/* * Copyright (C) 2004-2006 Atmel Corporation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include DEFINE_PER_CPU(struct mmu_gather, mmu_gathers); pgd_t swapper_pg_dir[PTRS_PER_PGD]; struct page *empty_zero_page; /* * Cache of MMU context last used. */ unsigned long mmu_context_cache = NO_CONTEXT; #define START_PFN (NODE_DATA(0)->bdata->node_boot_start >> PAGE_SHIFT) #define MAX_LOW_PFN (NODE_DATA(0)->bdata->node_low_pfn) void show_mem(void) { int total = 0, reserved = 0, cached = 0; int slab = 0, free = 0, shared = 0; pg_data_t *pgdat; printk("Mem-info:\n"); show_free_areas(); for_each_online_pgdat(pgdat) { struct page *page, *end; page = pgdat->node_mem_map; end = page + pgdat->node_spanned_pages; do { total++; if (PageReserved(page)) reserved++; else if (PageSwapCache(page)) cached++; else if (PageSlab(page)) slab++; else if (!page_count(page)) free++; else shared += page_count(page) - 1; page++; } while (page < end); } printk ("%d pages of RAM\n", total); printk ("%d free pages\n", free); printk ("%d reserved pages\n", reserved); printk ("%d slab pages\n", slab); printk ("%d pages shared\n", shared); printk ("%d pages swap cached\n", cached); } static void __init print_memory_map(const char *what, struct tag_mem_range *mem) { printk ("%s:\n", what); for (; mem; mem = mem->next) { printk (" %08lx - %08lx\n", (unsigned long)mem->addr, (unsigned long)(mem->addr + mem->size)); } } #define MAX_LOWMEM HIGHMEM_START #define MAX_LOWMEM_PFN PFN_DOWN(MAX_LOWMEM) /* * Sort a list of memory regions in-place by ascending address. * * We're using bubble sort because we only have singly linked lists * with few elements. */ static void __init sort_mem_list(struct tag_mem_range **pmem) { int done; struct tag_mem_range **a, **b; if (!*pmem) return; do { done = 1; a = pmem, b = &(*pmem)->next; while (*b) { if ((*a)->addr > (*b)->addr) { struct tag_mem_range *tmp; tmp = (*b)->next; (*b)->next = *a; *a = *b; *b = tmp; done = 0; } a = &(*a)->next; b = &(*a)->next; } } while (!done); } /* * Find a free memory region large enough for storing the * bootmem bitmap. */ static unsigned long __init find_bootmap_pfn(const struct tag_mem_range *mem) { unsigned long bootmap_pages, bootmap_len; unsigned long node_pages = PFN_UP(mem->size); unsigned long bootmap_addr = mem->addr; struct tag_mem_range *reserved = mem_reserved; struct tag_mem_range *ramdisk = mem_ramdisk; unsigned long kern_start = virt_to_phys(_stext); unsigned long kern_end = virt_to_phys(_end); bootmap_pages = bootmem_bootmap_pages(node_pages); bootmap_len = bootmap_pages << PAGE_SHIFT; /* * Find a large enough region without reserved pages for * storing the bootmem bitmap. We can take advantage of the * fact that all lists have been sorted. * * We have to check explicitly reserved regions as well as the * kernel image and any RAMDISK images... * * Oh, and we have to make sure we don't overwrite the taglist * since we're going to use it until the bootmem allocator is * fully up and running. */ while (1) { if ((bootmap_addr < kern_end) && ((bootmap_addr + bootmap_len) > kern_start)) bootmap_addr = kern_end; while (reserved && (bootmap_addr >= (reserved->addr + reserved->size))) reserved = reserved->next; if (reserved && ((bootmap_addr + bootmap_len) >= reserved->addr)) { bootmap_addr = reserved->addr + reserved->size; continue; } while (ramdisk && (bootmap_addr >= (ramdisk->addr + ramdisk->size))) ramdisk = ramdisk->next; if (!ramdisk || ((bootmap_addr + bootmap_len) < ramdisk->addr)) break; bootmap_addr = ramdisk->addr + ramdisk->size; } if ((PFN_UP(bootmap_addr) + bootmap_len) >= (mem->addr + mem->size)) return ~0UL; return PFN_UP(bootmap_addr); } void __init setup_bootmem(void) { unsigned bootmap_size; unsigned long first_pfn, bootmap_pfn, pages; unsigned long max_pfn, max_low_pfn; unsigned long kern_start = virt_to_phys(_stext); unsigned long kern_end = virt_to_phys(_end); unsigned node = 0; struct tag_mem_range *bank, *res; sort_mem_list(&mem_phys); sort_mem_list(&mem_reserved); print_memory_map("Physical memory", mem_phys); print_memory_map("Reserved memory", mem_reserved); nodes_clear(node_online_map); if (mem_ramdisk) { #ifdef CONFIG_BLK_DEV_INITRD initrd_start = __va(mem_ramdisk->addr); initrd_end = initrd_start + mem_ramdisk->size; print_memory_map("RAMDISK images", mem_ramdisk); if (mem_ramdisk->next) printk(KERN_WARNING "Warning: Only the first RAMDISK image " "will be used\n"); sort_mem_list(&mem_ramdisk); #else printk(KERN_WARNING "RAM disk image present, but " "no initrd support in kernel!\n"); #endif } if (mem_phys->next) printk(KERN_WARNING "Only using first memory bank\n"); for (bank = mem_phys; bank; bank = NULL) { first_pfn = PFN_UP(bank->addr); max_low_pfn = max_pfn = PFN_DOWN(bank->addr + bank->size); bootmap_pfn = find_bootmap_pfn(bank); if (bootmap_pfn > max_pfn) panic("No space for bootmem bitmap!\n"); if (max_low_pfn > MAX_LOWMEM_PFN) { max_low_pfn = MAX_LOWMEM_PFN; #ifndef CONFIG_HIGHMEM /* * Lowmem is memory that can be addressed * directly through P1/P2 */ printk(KERN_WARNING "Node %u: Only %ld MiB of memory will be used.\n", node, MAX_LOWMEM >> 20); printk(KERN_WARNING "Use a HIGHMEM enabled kernel.\n"); #else #error HIGHMEM is not supported by AVR32 yet #endif } /* Initialize the boot-time allocator with low memory only. */ bootmap_size = init_bootmem_node(NODE_DATA(node), bootmap_pfn, first_pfn, max_low_pfn); printk("Node %u: bdata = %p, bdata->node_bootmem_map = %p\n", node, NODE_DATA(node)->bdata, NODE_DATA(node)->bdata->node_bootmem_map); /* * Register fully available RAM pages with the bootmem * allocator. */ pages = max_low_pfn - first_pfn; free_bootmem_node (NODE_DATA(node), PFN_PHYS(first_pfn), PFN_PHYS(pages)); /* * Reserve space for the kernel image (if present in * this node)... */ if ((kern_start >= PFN_PHYS(first_pfn)) && (kern_start < PFN_PHYS(max_pfn))) { printk("Node %u: Kernel image %08lx - %08lx\n", node, kern_start, kern_end); reserve_bootmem_node(NODE_DATA(node), kern_start, kern_end - kern_start); } /* ...the bootmem bitmap... */ reserve_bootmem_node(NODE_DATA(node), PFN_PHYS(bootmap_pfn), bootmap_size); /* ...any RAMDISK images... */ for (res = mem_ramdisk; res; res = res->next) { if (res->addr > PFN_PHYS(max_pfn)) break; if (res->addr >= PFN_PHYS(first_pfn)) { printk("Node %u: RAMDISK %08lx - %08lx\n", node, (unsigned long)res->addr, (unsigned long)(res->addr + res->size)); reserve_bootmem_node(NODE_DATA(node), res->addr, res->size); } } /* ...and any other reserved regions. */ for (res = mem_reserved; res; res = res->next) { if (res->addr > PFN_PHYS(max_pfn)) break; if (res->addr >= PFN_PHYS(first_pfn)) { printk("Node %u: Reserved %08lx - %08lx\n", node, (unsigned long)res->addr, (unsigned long)(res->addr + res->size)); reserve_bootmem_node(NODE_DATA(node), res->addr, res->size); } } node_set_online(node); } } /* * paging_init() sets up the page tables * * This routine also unmaps the page at virtual kernel address 0, so * that we can trap those pesky NULL-reference errors in the kernel. */ void __init paging_init(void) { extern unsigned long _evba; void *zero_page; int nid; /* * Make sure we can handle exceptions before enabling * paging. Not that we should ever _get_ any exceptions this * early, but you never know... */ printk("Exception vectors start at %p\n", &_evba); sysreg_write(EVBA, (unsigned long)&_evba); /* * Since we are ready to handle exceptions now, we should let * the CPU generate them... */ __asm__ __volatile__ ("csrf %0" : : "i"(SR_EM_BIT)); /* * Allocate the zero page. The allocator will panic if it * can't satisfy the request, so no need to check. */ zero_page = alloc_bootmem_low_pages_node(NODE_DATA(0), PAGE_SIZE); { pgd_t *pg_dir; int i; pg_dir = swapper_pg_dir; sysreg_write(PTBR, (unsigned long)pg_dir); for (i = 0; i < PTRS_PER_PGD; i++) pgd_val(pg_dir[i]) = 0; enable_mmu(); printk ("CPU: Paging enabled\n"); } for_each_online_node(nid) { pg_data_t *pgdat = NODE_DATA(nid); unsigned long zones_size[MAX_NR_ZONES]; unsigned long low, start_pfn; start_pfn = pgdat->bdata->node_boot_start; start_pfn >>= PAGE_SHIFT; low = pgdat->bdata->node_low_pfn; memset(zones_size, 0, sizeof(zones_size)); zones_size[ZONE_NORMAL] = low - start_pfn; printk("Node %u: start_pfn = 0x%lx, low = 0x%lx\n", nid, start_pfn, low); free_area_init_node(nid, pgdat, zones_size, start_pfn, NULL); printk("Node %u: mem_map starts at %p\n", pgdat->node_id, pgdat->node_mem_map); } mem_map = NODE_DATA(0)->node_mem_map; memset(zero_page, 0, PAGE_SIZE); empty_zero_page = virt_to_page(zero_page); flush_dcache_page(empty_zero_page); } void __init mem_init(void) { int codesize, reservedpages, datasize, initsize; int nid, i; reservedpages = 0; high_memory = NULL; /* this will put all low memory onto the freelists */ for_each_online_node(nid) { pg_data_t *pgdat = NODE_DATA(nid); unsigned long node_pages = 0; void *node_high_memory; num_physpages += pgdat->node_present_pages; if (pgdat->node_spanned_pages != 0) node_pages = free_all_bootmem_node(pgdat); totalram_pages += node_pages; for (i = 0; i < node_pages; i++) if (PageReserved(pgdat->node_mem_map + i)) reservedpages++; node_high_memory = (void *)((pgdat->node_start_pfn + pgdat->node_spanned_pages) << PAGE_SHIFT); if (node_high_memory > high_memory) high_memory = node_high_memory; } max_mapnr = MAP_NR(high_memory); codesize = (unsigned long)_etext - (unsigned long)_text; datasize = (unsigned long)_edata - (unsigned long)_data; initsize = (unsigned long)__init_end - (unsigned long)__init_begin; printk ("Memory: %luk/%luk available (%dk kernel code, " "%dk reserved, %dk data, %dk init)\n", (unsigned long)nr_free_pages() << (PAGE_SHIFT - 10), totalram_pages << (PAGE_SHIFT - 10), codesize >> 10, reservedpages << (PAGE_SHIFT - 10), datasize >> 10, initsize >> 10); } static inline void free_area(unsigned long addr, unsigned long end, char *s) { unsigned int size = (end - addr) >> 10; for (; addr < end; addr += PAGE_SIZE) { struct page *page = virt_to_page(addr); ClearPageReserved(page); init_page_count(page); free_page(addr); totalram_pages++; } if (size && s) printk(KERN_INFO "Freeing %s memory: %dK (%lx - %lx)\n", s, size, end - (size << 10), end); } void free_initmem(void) { free_area((unsigned long)__init_begin, (unsigned long)__init_end, "init"); } #ifdef CONFIG_BLK_DEV_INITRD static int keep_initrd; void free_initrd_mem(unsigned long start, unsigned long end) { if (!keep_initrd) free_area(start, end, "initrd"); } static int __init keepinitrd_setup(char *__unused) { keep_initrd = 1; return 1; } __setup("keepinitrd", keepinitrd_setup); #endif