/* sched.c - SPU scheduler. * * Copyright (C) IBM 2005 * Author: Mark Nutter * * 2006-03-31 NUMA domains added. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #undef DEBUG #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "spufs.h" #define SPU_MIN_TIMESLICE (100 * HZ / 1000) #define SPU_BITMAP_SIZE (((MAX_PRIO+BITS_PER_LONG)/BITS_PER_LONG)+1) struct spu_prio_array { unsigned long bitmap[SPU_BITMAP_SIZE]; wait_queue_head_t waitq[MAX_PRIO]; struct list_head active_list[MAX_NUMNODES]; struct mutex active_mutex[MAX_NUMNODES]; }; static struct spu_prio_array *spu_prio; static inline int node_allowed(int node) { cpumask_t mask; if (!nr_cpus_node(node)) return 0; mask = node_to_cpumask(node); if (!cpus_intersects(mask, current->cpus_allowed)) return 0; return 1; } static inline void mm_needs_global_tlbie(struct mm_struct *mm) { int nr = (NR_CPUS > 1) ? NR_CPUS : NR_CPUS + 1; /* Global TLBIE broadcast required with SPEs. */ __cpus_setall(&mm->cpu_vm_mask, nr); } static BLOCKING_NOTIFIER_HEAD(spu_switch_notifier); static void spu_switch_notify(struct spu *spu, struct spu_context *ctx) { blocking_notifier_call_chain(&spu_switch_notifier, ctx ? ctx->object_id : 0, spu); } int spu_switch_event_register(struct notifier_block * n) { return blocking_notifier_chain_register(&spu_switch_notifier, n); } int spu_switch_event_unregister(struct notifier_block * n) { return blocking_notifier_chain_unregister(&spu_switch_notifier, n); } static inline void bind_context(struct spu *spu, struct spu_context *ctx) { pr_debug("%s: pid=%d SPU=%d NODE=%d\n", __FUNCTION__, current->pid, spu->number, spu->node); spu->ctx = ctx; spu->flags = 0; ctx->spu = spu; ctx->ops = &spu_hw_ops; spu->pid = current->pid; spu->prio = current->prio; spu->mm = ctx->owner; mm_needs_global_tlbie(spu->mm); spu->ibox_callback = spufs_ibox_callback; spu->wbox_callback = spufs_wbox_callback; spu->stop_callback = spufs_stop_callback; spu->mfc_callback = spufs_mfc_callback; spu->dma_callback = spufs_dma_callback; mb(); spu_unmap_mappings(ctx); spu_restore(&ctx->csa, spu); spu->timestamp = jiffies; spu_cpu_affinity_set(spu, raw_smp_processor_id()); spu_switch_notify(spu, ctx); } static inline void unbind_context(struct spu *spu, struct spu_context *ctx) { pr_debug("%s: unbind pid=%d SPU=%d NODE=%d\n", __FUNCTION__, spu->pid, spu->number, spu->node); spu_switch_notify(spu, NULL); spu_unmap_mappings(ctx); spu_save(&ctx->csa, spu); spu->timestamp = jiffies; ctx->state = SPU_STATE_SAVED; spu->ibox_callback = NULL; spu->wbox_callback = NULL; spu->stop_callback = NULL; spu->mfc_callback = NULL; spu->dma_callback = NULL; spu->mm = NULL; spu->pid = 0; spu->prio = MAX_PRIO; ctx->ops = &spu_backing_ops; ctx->spu = NULL; spu->flags = 0; spu->ctx = NULL; } static inline void spu_add_wq(wait_queue_head_t * wq, wait_queue_t * wait, int prio) { prepare_to_wait_exclusive(wq, wait, TASK_INTERRUPTIBLE); set_bit(prio, spu_prio->bitmap); } static inline void spu_del_wq(wait_queue_head_t * wq, wait_queue_t * wait, int prio) { u64 flags; __set_current_state(TASK_RUNNING); spin_lock_irqsave(&wq->lock, flags); remove_wait_queue_locked(wq, wait); if (list_empty(&wq->task_list)) clear_bit(prio, spu_prio->bitmap); spin_unlock_irqrestore(&wq->lock, flags); } static void spu_prio_wait(struct spu_context *ctx, u64 flags) { int prio = current->prio; wait_queue_head_t *wq = &spu_prio->waitq[prio]; DEFINE_WAIT(wait); if (ctx->spu) return; spu_add_wq(wq, &wait, prio); if (!signal_pending(current)) { up_write(&ctx->state_sema); pr_debug("%s: pid=%d prio=%d\n", __FUNCTION__, current->pid, current->prio); schedule(); down_write(&ctx->state_sema); } spu_del_wq(wq, &wait, prio); } static void spu_prio_wakeup(void) { int best = sched_find_first_bit(spu_prio->bitmap); if (best < MAX_PRIO) { wait_queue_head_t *wq = &spu_prio->waitq[best]; wake_up_interruptible_nr(wq, 1); } } static int get_active_spu(struct spu *spu) { int node = spu->node; struct spu *tmp; int rc = 0; mutex_lock(&spu_prio->active_mutex[node]); list_for_each_entry(tmp, &spu_prio->active_list[node], list) { if (tmp == spu) { list_del_init(&spu->list); rc = 1; break; } } mutex_unlock(&spu_prio->active_mutex[node]); return rc; } static void put_active_spu(struct spu *spu) { int node = spu->node; mutex_lock(&spu_prio->active_mutex[node]); list_add_tail(&spu->list, &spu_prio->active_list[node]); mutex_unlock(&spu_prio->active_mutex[node]); } static struct spu *spu_get_idle(struct spu_context *ctx, u64 flags) { struct spu *spu = NULL; int node = cpu_to_node(raw_smp_processor_id()); int n; for (n = 0; n < MAX_NUMNODES; n++, node++) { node = (node < MAX_NUMNODES) ? node : 0; if (!node_allowed(node)) continue; spu = spu_alloc_node(node); if (spu) break; } return spu; } static inline struct spu *spu_get(struct spu_context *ctx, u64 flags) { /* Future: spu_get_idle() if possible, * otherwise try to preempt an active * context. */ return spu_get_idle(ctx, flags); } /* The three externally callable interfaces * for the scheduler begin here. * * spu_activate - bind a context to SPU, waiting as needed. * spu_deactivate - unbind a context from its SPU. * spu_yield - yield an SPU if others are waiting. */ int spu_activate(struct spu_context *ctx, u64 flags) { struct spu *spu; int ret = 0; for (;;) { if (ctx->spu) return 0; spu = spu_get(ctx, flags); if (spu != NULL) { if (ctx->spu != NULL) { spu_free(spu); spu_prio_wakeup(); break; } bind_context(spu, ctx); put_active_spu(spu); break; } spu_prio_wait(ctx, flags); if (signal_pending(current)) { ret = -ERESTARTSYS; spu_prio_wakeup(); break; } } return ret; } void spu_deactivate(struct spu_context *ctx) { struct spu *spu; int needs_idle; spu = ctx->spu; if (!spu) return; needs_idle = get_active_spu(spu); unbind_context(spu, ctx); if (needs_idle) { spu_free(spu); spu_prio_wakeup(); } } void spu_yield(struct spu_context *ctx) { struct spu *spu; int need_yield = 0; if (down_write_trylock(&ctx->state_sema)) { if ((spu = ctx->spu) != NULL) { int best = sched_find_first_bit(spu_prio->bitmap); if (best < MAX_PRIO) { pr_debug("%s: yielding SPU %d NODE %d\n", __FUNCTION__, spu->number, spu->node); spu_deactivate(ctx); ctx->state = SPU_STATE_SAVED; need_yield = 1; } else { spu->prio = MAX_PRIO; } } up_write(&ctx->state_sema); } if (unlikely(need_yield)) yield(); } int __init spu_sched_init(void) { int i; spu_prio = kzalloc(sizeof(struct spu_prio_array), GFP_KERNEL); if (!spu_prio) { printk(KERN_WARNING "%s: Unable to allocate priority queue.\n", __FUNCTION__); return 1; } for (i = 0; i < MAX_PRIO; i++) { init_waitqueue_head(&spu_prio->waitq[i]); __clear_bit(i, spu_prio->bitmap); } __set_bit(MAX_PRIO, spu_prio->bitmap); for (i = 0; i < MAX_NUMNODES; i++) { mutex_init(&spu_prio->active_mutex[i]); INIT_LIST_HEAD(&spu_prio->active_list[i]); } return 0; } void __exit spu_sched_exit(void) { struct spu *spu, *tmp; int node; for (node = 0; node < MAX_NUMNODES; node++) { mutex_lock(&spu_prio->active_mutex[node]); list_for_each_entry_safe(spu, tmp, &spu_prio->active_list[node], list) { list_del_init(&spu->list); spu_free(spu); } mutex_unlock(&spu_prio->active_mutex[node]); } kfree(spu_prio); }