our current PCI card. */ /* * This is just for booting: we just want to catch pure * legacy vga therefore we don't worry about mmio etc. * This stuff should really go into vgaHW.c. However then * the driver would have to load the vga-module prior to * doing int10. */ void LockLegacyVGA(int screenIndex,legacyVGAPtr vga) { xf86SetCurrentAccess(FALSE, xf86Screens[screenIndex]); vga->save_msr = inb(0x3CC); vga->save_vse = inb(0x3C3); vga->save_46e8 = inb(0x46e8); vga->save_pos102 = inb(0x102); outb(0x3C2, ~(CARD8)0x03 & vga->save_msr); outb(0x3C3, ~(CARD8)0x01 & vga->save_vse); outb(0x46e8, ~(CARD8)0x08 & vga->save_46e8); outb(0x102, ~(CARD8)0x01 & vga->save_pos102); xf86SetCurrentAccess(TRUE, xf86Screens[screenIndex]); } void UnlockLegacyVGA(int screenIndex, legacyVGAPtr vga) { xf86SetCurrentAccess(FALSE, xf86Screens[screenIndex]); outb(0x102, vga->save_pos102); outb(0x46e8, vga->save_46e8); outb(0x3C3, vga->save_vse); outb(0x3C2, vga->save_msr); xf86SetCurrentAccess(TRUE, xf86Screens[screenIndex]); }