/* * at25.c -- support most SPI EEPROMs, such as Atmel AT25 models * * Copyright (C) 2006 David Brownell * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/delay.h> #include <linux/device.h> #include <linux/sched.h> #include <linux/nvmem-provider.h> #include <linux/spi/spi.h> #include <linux/spi/eeprom.h> #include <linux/property.h> /* * NOTE: this is an *EEPROM* driver. The vagaries of product naming * mean that some AT25 products are EEPROMs, and others are FLASH. * Handle FLASH chips with the drivers/mtd/devices/m25p80.c driver, * not this one! */ struct at25_data { struct spi_device *spi; struct mutex lock; struct spi_eeprom chip; unsigned addrlen; struct nvmem_config nvmem_config; struct nvmem_device *nvmem; }; #define AT25_WREN 0x06 /* latch the write enable */ #define AT25_WRDI 0x04 /* reset the write enable */ #define AT25_RDSR 0x05 /* read status register */ #define AT25_WRSR 0x01 /* write status register */ #define AT25_READ 0x03 /* read byte(s) */ #define AT25_WRITE 0x02 /* write byte(s)/sector */ #define AT25_SR_nRDY 0x01 /* nRDY = write-in-progress */ #define AT25_SR_WEN 0x02 /* write enable (latched) */ #define AT25_SR_BP0 0x04 /* BP for software writeprotect */ #define AT25_SR_BP1 0x08 #define AT25_SR_WPEN 0x80 /* writeprotect enable */ #define AT25_INSTR_BIT3 0x08 /* Additional address bit in instr */ #define EE_MAXADDRLEN 3 /* 24 bit addresses, up to 2 MBytes */ /* Specs often allow 5 msec for a page write, sometimes 20 msec; * it's important to recover from write timeouts. */ #define EE_TIMEOUT 25 /*-------------------------------------------------------------------------*/ #define io_limit PAGE_SIZE /* bytes */ static int at25_ee_read(void *priv, unsigned int offset, void *val, size_t count) { struct at25_data *at25 = priv; char *buf = val; u8 command[EE_MAXADDRLEN + 1]; u8 *cp; ssize_t status; struct spi_transfer t[2]; struct spi_message m; u8 instr; if (unlikely(offset >= at25->chip.byte_len)) return -EINVAL; if ((offset + count) > at25->chip.byte_len) count = at25->chip.byte_len - offset; if (unlikely(!count)) return -EINVAL; cp = command; instr = AT25_READ; if (at25->chip.flags & EE_INSTR_BIT3_IS_ADDR) if (offset >= (1U << (at25->addrlen * 8))) instr |= AT25_INSTR_BIT3; *cp++ = instr; /* 8/16/24-bit address is written MSB first */ switch (at25->addrlen) { default: /* case 3 */ *cp++ = offset >> 16; case 2: *cp++ = offset >> 8; case 1: case 0: /* can't happen: for better codegen */ *cp++ = offset >> 0; } spi_message_init(&m); memset(t, 0, sizeof t); t[0].tx_buf = command; t[0].len = at25->addrlen + 1; spi_message_add_tail(&t[0], &m); t[1].rx_buf = buf; t[1].len = count; spi_message_add_tail(&t[1], &m); mutex_lock(&at25->lock); /* Read it all at once. * * REVISIT that's potentially a problem with large chips, if * other devices on the bus need to be accessed regularly or * this chip is clocked very slowly */ status = spi_sync(at25->spi, &m); dev_dbg(&at25->spi->dev, "read %zu bytes at %d --> %zd\n", count, offset, status); mutex_unlock(&at25->lock); return status; } static int at25_ee_write(void *priv, unsigned int off, void *val, size_t count) { struct at25_data *at25 = priv; const char *buf = val; int status = 0; unsigned buf_size; u8 *bounce; if (unlikely(off >= at25->chip.byte_len)) return -EFBIG; if ((off + count) > at25->chip.byte_len) count = at25->chip.byte_len - off; if (unlikely(!count)) return -EINVAL; /* Temp buffer starts with command and address */ buf_size = at25->chip.page_size; if (buf_size > io_limit) buf_size = io_limit; bounce = kmalloc(buf_size + at25->addrlen + 1, GFP_KERNEL); if (!bounce) return -ENOMEM; /* For write, rollover is within the page ... so we write at * most one page, then manually roll over to the next page. */ mutex_lock(&at25->lock); do { unsigned long timeout, retries; unsigned segment; unsigned offset = (unsigned) off; u8 *cp = bounce; int sr; u8 instr; *cp = AT25_WREN; status = spi_write(at25->spi, cp, 1); if (status < 0) { dev_dbg(&at25->spi->dev, "WREN --> %d\n", status); break; } instr = AT25_WRITE; if (at25->chip.flags & EE_INSTR_BIT3_IS_ADDR) if (offset >= (1U << (at25->addrlen * 8))) instr |= AT25_INSTR_BIT3; *cp++ = instr; /* 8/16/24-bit address is written MSB first */ switch (at25->addrlen) { default: /* case 3 */ *cp++ = offset >> 16; case 2: *cp++ = offset >> 8; case 1: case 0: /* can't happen: for better codegen */ *cp++ = offset >> 0; } /* Write as much of a page as we can */ segment = buf_size - (offset % buf_size); if (segment > count) segment = count; memcpy(cp, buf, segment); status = spi_write(at25->spi, bounce, segment + at25->addrlen + 1); dev_dbg(&at25->spi->dev, "write %u bytes at %u --> %d\n", segment, offset, status); if (status < 0) break; /* REVISIT this should detect (or prevent) failed writes * to readonly sections of the EEPROM... */ /* Wait for non-busy status */ timeout = jiffies + msecs_to_jiffies(EE_TIMEOUT); retries = 0; do { sr = spi_w8r8(at25->spi, AT25_RDSR); if (sr < 0 || (sr & AT25_SR_nRDY)) { dev_dbg(&at25->spi->dev, "rdsr --> %d (%02x)\n", sr, sr); /* at HZ=100, this is sloooow */ msleep(1); continue; } if (!(sr & AT25_SR_nRDY)) break; } while (retries++ < 3 || time_before_eq(jiffies, timeout)); if ((sr < 0) || (sr & AT25_SR_nRDY)) { dev_err(&at25->spi->dev, "write %u bytes offset %u, timeout after %u msecs\n", segment, offset, jiffies_to_msecs(jiffies - (timeout - EE_TIMEOUT))); status = -ETIMEDOUT; break; } off += segment; buf += segment; count -= segment; } while (count > 0); mutex_unlock(&at25->lock); kfree(bounce); return status; } /*-------------------------------------------------------------------------*/ static int at25_fw_to_chip(struct device *dev, struct spi_eeprom *chip) { u32 val; memset(chip, 0, sizeof(*chip)); strncpy(chip->name, "at25", sizeof(chip->name)); if (device_property_read_u32(dev, "size", &val) == 0 || device_property_read_u32(dev, "at25,byte-len", &val) == 0) { chip->byte_len = val; } else { dev_err(dev, "Error: missing \"size\" property\n"); return -ENODEV; } if (device_property_read_u32(dev, "pagesize", &val) == 0 || device_property_read_u32(dev, "at25,page-size", &val) == 0) { chip->page_size = (u16)val; } else { dev_err(dev, "Error: missing \"pagesize\" property\n"); return -ENODEV; } if (device_property_read_u32(dev, "at25,addr-mode", &val) == 0) { chip->flags = (u16)val; } else { if (device_property_read_u32(dev, "address-width", &val)) { dev_err(dev, "Error: missing \"address-width\" property\n"); return -ENODEV; } switch (val) { case 8: chip->flags |= EE_ADDR1; break; case 16: chip->flags |= EE_ADDR2; break; case 24: chip->flags |= EE_ADDR3; break; default: dev_err(dev, "Error: bad \"address-width\" property: %u\n", val); return -ENODEV; } if (device_property_present(dev, "read-only")) chip->flags |= EE_READONLY; } return 0; } static int at25_probe(struct spi_device *spi) { struct at25_data *at25 = NULL; struct spi_eeprom chip; int err; int sr; int addrlen; /* Chip description */ if (!spi->dev.platform_data) { err = at25_fw_to_chip(&spi->dev, &chip); if (err) return err; } else chip = *(struct spi_eeprom *)spi->dev.platform_data; /* For now we only support 8/16/24 bit addressing */ if (chip.flags & EE_ADDR1) addrlen = 1; else if (chip.flags & EE_ADDR2) addrlen = 2; else if (chip.flags & EE_ADDR3) addrlen = 3; else { dev_dbg(&spi->dev, "unsupported address type\n"); return -EINVAL; } /* Ping the chip ... the status register is pretty portable, * unlike probing manufacturer IDs. We do expect that system * firmware didn't write it in the past few milliseconds! */ sr = spi_w8r8(spi, AT25_RDSR); if (sr < 0 || sr & AT25_SR_nRDY) { dev_dbg(&spi->dev, "rdsr --> %d (%02x)\n", sr, sr); return -ENXIO; } at25 = devm_kzalloc(&spi->dev, sizeof(struct at25_data), GFP_KERNEL); if (!at25) return -ENOMEM; mutex_init(&at25->lock); at25->chip = chip; at25->spi = spi; spi_set_drvdata(spi, at25); at25->addrlen = addrlen; at25->nvmem_config.name = dev_name(&spi->dev); at25->nvmem_config.dev = &spi->dev; at25->nvmem_config.read_only = chip.flags & EE_READONLY; at25->nvmem_config.root_only = true; at25->nvmem_config.owner = THIS_MODULE; at25->nvmem_config.compat = true; at25->nvmem_config.base_dev = &spi->dev; at25->nvmem_config.reg_read = at25_ee_read; at25->nvmem_config.reg_write = at25_ee_write; at25->nvmem_config.priv = at25; at25->nvmem_config.stride = 4; at25->nvmem_config.word_size = 1; at25->nvmem_config.size = chip.byte_len; at25->nvmem = nvmem_register(&at25->nvmem_config); if (IS_ERR(at25->nvmem)) return PTR_ERR(at25->nvmem); dev_info(&spi->dev, "%d %s %s eeprom%s, pagesize %u\n", (chip.byte_len < 1024) ? chip.byte_len : (chip.byte_len / 1024), (chip.byte_len < 1024) ? "Byte" : "KByte", at25->chip.name, (chip.flags & EE_READONLY) ? " (readonly)" : "", at25->chip.page_size); return 0; } static int at25_remove(struct spi_device *spi) { struct at25_data *at25; at25 = spi_get_drvdata(spi); nvmem_unregister(at25->nvmem); return 0; } /*-------------------------------------------------------------------------*/ static const struct of_device_id at25_of_match[] = { { .compatible = "atmel,at25", }, { } }; MODULE_DEVICE_TABLE(of, at25_of_match); static struct spi_driver at25_driver = { .driver = { .name = "at25", .of_match_table = at25_of_match, }, .probe = at25_probe, .remove = at25_remove, }; module_spi_driver(at25_driver); MODULE_DESCRIPTION("Driver for most SPI EEPROMs"); MODULE_AUTHOR("David Brownell"); MODULE_LICENSE("GPL"); MODULE_ALIAS("spi:at25");