/* Copyright (c) 2015, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include "qcom_scm.h" #define QCOM_SCM_FNID(s, c) ((((s) & 0xFF) << 8) | ((c) & 0xFF)) #define MAX_QCOM_SCM_ARGS 10 #define MAX_QCOM_SCM_RETS 3 enum qcom_scm_arg_types { QCOM_SCM_VAL, QCOM_SCM_RO, QCOM_SCM_RW, QCOM_SCM_BUFVAL, }; #define QCOM_SCM_ARGS_IMPL(num, a, b, c, d, e, f, g, h, i, j, ...) (\ (((a) & 0x3) << 4) | \ (((b) & 0x3) << 6) | \ (((c) & 0x3) << 8) | \ (((d) & 0x3) << 10) | \ (((e) & 0x3) << 12) | \ (((f) & 0x3) << 14) | \ (((g) & 0x3) << 16) | \ (((h) & 0x3) << 18) | \ (((i) & 0x3) << 20) | \ (((j) & 0x3) << 22) | \ ((num) & 0xf)) #define QCOM_SCM_ARGS(...) QCOM_SCM_ARGS_IMPL(__VA_ARGS__, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) /** * struct qcom_scm_desc * @arginfo: Metadata describing the arguments in args[] * @args: The array of arguments for the secure syscall * @res: The values returned by the secure syscall */ struct qcom_scm_desc { u32 arginfo; u64 args[MAX_QCOM_SCM_ARGS]; }; static u64 qcom_smccc_convention = -1; static DEFINE_MUTEX(qcom_scm_lock); #define QCOM_SCM_EBUSY_WAIT_MS 30 #define QCOM_SCM_EBUSY_MAX_RETRY 20 #define N_EXT_QCOM_SCM_ARGS 7 #define FIRST_EXT_ARG_IDX 3 #define N_REGISTER_ARGS (MAX_QCOM_SCM_ARGS - N_EXT_QCOM_SCM_ARGS + 1) /** * qcom_scm_call() - Invoke a syscall in the secure world * @dev: device * @svc_id: service identifier * @cmd_id: command identifier * @desc: Descriptor structure containing arguments and return values * * Sends a command to the SCM and waits for the command to finish processing. * This should *only* be called in pre-emptible context. */ static int qcom_scm_call(struct device *dev, u32 svc_id, u32 cmd_id, const struct qcom_scm_desc *desc, struct arm_smccc_res *res) { int arglen = desc->arginfo & 0xf; int retry_count = 0, i; u32 fn_id = QCOM_SCM_FNID(svc_id, cmd_id); u64 cmd, x5 = desc->args[FIRST_EXT_ARG_IDX]; dma_addr_t args_phys = 0; void *args_virt = NULL; size_t alloc_len; if (unlikely(arglen > N_REGISTER_ARGS)) { alloc_len = N_EXT_QCOM_SCM_ARGS * sizeof(u64); args_virt = kzalloc(PAGE_ALIGN(alloc_len), GFP_KERNEL); if (!args_virt) return -ENOMEM; if (qcom_smccc_convention == ARM_SMCCC_SMC_32) { __le32 *args = args_virt; for (i = 0; i < N_EXT_QCOM_SCM_ARGS; i++) args[i] = cpu_to_le32(desc->args[i + FIRST_EXT_ARG_IDX]); } else { __le64 *args = args_virt; for (i = 0; i < N_EXT_QCOM_SCM_ARGS; i++) args[i] = cpu_to_le64(desc->args[i + FIRST_EXT_ARG_IDX]); } args_phys = dma_map_single(dev, args_virt, alloc_len, DMA_TO_DEVICE); if (dma_mapping_error(dev, args_phys)) { kfree(args_virt); return -ENOMEM; } x5 = args_phys; } do { mutex_lock(&qcom_scm_lock); cmd = ARM_SMCCC_CALL_VAL(ARM_SMCCC_STD_CALL, qcom_smccc_convention, ARM_SMCCC_OWNER_SIP, fn_id); do { arm_smccc_smc(cmd, desc->arginfo, desc->args[0], desc->args[1], desc->args[2], x5, 0, 0, res); } while (res->a0 == QCOM_SCM_INTERRUPTED); mutex_unlock(&qcom_scm_lock); if (res->a0 == QCOM_SCM_V2_EBUSY) { if (retry_count++ > QCOM_SCM_EBUSY_MAX_RETRY) break; msleep(QCOM_SCM_EBUSY_WAIT_MS); } } while (res->a0 == QCOM_SCM_V2_EBUSY); if (args_virt) { dma_unmap_single(dev, args_phys, alloc_len, DMA_TO_DEVICE); kfree(args_virt); } if (res->a0 < 0) return qcom_scm_remap_error(res->a0); return 0; } /** * qcom_scm_set_cold_boot_addr() - Set the cold boot address for cpus * @entry: Entry point function for the cpus * @cpus: The cpumask of cpus that will use the entry point * * Set the cold boot address of the cpus. Any cpu outside the supported * range would be removed from the cpu present mask. */ int __qcom_scm_set_cold_boot_addr(void *entry, const cpumask_t *cpus) { return 0; } /** * qcom_scm_set_warm_boot_addr() - Set the warm boot address for cpus * @dev: Device pointer * @entry: Entry point function for the cpus * @cpus: The cpumask of cpus that will use the entry point * * Set the Linux entry point for the SCM to transfer control to when coming * out of a power down. CPU power down may be executed on cpuidle or hotplug. */ int __qcom_scm_set_warm_boot_addr(struct device *dev, void *entry, const cpumask_t *cpus) { return -ENOTSUPP; } /** * qcom_scm_cpu_power_down() - Power down the cpu * @flags - Flags to flush cache * * This is an end point to power down cpu. If there was a pending interrupt, * the control would return from this function, otherwise, the cpu jumps to the * warm boot entry point set for this cpu upon reset. */ void __qcom_scm_cpu_power_down(u32 flags) { } int __qcom_scm_is_call_available(struct device *dev, u32 svc_id, u32 cmd_id) { int ret; struct qcom_scm_desc desc = {0}; struct arm_smccc_res res; desc.arginfo = QCOM_SCM_ARGS(1); desc.args[0] = QCOM_SCM_FNID(svc_id, cmd_id) | (ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT); ret = qcom_scm_call(dev, QCOM_SCM_SVC_INFO, QCOM_IS_CALL_AVAIL_CMD, &desc, &res); return ret ? : res.a1; } int __qcom_scm_hdcp_req(struct device *dev, struct qcom_scm_hdcp_req *req, u32 req_cnt, u32 *resp) { int ret; struct qcom_scm_desc desc = {0}; struct arm_smccc_res res; if (req_cnt > QCOM_SCM_HDCP_MAX_REQ_CNT) return -ERANGE; desc.args[0] = req[0].addr; desc.args[1] = req[0].val; desc.args[2] = req[1].addr; desc.args[3] = req[1].val; desc.args[4] = req[2].addr; desc.args[5] = req[2].val; desc.args[6] = req[3].addr; desc.args[7] = req[3].val; desc.args[8] = req[4].addr; desc.args[9] = req[4].val; desc.arginfo = QCOM_SCM_ARGS(10); ret = qcom_scm_call(dev, QCOM_SCM_SVC_HDCP, QCOM_SCM_CMD_HDCP, &desc, &res); *resp = res.a1; return ret; } void __qcom_scm_init(void) { u64 cmd; struct arm_smccc_res res; u32 function = QCOM_SCM_FNID(QCOM_SCM_SVC_INFO, QCOM_IS_CALL_AVAIL_CMD); /* First try a SMC64 call */ cmd = ARM_SMCCC_CALL_VAL(ARM_SMCCC_FAST_CALL, ARM_SMCCC_SMC_64, ARM_SMCCC_OWNER_SIP, function); arm_smccc_smc(cmd, QCOM_SCM_ARGS(1), cmd & (~BIT(ARM_SMCCC_TYPE_SHIFT)), 0, 0, 0, 0, 0, &res); if (!res.a0 && res.a1) qcom_smccc_convention = ARM_SMCCC_SMC_64; else qcom_smccc_convention = ARM_SMCCC_SMC_32; } bool __qcom_scm_pas_supported(struct device *dev, u32 peripheral) { int ret; struct qcom_scm_desc desc = {0}; struct arm_smccc_res res; desc.args[0] = peripheral; desc.arginfo = QCOM_SCM_ARGS(1); ret = qcom_scm_call(dev, QCOM_SCM_SVC_PIL, QCOM_SCM_PAS_IS_SUPPORTED_CMD, &desc, &res); return ret ? false : !!res.a1; } int __qcom_scm_pas_init_image(struct device *dev, u32 peripheral, dma_addr_t metadata_phys) { int ret; struct qcom_scm_desc desc = {0}; struct arm_smccc_res res; desc.args[0] = peripheral; desc.args[1] = metadata_phys; desc.arginfo = QCOM_SCM_ARGS(2, QCOM_SCM_VAL, QCOM_SCM_RW); ret = qcom_scm_call(dev, QCOM_SCM_SVC_PIL, QCOM_SCM_PAS_INIT_IMAGE_CMD, &desc, &res); return ret ? : res.a1; } int __qcom_scm_pas_mem_setup(struct device *dev, u32 peripheral, phys_addr_t addr, phys_addr_t size) { int ret; struct qcom_scm_desc desc = {0}; struct arm_smccc_res res; desc.args[0] = peripheral; desc.args[1] = addr; desc.args[2] = size; desc.arginfo = QCOM_SCM_ARGS(3); ret = qcom_scm_call(dev, QCOM_SCM_SVC_PIL, QCOM_SCM_PAS_MEM_SETUP_CMD, &desc, &res); return ret ? : res.a1; } int __qcom_scm_pas_auth_and_reset(struct device *dev, u32 peripheral) { int ret; struct qcom_scm_desc desc = {0}; struct arm_smccc_res res; desc.args[0] = peripheral; desc.arginfo = QCOM_SCM_ARGS(1); ret = qcom_scm_call(dev, QCOM_SCM_SVC_PIL, QCOM_SCM_PAS_AUTH_AND_RESET_CMD, &desc, &res); return ret ? : res.a1; } int __qcom_scm_pas_shutdown(struct device *dev, u32 peripheral) { int ret; struct qcom_scm_desc desc = {0}; struct arm_smccc_res res; desc.args[0] = peripheral; desc.arginfo = QCOM_SCM_ARGS(1); ret = qcom_scm_call(dev, QCOM_SCM_SVC_PIL, QCOM_SCM_PAS_SHUTDOWN_CMD, &desc, &res); return ret ? : res.a1; } int __qcom_scm_pas_mss_reset(struct device *dev, bool reset) { struct qcom_scm_desc desc = {0}; struct arm_smccc_res res; int ret; desc.args[0] = reset; desc.args[1] = 0; desc.arginfo = QCOM_SCM_ARGS(2); ret = qcom_scm_call(dev, QCOM_SCM_SVC_PIL, QCOM_SCM_PAS_MSS_RESET, &desc, &res); return ret ? : res.a1; } int __qcom_qfprom_show_authenticate(struct device *dev, char *buf) { int ret; struct arm_smccc_res res; struct qcom_scm_desc desc = {0}; dma_addr_t auth_phys; void *auth_buf; auth_buf = dma_alloc_coherent(dev, sizeof(*buf), &auth_phys, GFP_KERNEL); if (!auth_buf) { dev_err(dev, "Allocation for auth buffer failed\n"); return -ENOMEM; } desc.args[0] = (u64)auth_phys; desc.args[1] = sizeof(char); desc.arginfo = SCM_ARGS(2, SCM_RO); ret = qcom_scm_call(dev, QCOM_SCM_SVC_FUSE, QCOM_QFPROM_IS_AUTHENTICATE_CMD, &desc, &res); memcpy(buf, auth_buf, sizeof(char)); dma_free_coherent(dev, sizeof(*buf), auth_buf, auth_phys); return ret ? : res.a1; } int __qcom_qfprom_write_version(struct device *dev, void *wrip, int size) { return -ENOTSUPP; } int __qcom_qfprom_read_version(struct device *dev, uint32_t sw_type, uint32_t value, uint32_t qfprom_ret_ptr) { int ret; struct arm_smccc_res res; struct qcom_scm_desc desc = {0}; struct qfprom_xtra { uint32_t qfprom_ret_ptr; uint32_t size; } *xtra; dma_addr_t xtra_phys; xtra = (struct qfprom_xtra *)dma_alloc_coherent(dev, sizeof(struct qfprom_xtra), &xtra_phys, GFP_KERNEL); if (!xtra) { dev_err(dev, "Allocation for xtraargs buffer failed\n"); return -ENOMEM; } xtra->qfprom_ret_ptr = qfprom_ret_ptr; xtra->size = sizeof(uint32_t); desc.args[0] = sw_type; desc.args[1] = (u64)value; desc.args[2] = sizeof(uint32_t); desc.args[3] = (u64)xtra_phys; desc.arginfo = SCM_ARGS(5, SCM_VAL, SCM_RW, SCM_VAL, SCM_RW, SCM_VAL); ret = qcom_scm_call(dev, QCOM_SCM_SVC_FUSE, QCOM_QFPROM_ROW_READ_CMD, &desc, &res); dma_free_coherent(dev, sizeof(struct qfprom_xtra), xtra, xtra_phys); return ret ? : res.a1; } int __qcom_scm_regsave(struct device *dev, u32 svc_id, u32 cmd_id, void *scm_regsave, unsigned int buf_size) { struct scm_desc desc = {0}; struct arm_smccc_res res; int ret; desc.args[0] = (u64)virt_to_phys(scm_regsave); desc.args[1] = buf_size; desc.arginfo = SCM_ARGS(2, SCM_RW, SCM_VAL); ret = qcom_scm_call(dev, QCOM_SCM_SVC_REGSAVE, QCOM_SCM_REGSAVE_CMD, &desc, &res); return ret ? : res.a1; } int __qcom_scm_tcsr(struct device *dev, u32 svc_id, u32 cmd_id, struct qcom_scm_tcsr_req *tcsr_cmd) { return -ENOTSUPP; } int __qcom_scm_dload(struct device *dev, u32 svc_id, u32 cmd_id, void *cmd_buf) { struct scm_desc desc = {0}; struct arm_smccc_res res; int ret; unsigned int enable = *((unsigned int *)cmd_buf); #define TCSR_BOOT_MISC_REG 0x193d100ull #define DLOAD_MODE_ENABLE 0x10ull #define DLOAD_MODE_DISABLE 0x00ull desc.args[0] = TCSR_BOOT_MISC_REG; desc.args[1] = enable ? DLOAD_MODE_ENABLE : DLOAD_MODE_DISABLE; desc.arginfo = SCM_ARGS(2, SCM_VAL, SCM_VAL); ret = qcom_scm_call(dev, SCM_SVC_IO_ACCESS, SCM_IO_WRITE, &desc, &res); return ret ? : res.a1; } int __qcom_scm_sdi(struct device *dev, u32 svc_id, u32 cmd_id) { struct scm_desc desc = {0}; struct arm_smccc_res res; int ret; desc.args[0] = 1ull; /* Disable wdog debug */ desc.args[1] = 1ull; /* SDI Disable */ desc.arginfo = SCM_ARGS(2, SCM_VAL, SCM_VAL); ret = qcom_scm_call(dev, QCOM_SCM_SVC_BOOT, SCM_CMD_TZ_CONFIG_HW_FOR_RAM_DUMP_ID, &desc, &res); return ret ? : res.a1; } int __qcom_scm_tzsched(struct device *dev, const void *req, size_t req_size, void *resp, size_t resp_size) { return -ENOTSUPP; } int __qcom_scm_pinmux_read(u32 svc_id, u32 cmd_id, u32 arg1) { return -ENOTSUPP; } int __qcom_scm_pinmux_write(u32 svc_id, u32 cmd_id, u32 arg1, u32 arg2) { return -ENOTSUPP; } int __qcom_scm_cache_dump(u32 cpu) { return -ENOTSUPP; } int __qcom_scm_get_cache_dump_size(struct device *dev, u32 cmd_id, void *cmd_buf, u32 size) { return -ENOTSUPP; } int __qcom_scm_send_cache_dump_addr(struct device *dev, u32 cmd_id, void *cmd_buf, u32 size) { return -ENOTSUPP; } static int __qcom_scm_tz_log_v8(struct device *dev, u32 svc_id, u32 cmd_id, u32 log_buf, u32 buf_size) { struct scm_desc desc = {0}; struct arm_smccc_res res; int ret; desc.args[0] = log_buf; desc.args[1] = buf_size; desc.arginfo = SCM_ARGS(2, SCM_RW, SCM_VAL); ret = qcom_scm_call(dev, svc_id, cmd_id, &desc, &res); return ret ? : res.a1; } int __qcom_scm_tz_log(struct device *dev, u32 svc_id, u32 cmd_id, void *ker_buf, u32 *buf_len, u32 **ring_off, struct tzbsp_diag_log_t **log) { int ret; struct tzbsp_diag_t_v8 *tz_diag_v8; dma_addr_t log_buf; log_buf = dma_map_single(dev, ker_buf, BUF_LEN_V8, DMA_FROM_DEVICE); ret = dma_mapping_error(dev, log_buf); if (ret != 0) { pr_err("DMA Mapping Error : %d\n", ret); return -EINVAL; } ret = __qcom_scm_tz_log_v8(dev, svc_id, cmd_id, log_buf, BUF_LEN_V8); dma_unmap_single(dev, log_buf, BUF_LEN_V8, DMA_FROM_DEVICE); if (ret == 0) { tz_diag_v8 = (struct tzbsp_diag_t_v8 *) ker_buf; *ring_off = (uint32_t *)&(tz_diag_v8->ring_off); *log = (struct tzbsp_diag_log_t *) &tz_diag_v8->log; *buf_len = BUF_LEN_V8; } return ret; } int __qcom_los_scm_call(struct device *dev, u32 svc_id, u32 cmd_id, void *cmd_buf, size_t size) { return -ENOTSUPP; }