/* $XConsortium: ico.c,v 1.47 94/04/17 20:45:15 gildea Exp $ */ /*********************************************************** Copyright (c) 1987 X Consortium Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. Except as contained in this notice, the name of the X Consortium shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Software without prior written authorization from the X Consortium. Copyright 1987 by Digital Equipment Corporation, Maynard, Massachusetts. All Rights Reserved Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice and this permission notice appear in supporting documentation, and that the name of Digital not be used in advertising or publicity pertaining to distribution of the software without specific, written prior permission. DIGITAL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL DIGITAL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. ******************************************************************/ /* $XFree86: xc/programs/ico/ico.c,v 1.5 2001/08/29 11:09:44 alanh Exp $ */ /****************************************************************************** * Description * Display a wire-frame rotating icosahedron, with hidden lines removed * * Arguments: * -r display on root window instead of creating a new one * (plus a host of others, try -help) *****************************************************************************/ /* Additions by jimmc@sci: * faces and colors * double buffering on the display * additional polyhedra * sleep switch */ /* * multi-thread version by Stephen Gildea, January 1992 */ /* Additions by Carlos A M dos Santos, XFree86 project, September 1999: * use of "q" to quit threads * support for ICCCM delete window message * better thread support - mutex and condition to control termination */ #include #include #include #include #include #include #include #ifdef MULTIBUFFER #include #endif /* MULTIBUFFER */ #ifdef MULTITHREAD #include #endif #include #define MIN_ICO_WIDTH 5 #define MIN_ICO_HEIGHT 5 #define DEFAULT_ICO_WIDTH 150 #define DEFAULT_ICO_HEIGHT 150 #define DEFAULT_DELTAX 13 #define DEFAULT_DELTAY 9 #include "polyinfo.h" /* define format of one polyhedron */ /* Now include all the files which define the actual polyhedra */ Polyinfo polygons[] = { #include "allobjs.h" }; #define NumberPolygons sizeof(polygons)/sizeof(polygons[0]) #include #include /* for time_t */ #include /* for struct timeval */ typedef double Transform3D[4][4]; typedef struct { int prevX, prevY; unsigned long *plane_masks; /* points into dbpair.plane_masks */ unsigned long enplanemask; /* what we enable for drawing */ XColor *colors; /* size = 2 ** totalplanes */ unsigned long *pixels; /* size = 2 ** planesperbuf */ } DBufInfo; /* variables that need to be per-thread */ struct closure { /* these elements were originally in DBufPair, a struct type */ int planesperbuf; int pixelsperbuf; /* = 1< 2 || (__GNUC__ == 2 && __GNUC_MINOR__ >= 7) void icoFatal () __attribute__((__noreturn__)); #endif void icoFatal(fmt,a0) const char *fmt; const char *a0; { fprintf(stderr, "%s: ", ProgramName); fprintf(stderr, fmt, a0); fprintf(stderr, "\n"); exit(1); } /****************************************************************************** * Description * Memory allocation *****************************************************************************/ char * xalloc(nbytes) unsigned int nbytes; { char *p; p = malloc(nbytes); if (p) return p; fprintf(stderr, "%s: no more memory\n", ProgramName); exit(1); } /****************************************************************************** * Description * Sleep a certain number of milliseconds *****************************************************************************/ void msleep(msecs) unsigned int msecs; { struct timeval timeout; timeout.tv_sec = msecs / 1000; timeout.tv_usec = (msecs % 1000) * 1000; select(1,NULL,NULL,NULL,&timeout); } /****************************************************************************** * Description * Format a 4x4 identity matrix. * * Output * *m Formatted identity matrix *****************************************************************************/ void IdentMat(m) Transform3D m; { int i; int j; for (i = 3; i >= 0; --i) { for (j = 3; j >= 0; --j) m[i][j] = 0.0; m[i][i] = 1.0; } } /****************************************************************************** * Description * Concatenate two 4-by-4 transformation matrices. * * Input * l multiplicand (left operand) * r multiplier (right operand) * * Output * *m Result matrix *****************************************************************************/ void ConcatMat(l, r, m) const Transform3D l; const Transform3D r; Transform3D m; { int i; int j; for (i = 0; i < 4; ++i) for (j = 0; j < 4; ++j) m[i][j] = l[i][0] * r[0][j] + l[i][1] * r[1][j] + l[i][2] * r[2][j] + l[i][3] * r[3][j]; } /****************************************************************************** * Description * Format a matrix that will perform a rotation transformation * about the specified axis. The rotation angle is measured * counterclockwise about the specified axis when looking * at the origin from the positive axis. * * Input * axis Axis ('x', 'y', 'z') about which to perform rotation * angle Angle (in radians) of rotation * A Pointer to rotation matrix * * Output * *m Formatted rotation matrix *****************************************************************************/ void FormatRotateMat(axis, angle, m) char axis; double angle; Transform3D m; { double s, c; IdentMat(m); s = sin(angle); c = cos(angle); switch (axis) { case 'x': m[1][1] = m[2][2] = c; m[1][2] = s; m[2][1] = -s; break; case 'y': m[0][0] = m[2][2] = c; m[2][0] = s; m[0][2] = -s; break; case 'z': m[0][0] = m[1][1] = c; m[0][1] = s; m[1][0] = -s; break; } } /****************************************************************************** * Description * Perform a partial transform on non-homogeneous points. * Given an array of non-homogeneous (3-coordinate) input points, * this routine multiplies them by the 3-by-3 upper left submatrix * of a standard 4-by-4 transform matrix. The resulting non-homogeneous * points are returned. * * Input * n number of points to transform * m 4-by-4 transform matrix * in array of non-homogeneous input points * * Output * *out array of transformed non-homogeneous output points *****************************************************************************/ void PartialNonHomTransform(n, m, in, out) int n; const Transform3D m; const Point3D *in; Point3D *out; { for (; n > 0; --n, ++in, ++out) { out->x = in->x * m[0][0] + in->y * m[1][0] + in->z * m[2][0]; out->y = in->x * m[0][1] + in->y * m[1][1] + in->z * m[2][1]; out->z = in->x * m[0][2] + in->y * m[1][2] + in->z * m[2][2]; } } /* * Unfortunately we can not use XWindowEvent and XCheckWindowEvent to get * ClientMessage events, because there is no corresponding event mask. We must * use XIfEvent and XCheckIfEvent and this function as a predicate. Better if * Xlib had some kind of XWindowAnyEvent and XCheckWindowEvent. -- Casantos. */ Bool predicate(display, event, args) Display * display; XEvent * event; XPointer args; { Window w = (Window) args; return event->xany.window == w; } /****************************************************************************** * Description * Icosahedron animator. *****************************************************************************/ void icoClearArea(closure,x,y,w,h) struct closure *closure; int x,y,w,h; { if (multibufext && dblbuf) return; if (dblbuf || dofaces) { XSetForeground(dpy, closure->gcontext, closure->drawbuf->pixels[0]); /* use background as foreground color for fill */ XFillRectangle(dpy,closure->win,closure->gcontext,x,y,w,h); } else { XClearArea(dpy,closure->win,x,y,w,h,0); } } /* Set up points, transforms, etc. */ void initPoly(closure, poly, icoW, icoH) struct closure *closure; const Polyinfo *poly; int icoW, icoH; { Point3D *vertices = poly->v; int NV = poly->numverts; Transform3D r1; Transform3D r2; FormatRotateMat('x', 5 * 3.1416 / 180.0, r1); FormatRotateMat('y', 5 * 3.1416 / 180.0, r2); ConcatMat(r1, r2, closure->xform); memcpy((char *)closure->xv[0], (char *)vertices, NV * sizeof(Point3D)); closure->xv_buffer = 0; closure->wo2 = icoW / 2.0; closure->ho2 = icoH / 2.0; } void setDrawBuf (closure, n) struct closure *closure; int n; { XGCValues xgcv; unsigned long mask; #ifdef MULTIBUFFER if (multibufext && dblbuf) { closure->win = closure->multibuffers[n]; n = 0; } #endif /* MULTIBUFFER */ closure->drawbuf = closure->bufs+n; xgcv.foreground = closure->drawbuf->pixels[closure->pixelsperbuf-1]; xgcv.background = closure->drawbuf->pixels[0]; mask = GCForeground | GCBackground; if (dblbuf && !multibufext) { xgcv.plane_mask = closure->drawbuf->enplanemask; mask |= GCPlaneMask; } XChangeGC(dpy, closure->gcontext, mask, &xgcv); } void setDisplayBuf(closure, n, firsttime) struct closure *closure; int n; int firsttime; { #if MULTIBUFFER if (multibufext && dblbuf) { XmbufDisplayBuffers (dpy, 1, &closure->multibuffers[n], msleepcount, 0); if (!firsttime) return; n = 0; } #endif closure->dpybuf = closure->bufs+n; if (closure->totalpixels > 2) XStoreColors(dpy,closure->cmap,closure->dpybuf->colors,closure->totalpixels); } void setBufColor(closure, n,color) struct closure *closure; int n; /* color index */ XColor *color; /* color to set */ { int i,j,cx; DBufInfo *b; unsigned long pix; for (i=0; inplanesets; i++) { b = closure->bufs+i; for (j=0; j<(dblbuf&&!multibufext?closure->pixelsperbuf:1); j++) { cx = n + j*closure->pixelsperbuf; pix = b->colors[cx].pixel; b->colors[cx] = *color; b->colors[cx].pixel = pix; b->colors[cx].flags = DoRed | DoGreen | DoBlue; } } } /****************************************************************************** * Description * Undraw previous polyhedron (by erasing its bounding box). * Rotate and draw the new polyhedron. * * Input * poly the polyhedron to draw * gc X11 graphics context to be used for drawing * icoX, icoY position of upper left of bounding-box * icoW, icoH size of bounding-box * prevX, prevY position of previous bounding-box *****************************************************************************/ void drawPoly(closure, poly, gc, icoX, icoY, icoW, icoH, prevX, prevY) struct closure *closure; Polyinfo *poly; GC gc; int icoX, icoY, icoW, icoH; int prevX, prevY; { int *f = poly->f; int NV = poly->numverts; int NF = poly->numfaces; int p0; int p1; XPoint *pv2; XSegment *pe; Point3D *pxv; XPoint v2[MAXNV]; XSegment edges[MAXEDGES]; int i; int j,k; int *pf; int facecolor; int pcount; double pxvz; XPoint ppts[MAXEDGESPERPOLY]; /* Switch double-buffer and rotate vertices */ closure->xv_buffer = !closure->xv_buffer; PartialNonHomTransform(NV, closure->xform, closure->xv[!closure->xv_buffer], closure->xv[closure->xv_buffer]); /* Convert 3D coordinates to 2D window coordinates: */ pxv = closure->xv[closure->xv_buffer]; pv2 = v2; for (i = NV - 1; i >= 0; --i) { pv2->x = (int) ((pxv->x + 1.0) * closure->wo2) + icoX; pv2->y = (int) ((pxv->y + 1.0) * closure->ho2) + icoY; ++pxv; ++pv2; } /* Accumulate edges to be drawn, eliminating duplicates for speed: */ pxv = closure->xv[closure->xv_buffer]; pv2 = v2; pf = f; pe = edges; bzero(closure->drawn, sizeof(closure->drawn)); if (dblbuf) setDrawBuf(closure, closure->dbufnum); /* switch drawing buffers if double buffered */ /* for faces, need to clear before FillPoly */ if (dofaces && !(multibufext && dblbuf)) { /* multibuf uses update background */ if (dblbuf) icoClearArea(closure, closure->drawbuf->prevX - linewidth/2, closure->drawbuf->prevY - linewidth/2, icoW + linewidth + 1, icoH + linewidth + 1); icoClearArea(closure, prevX - linewidth/2, prevY - linewidth/2, icoW + linewidth + 1, icoH + linewidth + 1); } if (dsync) XSync(dpy, 0); for (i = NF - 1; i >= 0; --i, pf += pcount) { pcount = *pf++; /* number of edges for this face */ pxvz = 0.0; for (j=0; jdrawbuf->pixels[facecolor]); for (j=0; jwin, gc, ppts, pcount, Convex, CoordModeOrigin); } if (doedges) { for (j=0; jdrawn[p0][p1]) { closure->drawn[p0][p1] = 1; closure->drawn[p1][p0] = 1; pe->x1 = pv2[p0].x; pe->y1 = pv2[p0].y; pe->x2 = pv2[p1].x; pe->y2 = pv2[p1].y; ++pe; } } } } /* Erase previous, draw current icosahedrons; sync for smoothness. */ if (doedges) { if (dofaces) { XSetForeground(dpy, gc, closure->drawbuf->pixels[0]); /* use background as foreground color */ } else { if (dblbuf && !multibufext) icoClearArea(closure, closure->drawbuf->prevX - linewidth/2, closure->drawbuf->prevY - linewidth/2, icoW + linewidth + 1, icoH + linewidth + 1); if (!(multibufext && dblbuf)) icoClearArea(closure, prevX - linewidth/2, prevY - linewidth/2, icoW + linewidth + 1, icoH + linewidth + 1); if (dblbuf || dofaces) { XSetForeground(dpy, gc, closure->drawbuf->pixels[ closure->pixelsperbuf-1]); } } XDrawSegments(dpy, closure->win, gc, edges, pe - edges); } if (dsync) XSync(dpy, 0); if (dblbuf) { closure->drawbuf->prevX = icoX; closure->drawbuf->prevY = icoY; setDisplayBuf(closure, closure->dbufnum, 0); } if (dblbuf) closure->dbufnum = 1 - closure->dbufnum; if (!(multibufext && dblbuf) && msleepcount > 0) msleep(msleepcount); } void initDBufs(closure, fg,bg,planesperbuf) struct closure *closure; int fg,bg; int planesperbuf; { int i,j,jj,j0,j1,k,m,t; DBufInfo *b, *otherb; XColor bgcolor, fgcolor; closure->nplanesets = (dblbuf && !multibufext ? 2 : 1); closure->planesperbuf = planesperbuf; closure->pixelsperbuf = 1<totalplanes = closure->nplanesets * planesperbuf; closure->totalpixels = 1<totalplanes; closure->plane_masks = (unsigned long *) xalloc(closure->totalplanes * sizeof(unsigned long)); closure->dbufnum = 0; for (i=0; i < closure->nplanesets; i++) { b = closure->bufs+i; b->plane_masks = closure->plane_masks + (i*planesperbuf); b->colors = (XColor *) xalloc(closure->totalpixels * sizeof(XColor)); b->pixels = (unsigned long *) xalloc(closure->pixelsperbuf * sizeof(unsigned long)); } if (closure->totalplanes == 1) { closure->pixels[0] = bg; closure->plane_masks[0] = fg ^ bg; } else { t = XAllocColorCells(dpy,closure->cmap,0, closure->plane_masks,closure->totalplanes, closure->pixels,1); /* allocate color planes */ if (t==0) { icoFatal("can't allocate enough color planes"); } } fgcolor.pixel = fg; bgcolor.pixel = bg; XQueryColor(dpy,closure->cmap,&fgcolor); XQueryColor(dpy,closure->cmap,&bgcolor); setBufColor(closure, 0,&bgcolor); setBufColor(closure, 1,&fgcolor); for (i=0; inplanesets; i++) { b = closure->bufs+i; if (dblbuf) otherb = closure->bufs+(1-i); for (j0=0; j0<(dblbuf&&!multibufext?closure->pixelsperbuf:1); j0++) { for (j1=0; j1pixelsperbuf; j1++) { j = (j0<planesperbuf)|j1; if (i==0) jj=j; else jj= (j1<planesperbuf)|j0; b->colors[jj].pixel = closure->pixels[0]; for (k=0, m=j; m; k++, m=m>>1) { if (m&1) b->colors[jj].pixel ^= closure->plane_masks[k]; } b->colors[jj].flags = DoRed | DoGreen | DoBlue; } } b->prevX = b->prevY = 0; b->enplanemask = 0; for (j=0; jenplanemask |= b->plane_masks[j]; } for (j=0; jpixelsperbuf; j++) { b->pixels[j] = closure->pixels[0]; for (k=0, m=j; m; k++, m=m>>1) { if (m&1) b->pixels[j] ^= b->plane_masks[k]; } } } if (!(multibufext && dblbuf)) { setDrawBuf(closure, 0); XSetBackground(dpy, closure->gcontext, closure->bufs[0].pixels[0]); XSetWindowBackground(dpy, closure->draw_window, closure->bufs[0].pixels[0]); XSetPlaneMask(dpy, closure->gcontext, AllPlanes); icoClearArea(closure, 0, 0, closure->winW, closure->winH); /* clear entire window */ } } void setBufColname(closure, n,colname) struct closure *closure; int n; char *colname; { int t; XColor dcolor, color; t = XLookupColor(dpy,closure->cmap,colname,&dcolor,&color); if (t==0) { /* no such color */ icoFatal("no such color %s",colname); } setBufColor(closure, n,&color); } /* function to create and run an ico window */ void * do_ico_window(closure) struct closure *closure; { int fg, bg; XSetWindowAttributes xswa; XWindowAttributes xwa; XEvent xev; int icoX, icoY; unsigned long vmask; XGCValues xgcv; int initcolors = 0; int icoDeltaX = DEFAULT_DELTAX, icoDeltaY = DEFAULT_DELTAY; int icodeltax2, icodeltay2; Bool blocking = False; int winX, winY; int icoW = 0, icoH = 0; KeySym ksym; Bool do_it = True; char buf[20]; #ifdef MULTITHREAD int len; #endif #ifdef DEBUG printf("thread %x starting\n", xthread_self()); #endif closure->cmap = XDefaultColormap(dpy,DefaultScreen(dpy)); if (!closure->cmap) { icoFatal("no default colormap!"); } fg = WhitePixel(dpy, DefaultScreen(dpy)); bg = BlackPixel(dpy, DefaultScreen(dpy)); if (background_colorname) { XColor cdef, igndef; if (XAllocNamedColor (dpy, closure->cmap, background_colorname, &cdef, &igndef)) bg = cdef.pixel; else icoFatal("background: no such color \"%s\"",background_colorname); } if (numcolors && (!dofaces || numcolors == 1)) { XColor cdef, igndef; if (XAllocNamedColor (dpy, closure->cmap, colornames[0], &cdef, &igndef)) fg = cdef.pixel; else icoFatal("face: no such color \"%s\"", colornames[0]); } if (invert) { unsigned long tmp = fg; fg = bg; bg = tmp; } /* Set up window parameters, create and map window if necessary */ if (useRoot) { closure->draw_window = DefaultRootWindow(dpy); winX = 0; winY = 0; closure->winW = DisplayWidth(dpy, DefaultScreen(dpy)); closure->winH = DisplayHeight(dpy, DefaultScreen(dpy)); } else { closure->winW = closure->winH = (multibufext&&dblbuf ? 300 : 600); winX = (DisplayWidth(dpy, DefaultScreen(dpy)) - closure->winW) >> 1; winY = (DisplayHeight(dpy, DefaultScreen(dpy)) - closure->winH) >> 1; if (geom) XParseGeometry(geom, &winX, &winY, (unsigned int *)&closure->winW, (unsigned int *)&closure->winH); xswa.event_mask = ExposureMask | StructureNotifyMask | KeyPressMask; xswa.background_pixel = bg; xswa.border_pixel = fg; closure->draw_window = XCreateWindow(dpy, DefaultRootWindow(dpy), winX, winY, closure->winW, closure->winH, 0, DefaultDepth(dpy, DefaultScreen(dpy)), InputOutput, DefaultVisual(dpy, DefaultScreen(dpy)), CWEventMask | CWBackPixel | CWBorderPixel, &xswa); #ifdef MULTITHREAD len = sprintf(buf, "Ico: thread %d", closure->thread_num); XChangeProperty(dpy, closure->draw_window, XA_WM_NAME, XA_STRING, 8, PropModeReplace, (unsigned char *)buf, len); #else XChangeProperty(dpy, closure->draw_window, XA_WM_NAME, XA_STRING, 8, PropModeReplace, (unsigned char *)"Ico", 3); #endif (void) XSetWMProtocols (dpy, closure->draw_window, &wm_delete_window, 1); XMapWindow(dpy, closure->draw_window); #ifdef DEBUG printf("thread %x waiting for Expose\n", xthread_self()); #endif for (;;) { XNextEvent(dpy, &xev); if (xev.type == Expose) break; } #ifdef DEBUG printf("thread %x got Expose\n", xthread_self()); #endif if (XGetWindowAttributes(dpy,closure->draw_window,&xwa)==0) { icoFatal("cannot get window attributes (size)"); } closure->winW = xwa.width; closure->winH = xwa.height; } if (ico_geom) XParseGeometry (ico_geom, &icoX, &icoY, (unsigned int *)&icoW, (unsigned int *)&icoH); if (icoW <= 0) icoW = DEFAULT_ICO_WIDTH; if (icoH <= 0) icoH = DEFAULT_ICO_HEIGHT; if (icoW < MIN_ICO_WIDTH) icoW = MIN_ICO_WIDTH; if (icoH < MIN_ICO_HEIGHT) icoH = MIN_ICO_HEIGHT; if (delta_geom) { unsigned int junk; XParseGeometry (delta_geom, &icoDeltaX, &icoDeltaY, &junk, &junk); if (icoDeltaX == 0 && icoDeltaY == 0) { icoDeltaX = DEFAULT_DELTAX; icoDeltaY = DEFAULT_DELTAY; } } closure->win = None; #ifdef MULTIBUFFER if (multibufext && dblbuf) { if (XmbufCreateBuffers (dpy, closure->draw_window, 2, update_action, MultibufferUpdateHintFrequent, closure->multibuffers) == 2) { XCopyArea (dpy, closure->draw_window, closure->multibuffers[1], DefaultGC(dpy, DefaultScreen(dpy)), 0, 0, closure->winW, closure->winH, 0, 0); closure->win = closure->multibuffers[1]; } else icoFatal ("unable to obtain 2 buffers"); } #endif /* MULTIBUFFER */ if (closure->win == None) closure->win = closure->draw_window; /* Set up a graphics context */ vmask = (GCBackground | GCForeground | GCLineWidth); xgcv.background = bg; xgcv.foreground = fg; xgcv.line_width = linewidth; if (dash) { xgcv.line_style = LineDoubleDash; xgcv.dashes = dash; vmask |= (GCLineStyle | GCDashList); } closure->gcontext = XCreateGC (dpy, closure->draw_window, vmask, &xgcv); if (dofaces && numcolors>1) { int i,t,bits; bits = 0; for (t=numcolors; t; t=t>>1) bits++; initDBufs(closure, fg,bg,bits); /* don't set the background color */ for (i=0; iwinW - icoW) * (rand() & 0xFF)) >> 8; icoY = ((closure->winH - icoH) * (rand() & 0xFF)) >> 8; /* Bounce the box in the window */ icodeltax2 = icoDeltaX * 2; icodeltay2 = icoDeltaY * 2; initPoly(closure, poly, icoW, icoH); while (do_it) { int prevX; int prevY; Bool do_event; /* * This is not a good example of how to do event reading * in multi-threaded programs. More commonly there would * be one thread reading all events and dispatching them * to the appropriate thread. However, the threaded version * of ico was developed to test the MT Xlib implementation, * so it is useful to have it behave a little oddly. * For a discussion of how to write multi-threaded X programs, * see Gildea, S., "Multi-Threaded Xlib", The X Resource, * Issue 5, January 1993, pp. 159-166. */ if (blocking) { XIfEvent(dpy, &xev, predicate, (XPointer) closure->win); do_event = True; } else do_event = XCheckIfEvent(dpy, &xev, predicate, (XPointer) closure->win); if (do_event) { switch (xev.type) { case ConfigureNotify: #ifdef DEBUG printf("thread %x configure\n", xthread_self()); #endif if (xev.xconfigure.width != closure->winW || xev.xconfigure.height != closure->winH) icoX = icoY = 1; closure->winW = xev.xconfigure.width; closure->winH = xev.xconfigure.height; break; case KeyPress: #ifdef DEBUG printf("thread %x keypress\n", xthread_self()); #endif XLookupString(&xev.xkey, buf, 10, &ksym, NULL); do_it = ((ksym != XK_Q) && ksym != XK_q); break; case MapNotify: blocking = False; #ifdef DEBUG printf("thread %x unblocking\n", xthread_self()); #endif break; case UnmapNotify: blocking = True; #ifdef DEBUG printf("thread %x blocking\n", xthread_self()); #endif break; case ClientMessage: #ifdef DEBUG printf("thread %x message\n", xthread_self()); #endif if (xev.xclient.data.l[0] == wm_delete_window) do_it = False; else XBell (dpy, 0); continue; } } prevX = icoX; prevY = icoY; icoX += icoDeltaX; if (icoX < 0 || icoX + icoW > closure->winW) { icoX -= icodeltax2; icoDeltaX = - icoDeltaX; icodeltax2 = icoDeltaX * 2; } icoY += icoDeltaY; if (icoY < 0 || icoY + icoH > closure->winH) { icoY -= icodeltay2; icoDeltaY = - icoDeltaY; icodeltay2 = icoDeltaY * 2; } drawPoly(closure, poly, closure->gcontext, icoX, icoY, icoW, icoH, prevX, prevY); } XDestroyWindow(dpy, closure->win); #ifdef MULTITHREAD xmutex_lock(&count_mutex); thread_count--; if (thread_count == 0) { xcondition_broadcast(&count_cond); } xmutex_unlock(&count_mutex); #endif return NULL; } /****************************************************************************** * Description * Main routine. Process command-line arguments, then bounce a bounding * box inside the window. Call DrawIco() to redraw the icosahedron. *****************************************************************************/ void giveObjHelp() { int i; Polyinfo *poly; printf("%-16s%-12s #Vert. #Edges #Faces %-16s\n", "Name", "ShortName", "Dual"); for (i=0; ilongname, poly->shortname, poly->numverts, poly->numedges, poly->numfaces, poly->dual); } } Polyinfo * findpoly(name) const char *name; { int i; Polyinfo *poly; for (i=0; ilongname)==0 || strcmp(name,poly->shortname)==0) return poly; } icoFatal("can't find object %s", name); } int main(argc, argv) int argc; const char **argv; { const char *display = NULL; #ifdef MULTIBUFFER int mbevbase, mberrbase; #endif #ifdef MULTITHREAD int nthreads = 1; /* -threads: number of windows */ int i; #endif struct closure *closure; ProgramName = argv[0]; /* Process arguments: */ poly = findpoly("icosahedron"); /* default */ for (argv++, argc--; argc > 0; argv++, argc--) { if (!strcmp (*argv, "-display")) { if (argc < 2) icoFatal("missing argument for %s", *argv); display = *++argv; argc--; } else if (!strncmp (*argv, "-g", 2)) { if (argc < 2) icoFatal("missing argument for %s", *argv); geom = *++argv; argc--; } else if (!strcmp(*argv, "-r")) useRoot = 1; else if (!strcmp (*argv, "-d")) { if (argc < 2) icoFatal("missing argument for %s", *argv); dash = atoi(*++argv); argc--; } #ifdef MULTITHREAD else if (!strcmp(*argv, "-threads")) { if (argc < 2) icoFatal("missing argument for %s", *argv); nthreads = atoi(*++argv); argc--; } #endif else if (!strcmp(*argv, "-colors")) { if (argc < 2) icoFatal("missing argument for %s", *argv); colornames = ++argv; argc--; numcolors = 0; for ( ; argc > 0 && argv[0][0]!='-'; argv++, argc--, numcolors++) ; argv--; argc++; } else if (!strcmp (*argv, "-copy")) { #ifdef MULTIBUFFER update_action = MultibufferUpdateActionCopied; #endif } else if (!strcmp (*argv, "-untouched")) { #ifdef MULTIBUFFER update_action = MultibufferUpdateActionUntouched; #endif } else if (!strcmp (*argv, "-undefined")) { #ifdef MULTIBUFFER update_action = MultibufferUpdateActionUndefined; #endif } else if (!strcmp (*argv, "-lw")) { if (argc < 2) icoFatal("missing argument for %s", *argv); linewidth = atoi(*++argv); argc--; } else if (!strcmp (*argv, "-dbl")) { dblbuf = 1; #ifdef MULTIBUFFER multibufext = 1; #endif } else if (!strcmp(*argv, "-softdbl")) { dblbuf = 1; multibufext = 0; } else if (!strncmp(*argv, "-p", 2)) { numcolors = atoi(argv[0]+2); if (numcolors < 1 || numcolors > NumberPrimaries) numcolors = NumberPrimaries; colornames = Primaries; dofaces = 1; } else if (!strcmp(*argv, "-bg")) { if (argc < 2) icoFatal("missing argument for %s", *argv); background_colorname = *++argv; argc--; } else if (!strcmp(*argv, "-noedges")) doedges = 0; else if (!strcmp(*argv, "-faces")) dofaces = 1; else if (!strcmp(*argv, "-i")) invert = 1; else if (!strcmp(*argv, "-size")) { if (argc < 2) icoFatal("missing argument for %s", *argv); ico_geom = *++argv; argc--; } else if (!strcmp(*argv, "-delta")) { if (argc < 2) icoFatal("missing argument for %s", *argv); delta_geom = *++argv; argc--; } else if (!strcmp (*argv, "-sleep")) { float f; if (argc < 2) icoFatal("missing argument for %s", *argv); if (sscanf (*++argv, "%f", &f) < 1) icoFatal("invalid argument for %s", argv[-1]); msleepcount = (int) (f * 1000.0); argc--; } else if (!strcmp (*argv, "-obj")) { if (argc < 2) icoFatal("missing argument for %s", *argv); poly = findpoly(*++argv); argc--; } else if (!strcmp(*argv, "-dsync")) dsync = 1; else if (!strncmp(*argv, "-sync", 5)) _Xdebug = 1; else if (!strcmp(*argv, "-objhelp")) { giveObjHelp(); exit(1); } else { /* unknown arg */ const char **cpp; fprintf (stderr, "usage: %s [options]\n\n", ProgramName); for (cpp = help_message; *cpp; cpp++) fprintf (stderr, "%s\n", *cpp); exit (1); } } if (!dofaces && !doedges) icoFatal("nothing to draw"); #ifdef MULTITHREAD XInitThreads(); #endif if (!(dpy = XOpenDisplay(display))) icoFatal("cannot open display \"%s\"", XDisplayName(display)); wm_delete_window = XInternAtom (dpy, "WM_DELETE_WINDOW", False); #ifdef MULTIBUFFER if (multibufext && !XmbufQueryExtension (dpy, &mbevbase, &mberrbase)) { multibufext = 0; } #endif #ifdef MULTITHREAD #ifndef XMUTEX_INITIALIZER xmutex_init(&count_mutex); #endif xcondition_init(&count_cond); /* start all threads here */ thread_count = nthreads; for (i=1; i <= nthreads; i++) { closure = (struct closure *) xalloc(sizeof(struct closure)); closure->thread_num = i; xthread_fork(do_ico_window, closure); } /* wait until all theads terminate */ xmutex_lock(&count_mutex); xcondition_wait(&count_cond, &count_mutex); xmutex_unlock(&count_mutex); #else /* start the animation */ closure = (struct closure *) xalloc(sizeof(struct closure)); do_ico_window(closure); #endif XCloseDisplay(dpy); return 0; }