/* * OMAP2 McSPI controller driver * * Copyright (C) 2005, 2006 Nokia Corporation * Author: Samuel Ortiz and * Juha Yrjölä * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define OMAP2_MCSPI_MAX_FREQ 48000000 #define OMAP2_MCSPI_REVISION 0x00 #define OMAP2_MCSPI_SYSCONFIG 0x10 #define OMAP2_MCSPI_SYSSTATUS 0x14 #define OMAP2_MCSPI_IRQSTATUS 0x18 #define OMAP2_MCSPI_IRQENABLE 0x1c #define OMAP2_MCSPI_WAKEUPENABLE 0x20 #define OMAP2_MCSPI_SYST 0x24 #define OMAP2_MCSPI_MODULCTRL 0x28 #define OMAP2_MCSPI_CHCONF0 0x2c #define OMAP2_MCSPI_CHSTAT0 0x30 #define OMAP2_MCSPI_CHCTRL0 0x34 #define OMAP2_MCSPI_TX0 0x38 #define OMAP2_MCSPI_RX0 0x3c #define OMAP2_MCSPI_SYSCONFIG_SOFTRESET (1 << 1) #define OMAP2_MCSPI_SYSSTATUS_RESETDONE (1 << 0) #define OMAP2_MCSPI_MODULCTRL_SINGLE (1 << 0) #define OMAP2_MCSPI_MODULCTRL_MS (1 << 2) #define OMAP2_MCSPI_MODULCTRL_STEST (1 << 3) #define OMAP2_MCSPI_CHCONF_PHA (1 << 0) #define OMAP2_MCSPI_CHCONF_POL (1 << 1) #define OMAP2_MCSPI_CHCONF_CLKD_MASK (0x0f << 2) #define OMAP2_MCSPI_CHCONF_EPOL (1 << 6) #define OMAP2_MCSPI_CHCONF_WL_MASK (0x1f << 7) #define OMAP2_MCSPI_CHCONF_TRM_RX_ONLY (0x01 << 12) #define OMAP2_MCSPI_CHCONF_TRM_TX_ONLY (0x02 << 12) #define OMAP2_MCSPI_CHCONF_TRM_MASK (0x03 << 12) #define OMAP2_MCSPI_CHCONF_DMAW (1 << 14) #define OMAP2_MCSPI_CHCONF_DMAR (1 << 15) #define OMAP2_MCSPI_CHCONF_DPE0 (1 << 16) #define OMAP2_MCSPI_CHCONF_DPE1 (1 << 17) #define OMAP2_MCSPI_CHCONF_IS (1 << 18) #define OMAP2_MCSPI_CHCONF_TURBO (1 << 19) #define OMAP2_MCSPI_CHCONF_FORCE (1 << 20) #define OMAP2_MCSPI_CHSTAT_RXS (1 << 0) #define OMAP2_MCSPI_CHSTAT_TXS (1 << 1) #define OMAP2_MCSPI_CHSTAT_EOT (1 << 2) #define OMAP2_MCSPI_CHCTRL_EN (1 << 0) /* We have 2 DMA channels per CS, one for RX and one for TX */ struct omap2_mcspi_dma { int dma_tx_channel; int dma_rx_channel; int dma_tx_sync_dev; int dma_rx_sync_dev; struct completion dma_tx_completion; struct completion dma_rx_completion; }; struct omap2_mcspi { struct work_struct work; spinlock_t lock; struct list_head msg_queue; struct spi_master *master; struct clk *ick; struct clk *fck; /* Virtual base address of the controller */ unsigned long base; /* SPI1 has 4 channels, while SPI2 has 2 */ struct omap2_mcspi_dma *dma_channels; }; struct omap2_mcspi_cs { u8 transmit_mode; int word_len; }; static struct workqueue_struct * omap2_mcspi_wq; #define MOD_REG_BIT(val, mask, set) do { \ if (set) \ val |= mask; \ else \ val &= ~mask; \ } while(0) static inline void mcspi_write_reg(struct spi_master *master, int idx, u32 val) { struct omap2_mcspi * mcspi = class_get_devdata(&master->cdev); __raw_writel(val, mcspi->base + idx); } static inline u32 mcspi_read_reg(struct spi_master *master, int idx) { struct omap2_mcspi * mcspi = class_get_devdata(&master->cdev); return __raw_readl(mcspi->base + idx); } static inline void mcspi_write_cs_reg(const struct spi_device *spi, int idx, u32 val) { struct omap2_mcspi * mcspi = class_get_devdata(&spi->master->cdev); __raw_writel(val, mcspi->base + spi->chip_select * 0x14 + idx); } static inline u32 mcspi_read_cs_reg(const struct spi_device *spi, int idx) { struct omap2_mcspi * mcspi = class_get_devdata(&spi->master->cdev); return __raw_readl(mcspi->base + spi->chip_select * 0x14 + idx); } static void omap2_mcspi_set_dma_req(const struct spi_device *spi, int is_read, int enable) { u32 l, rw; l = mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCONF0); if (is_read) /* 1 is read, 0 write */ rw = OMAP2_MCSPI_CHCONF_DMAR; else rw = OMAP2_MCSPI_CHCONF_DMAW; MOD_REG_BIT(l, rw, enable); mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCONF0, l); } static void omap2_mcspi_set_enable(const struct spi_device *spi, int enable) { u32 l; l = mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCTRL0); MOD_REG_BIT(l, OMAP2_MCSPI_CHCTRL_EN, enable); mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCTRL0, l); } static void omap2_mcspi_force_cs(struct spi_device *spi, int cs_active) { u32 l; l = mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCONF0); MOD_REG_BIT(l, OMAP2_MCSPI_CHCONF_FORCE, cs_active); mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCONF0, l); } static void omap2_mcspi_set_master_mode(struct spi_device *spi, int single_channel) { u32 l; /* Need reset when switching from slave mode */ l = mcspi_read_reg(spi->master, OMAP2_MCSPI_MODULCTRL); MOD_REG_BIT(l, OMAP2_MCSPI_MODULCTRL_STEST, 0); MOD_REG_BIT(l, OMAP2_MCSPI_MODULCTRL_MS, 0); MOD_REG_BIT(l, OMAP2_MCSPI_MODULCTRL_SINGLE, single_channel); mcspi_write_reg(spi->master, OMAP2_MCSPI_MODULCTRL, l); } static void omap2_mcspi_txrx_dma(struct spi_device *spi, struct spi_transfer *xfer) { struct omap2_mcspi * mcspi; struct omap2_mcspi_cs * cs = spi->controller_state; struct omap2_mcspi_dma * mcspi_dma; unsigned int count, c; unsigned long base, tx_reg, rx_reg; int word_len, data_type, element_count; u8 * rx; const u8 * tx; u32 l; mcspi = class_get_devdata(&spi->master->cdev); mcspi_dma = &mcspi->dma_channels[spi->chip_select]; count = xfer->len; c = count; word_len = cs->word_len; l = mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCONF0); l &= ~OMAP2_MCSPI_CHCONF_TRM_MASK; if (xfer->tx_buf == NULL) l |= OMAP2_MCSPI_CHCONF_TRM_RX_ONLY; else if (xfer->rx_buf == NULL) l |= OMAP2_MCSPI_CHCONF_TRM_TX_ONLY; mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCONF0, l); omap2_mcspi_set_enable(spi, 1); base = io_v2p(mcspi->base) + spi->chip_select * 0x14; tx_reg = base + OMAP2_MCSPI_TX0; rx_reg = base + OMAP2_MCSPI_RX0; rx = xfer->rx_buf; tx = xfer->tx_buf; if (word_len <= 8) { data_type = OMAP_DMA_DATA_TYPE_S8; element_count = count; } else if (word_len <= 16) { data_type = OMAP_DMA_DATA_TYPE_S16; element_count = count >> 1; } else if (word_len <= 32) { data_type = OMAP_DMA_DATA_TYPE_S32; element_count = count >> 2; } else return; /* RX_ONLY mode needs dummy data in TX reg */ if (tx == NULL) __raw_writel(0, mcspi->base + spi->chip_select * 0x14 + OMAP2_MCSPI_TX0); if (tx != NULL) { xfer->tx_dma = dma_map_single(&spi->dev, (void *) tx, count, DMA_TO_DEVICE); if (dma_mapping_error(xfer->tx_dma)) { printk(KERN_ERR "%s(): Couldn't DMA map a %d bytes TX buffer\n", __FUNCTION__, count); return; } omap_set_dma_transfer_params(mcspi_dma->dma_tx_channel, data_type, element_count, 1, OMAP_DMA_SYNC_ELEMENT, mcspi_dma->dma_tx_sync_dev, 0); omap_set_dma_dest_params(mcspi_dma->dma_tx_channel, 0, OMAP_DMA_AMODE_CONSTANT, tx_reg, 0, 0); omap_set_dma_src_params(mcspi_dma->dma_tx_channel, 0, OMAP_DMA_AMODE_POST_INC, xfer->tx_dma, 0, 0); } if (rx != NULL) { xfer->rx_dma = dma_map_single(&spi->dev, rx, count, DMA_FROM_DEVICE); if (dma_mapping_error(xfer->rx_dma)) { printk(KERN_ERR "%s(): Couldn't DMA map a %d bytes RX buffer\n", __FUNCTION__, count); if (tx != NULL) dma_unmap_single(NULL, xfer->tx_dma, count, DMA_TO_DEVICE); return; } omap_set_dma_transfer_params(mcspi_dma->dma_rx_channel, data_type, element_count, 1, OMAP_DMA_SYNC_ELEMENT, mcspi_dma->dma_rx_sync_dev, 1); omap_set_dma_src_params(mcspi_dma->dma_rx_channel, 0, OMAP_DMA_AMODE_CONSTANT, rx_reg, 0, 0); omap_set_dma_dest_params(mcspi_dma->dma_rx_channel, 0, OMAP_DMA_AMODE_POST_INC, xfer->rx_dma, 0, 0); } if (tx != NULL) { omap_start_dma(mcspi_dma->dma_tx_channel); omap2_mcspi_set_dma_req(spi, 0, 1); } if (rx != NULL) { omap_start_dma(mcspi_dma->dma_rx_channel); omap2_mcspi_set_dma_req(spi, 1, 1); } if (tx != NULL) { wait_for_completion(&mcspi_dma->dma_tx_completion); dma_unmap_single(NULL, xfer->tx_dma, count, DMA_TO_DEVICE); } if (rx != NULL) { wait_for_completion(&mcspi_dma->dma_rx_completion); dma_unmap_single(NULL, xfer->rx_dma, count, DMA_FROM_DEVICE); } omap2_mcspi_set_enable(spi, 0); } static void omap2_mcspi_txrx_pio(struct spi_device *spi, struct spi_transfer *xfer) { struct omap2_mcspi * mcspi; struct omap2_mcspi_cs *cs = spi->controller_state; unsigned int count, c; u32 l; unsigned long base, tx_reg, rx_reg, chstat_reg; int word_len; mcspi = class_get_devdata(&spi->master->cdev); count = xfer->len; c = count; word_len = cs->word_len; l = mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCONF0); l &= ~OMAP2_MCSPI_CHCONF_TRM_MASK; if (xfer->tx_buf == NULL) l |= OMAP2_MCSPI_CHCONF_TRM_RX_ONLY; else if (xfer->rx_buf == NULL) l |= OMAP2_MCSPI_CHCONF_TRM_TX_ONLY; mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCONF0, l); omap2_mcspi_set_enable(spi, 1); /* We store the pre-calculated register addresses on stack to speed * up the transfer loop. */ base = mcspi->base + spi->chip_select * 0x14; tx_reg = base + OMAP2_MCSPI_TX0; rx_reg = base + OMAP2_MCSPI_RX0; chstat_reg = base + OMAP2_MCSPI_CHSTAT0; /* RX_ONLY mode needs dummy data in TX reg */ if (xfer->tx_buf == NULL) __raw_writel(0, tx_reg); if (word_len <= 8) { u8 *rx; const u8 *tx; rx = xfer->rx_buf; tx = xfer->tx_buf; while (c--) { if (tx != NULL) { while (!(__raw_readl(chstat_reg) & OMAP2_MCSPI_CHSTAT_TXS)); #ifdef VERBOSE dev_dbg(&spi->dev, "write-%d %02x\n", word_len, *tx); #endif __raw_writel(*tx, tx_reg); } if (rx != NULL) { while (!(__raw_readl(chstat_reg) & OMAP2_MCSPI_CHSTAT_RXS)); if (c == 0 && tx == NULL) omap2_mcspi_set_enable(spi, 0); *rx++ = __raw_readl(rx_reg); #ifdef VERBOSE dev_dbg(&spi->dev, "read-%d %02x\n", word_len, *(rx - 1)); #endif } } } else if (word_len <= 16) { u16 *rx; const u16 *tx; rx = xfer->rx_buf; tx = xfer->tx_buf; c >>= 1; while (c--) { if (tx != NULL) { while (!(__raw_readl(chstat_reg) & OMAP2_MCSPI_CHSTAT_TXS)); #ifdef VERBOSE dev_dbg(&spi->dev, "write-%d %04x\n", word_len, *tx); #endif __raw_writel(*tx++, tx_reg); } if (rx != NULL) { while (!(__raw_readl(chstat_reg) & OMAP2_MCSPI_CHSTAT_RXS)); if (c == 0 && tx == NULL) omap2_mcspi_set_enable(spi, 0); *rx++ = __raw_readl(rx_reg); #ifdef VERBOSE dev_dbg(&spi->dev, "read-%d %04x\n", word_len, *(rx - 1)); #endif } } } else if (word_len <= 32) { u32 *rx; const u32 *tx; rx = xfer->rx_buf; tx = xfer->tx_buf; c >>= 2; while (c--) { if (tx != NULL) { while (!(__raw_readl(chstat_reg) & OMAP2_MCSPI_CHSTAT_TXS)); #ifdef VERBOSE dev_dbg(&spi->dev, "write-%d %04x\n", word_len, *tx); #endif __raw_writel(*tx++, tx_reg); } if (rx != NULL) { while (!(__raw_readl(chstat_reg) & OMAP2_MCSPI_CHSTAT_RXS)); if (c == 0 && tx == NULL) omap2_mcspi_set_enable(spi, 0); *rx++ = __raw_readl(rx_reg); #ifdef VERBOSE dev_dbg(&spi->dev, "read-%d %04x\n", word_len, *(rx - 1)); #endif } } } if (xfer->tx_buf != NULL) { while (!(__raw_readl(chstat_reg) & OMAP2_MCSPI_CHSTAT_TXS)); while (!(__raw_readl(chstat_reg) & OMAP2_MCSPI_CHSTAT_EOT)); omap2_mcspi_set_enable(spi, 0); } } static int omap2_mcspi_setup_transfer(struct spi_device *spi, struct spi_transfer *t) { struct omap2_mcspi_cs *cs = spi->controller_state; struct omap2_mcspi_device_config *conf; u32 l = 0, div = 0; u8 word_len = spi->bits_per_word; if (t != NULL && t->bits_per_word) word_len = t->bits_per_word; if (!word_len) word_len = 8; if (spi->bits_per_word > 32) return -EINVAL; cs->word_len = word_len; conf = (struct omap2_mcspi_device_config *) spi->controller_data; if (conf->single_channel == 1) omap2_mcspi_set_master_mode(spi, 1); else omap2_mcspi_set_master_mode(spi, 0); if (spi->max_speed_hz) { while (div <= 15 && (OMAP2_MCSPI_MAX_FREQ / (1 << div)) > spi->max_speed_hz) div++; } else div = 15; if (spi->chip_select > 3 || word_len < 4 || word_len > 32 || div > 15) { dev_err(&spi->dev, "Invalid McSPI channel setting\n"); return -EINVAL; } l = mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCONF0); l &= ~OMAP2_MCSPI_CHCONF_IS; l &= ~OMAP2_MCSPI_CHCONF_DPE1; l |= OMAP2_MCSPI_CHCONF_DPE0; l &= ~OMAP2_MCSPI_CHCONF_WL_MASK; l |= (word_len - 1) << 7; if (!(spi->mode & SPI_CS_HIGH)) l |= OMAP2_MCSPI_CHCONF_EPOL; else l &= ~OMAP2_MCSPI_CHCONF_EPOL; l &= ~OMAP2_MCSPI_CHCONF_CLKD_MASK; l |= div << 2; if (spi->mode & SPI_CPOL) l |= OMAP2_MCSPI_CHCONF_POL; else l &= ~OMAP2_MCSPI_CHCONF_POL; if (spi->mode & SPI_CPHA) l &= ~OMAP2_MCSPI_CHCONF_PHA; else l |= OMAP2_MCSPI_CHCONF_PHA; mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCONF0, l); dev_dbg(&spi->dev, "setup: speed %d, sample %s edge, clk %s inverted\n", OMAP2_MCSPI_MAX_FREQ / (1 << div), (spi->mode & SPI_CPHA) ? "odd" : "even", (spi->mode & SPI_CPOL) ? "" : "not"); return 0; } static void omap2_mcspi_dma_rx_callback(int lch, u16 ch_status, void *data) { struct spi_device * spi = (struct spi_device *)data; struct omap2_mcspi * mcspi; struct omap2_mcspi_dma * mcspi_dma; mcspi = class_get_devdata(&spi->master->cdev); mcspi_dma = &(mcspi->dma_channels[spi->chip_select]); complete(&mcspi_dma->dma_rx_completion); /* We must disable the DMA RX request */ omap2_mcspi_set_dma_req(spi, 1, 0); } static void omap2_mcspi_dma_tx_callback(int lch, u16 ch_status, void *data) { struct spi_device * spi = (struct spi_device *)data; struct omap2_mcspi * mcspi; struct omap2_mcspi_dma * mcspi_dma; mcspi = class_get_devdata(&spi->master->cdev); mcspi_dma = &(mcspi->dma_channels[spi->chip_select]); complete(&mcspi_dma->dma_tx_completion); /* We must disable the DMA TX request */ omap2_mcspi_set_dma_req(spi, 0, 0); } static int omap2_mcspi_request_dma(struct spi_device *spi) { int rx_dev_id, tx_dev_id; struct spi_master *master = spi->master; struct omap2_mcspi * mcspi; struct omap2_mcspi_dma * mcspi_dma; mcspi = class_get_devdata(&master->cdev); mcspi_dma = &(mcspi->dma_channels[spi->chip_select]); if (master->bus_num == 1) { switch (spi->chip_select) { case 0: rx_dev_id = OMAP24XX_DMA_SPI1_RX0; tx_dev_id = OMAP24XX_DMA_SPI1_TX0; break; case 1: rx_dev_id = OMAP24XX_DMA_SPI1_RX1; tx_dev_id = OMAP24XX_DMA_SPI1_TX1; break; case 2: rx_dev_id = OMAP24XX_DMA_SPI1_RX2; tx_dev_id = OMAP24XX_DMA_SPI1_TX2; break; case 3: rx_dev_id = OMAP24XX_DMA_SPI1_RX3; tx_dev_id = OMAP24XX_DMA_SPI1_TX3; break; default: return -EINVAL; } } else if (master->bus_num == 2) { /* McSPI 2 has 1 chipselect */ switch (spi->chip_select) { case 0: rx_dev_id = OMAP24XX_DMA_SPI2_RX0; tx_dev_id = OMAP24XX_DMA_SPI2_TX0; break; case 1: rx_dev_id = OMAP24XX_DMA_SPI2_RX1; tx_dev_id = OMAP24XX_DMA_SPI2_TX1; break; default: return -EINVAL; } } else return -EINVAL; if (omap_request_dma(rx_dev_id, "McSPI RX", omap2_mcspi_dma_rx_callback, spi, &mcspi_dma->dma_rx_channel)) { printk(KERN_ERR "Unable to request DMA channel for McSPI RX\n"); return -EAGAIN; } if (omap_request_dma(tx_dev_id, "McSPI TX", omap2_mcspi_dma_tx_callback, spi, &mcspi_dma->dma_tx_channel)) { omap_free_dma(mcspi_dma->dma_rx_channel); mcspi_dma->dma_rx_channel = -1; printk(KERN_ERR "Unable to request DMA channel for McSPI TX\n"); return -EAGAIN; } mcspi_dma->dma_rx_sync_dev = rx_dev_id; mcspi_dma->dma_tx_sync_dev = tx_dev_id; init_completion(&mcspi_dma->dma_rx_completion); init_completion(&mcspi_dma->dma_tx_completion); return 0; } static int omap2_mcspi_setup(struct spi_device *spi) { int ret; struct omap2_mcspi * mcspi; struct omap2_mcspi_dma * mcspi_dma; struct omap2_mcspi_cs *cs = spi->controller_state; mcspi = class_get_devdata(&spi->master->cdev); mcspi_dma = &mcspi->dma_channels[spi->chip_select]; if (!cs) { cs = kzalloc(sizeof *cs, SLAB_KERNEL); if (!cs) return -ENOMEM; spi->controller_state = cs; } if (mcspi_dma->dma_rx_channel == -1 || mcspi_dma->dma_tx_channel == -1) { ret = omap2_mcspi_request_dma(spi); if (ret < 0) return ret; } return omap2_mcspi_setup_transfer(spi, NULL); } static void omap2_mcspi_cleanup(const struct spi_device *spi) { struct omap2_mcspi * mcspi; struct omap2_mcspi_dma * mcspi_dma; mcspi = class_get_devdata(&spi->master->cdev); mcspi_dma = &mcspi->dma_channels[spi->chip_select]; if (spi->controller_state != NULL) kfree(spi->controller_state); if (mcspi_dma->dma_rx_channel != -1 && mcspi_dma->dma_tx_channel != -1) { omap_free_dma(mcspi_dma->dma_tx_channel); omap_free_dma(mcspi_dma->dma_rx_channel); } } static void omap2_mcspi_work(void * arg) { struct omap2_mcspi *mcspi = (struct omap2_mcspi *) arg; unsigned long flags; spin_lock_irqsave(&mcspi->lock, flags); while (!list_empty(&mcspi->msg_queue)) { struct spi_message *m; struct spi_device *spi; struct spi_transfer *t = NULL; int cs_active = 0; struct omap2_mcspi_device_config *conf; struct omap2_mcspi_cs *cs; int par_override = 0; int status = 0; m = container_of(mcspi->msg_queue.next, struct spi_message, queue); list_del_init(&m->queue); spin_unlock_irqrestore(&mcspi->lock, flags); spi = m->spi; conf = (struct omap2_mcspi_device_config *) spi->controller_data; cs = (struct omap2_mcspi_cs *) spi->controller_state; list_for_each_entry(t, &m->transfers, transfer_list) { if (t->tx_buf == NULL && t->rx_buf == NULL && t->len) { status = -EINVAL; break; } if (par_override || t->speed_hz || t->bits_per_word) { par_override = 1; status = omap2_mcspi_setup_transfer(spi, t); if (status < 0) break; if (!t->speed_hz && !t->bits_per_word) par_override = 0; } if (!cs_active) { omap2_mcspi_force_cs(spi, 1); cs_active = 1; } if (m->is_dma_mapped && (t->tx_dma != 0 || t->rx_dma != 0)) omap2_mcspi_txrx_dma(spi, t); else omap2_mcspi_txrx_pio(spi, t); if (t->cs_change) { /* In the last transfer entry the flag means * _leave_ CS on */ if (t->transfer_list.next != &m->transfers) omap2_mcspi_force_cs(spi, 0); cs_active = 0; } } /* Restore defaults they are overriden */ if (par_override) { par_override = 0; status = omap2_mcspi_setup_transfer(spi, NULL); } if (cs_active) omap2_mcspi_force_cs(spi, 0); m->status = status; m->complete(m->context); spin_lock_irqsave(&mcspi->lock, flags); } spin_unlock_irqrestore(&mcspi->lock, flags); } static int omap2_mcspi_transfer(struct spi_device *spi, struct spi_message *m) { struct omap2_mcspi *mcspi; unsigned long flags; m->actual_length = 0; m->status = 0; mcspi = class_get_devdata(&spi->master->cdev); spin_lock_irqsave(&mcspi->lock, flags); list_add_tail(&m->queue, &mcspi->msg_queue); spin_unlock_irqrestore(&mcspi->lock, flags); queue_work(omap2_mcspi_wq, &mcspi->work); return 0; } static int __devinit omap2_mcspi_reset(struct spi_master *master) { #if 0 mcspi_write_reg(master, OMAP2_MCSPI_SYSCONFIG, OMAP2_MCSPI_SYSCONFIG_SOFTRESET); while (!(mcspi_read_reg(master, OMAP2_MCSPI_SYSSTATUS) & OMAP2_MCSPI_SYSSTATUS_RESETDONE)); #else return 0; #endif } static int __devinit omap2_mcspi_probe(struct platform_device *pdev) { struct spi_master *master; struct omap2_mcspi_platform_config *pdata = pdev->dev.platform_data; struct omap2_mcspi *mcspi; struct resource *r; int status = 0, i; if (!pdata) return -EINVAL; master = spi_alloc_master(&pdev->dev, sizeof *mcspi); if (master == NULL) { dev_err(&pdev->dev, "master allocation failed\n"); return -ENOMEM; } if (pdev->id != -1) master->bus_num = pdev->id; master->setup = omap2_mcspi_setup; master->transfer = omap2_mcspi_transfer; master->cleanup = omap2_mcspi_cleanup; master->num_chipselect = pdata->num_cs; if (class_device_get(&master->cdev) == NULL) { dev_err(&pdev->dev, "no master->cdev"); status = -ENOMEM; goto err0; } dev_set_drvdata(&pdev->dev, master); mcspi = class_get_devdata(&master->cdev); mcspi->master = master; r = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (r == NULL) { status = -ENODEV; goto err1; } mcspi->base = io_p2v(r->start); INIT_WORK(&mcspi->work, omap2_mcspi_work, mcspi); spin_lock_init(&mcspi->lock); INIT_LIST_HEAD(&mcspi->msg_queue); mcspi->ick = clk_get(&pdev->dev, "mcspi_ick"); if (IS_ERR(mcspi->ick)) { dev_err(&pdev->dev, "can't get mcspi_ick\n"); status = PTR_ERR(mcspi->ick); goto err1; } clk_enable(mcspi->ick); mcspi->fck = clk_get(&pdev->dev, "mcspi_fck"); if (IS_ERR(mcspi->fck)) { dev_err(&pdev->dev, "can't get mcspi_fck\n"); status = PTR_ERR(mcspi->fck); goto err2; } clk_enable(mcspi->fck); mcspi->dma_channels = (struct omap2_mcspi_dma *)kzalloc(master->num_chipselect * sizeof(struct omap2_mcspi_dma), GFP_KERNEL); if (mcspi->dma_channels == NULL) goto err3; for (i = 0; i < master->num_chipselect; i++) { mcspi->dma_channels[i].dma_rx_channel = -1; mcspi->dma_channels[i].dma_tx_channel = -1; } if (omap2_mcspi_reset(master) < 0) goto err4; status = spi_register_master(master); if (status < 0) goto err4; return status; err4: kfree(mcspi->dma_channels); err3: clk_disable(mcspi->fck); clk_put(mcspi->fck); err2: clk_disable(mcspi->ick); clk_put(mcspi->ick); err1: class_device_put(&master->cdev); err0: return status; } static int __devexit omap2_mcspi_remove(struct platform_device *pdev) { struct spi_master *master; struct omap2_mcspi *mcspi; master = dev_get_drvdata(&pdev->dev); spi_unregister_master(master); mcspi = class_get_devdata(&master->cdev); clk_disable(mcspi->fck); clk_put(mcspi->fck); clk_disable(mcspi->ick); clk_put(mcspi->ick); class_device_put(&master->cdev); kfree(mcspi->dma_channels); return 0; } struct platform_driver omap2_mcspi_driver = { .driver = { .name = "omap2_mcspi", .owner = THIS_MODULE, }, .probe = omap2_mcspi_probe, .remove = __devexit_p(omap2_mcspi_remove), }; EXPORT_SYMBOL_GPL(omap2_mcspi_driver); static int __init omap2_mcspi_init(void) { printk(KERN_INFO "OMAP24xx McSPI driver initializing\n"); omap2_mcspi_wq = create_workqueue("OMAP McSPI"); if (omap2_mcspi_wq == NULL) return -1; return platform_driver_register(&omap2_mcspi_driver); } subsys_initcall(omap2_mcspi_init); static void __exit omap2_mcspi_exit(void) { platform_driver_unregister(&omap2_mcspi_driver); } module_exit(omap2_mcspi_exit); MODULE_LICENSE("GPL");