/* * Copyright (C) 2015 Netronome Systems, Inc. * * This software is dual licensed under the GNU General License Version 2, * June 1991 as shown in the file COPYING in the top-level directory of this * source tree or the BSD 2-Clause License provided below. You have the * option to license this software under the complete terms of either license. * * The BSD 2-Clause License: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * 1. Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * 2. Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ /* * nfp_net_common.c * Netronome network device driver: Common functions between PF and VF * Authors: Jakub Kicinski <jakub.kicinski@netronome.com> * Jason McMullan <jason.mcmullan@netronome.com> * Rolf Neugebauer <rolf.neugebauer@netronome.com> * Brad Petrus <brad.petrus@netronome.com> * Chris Telfer <chris.telfer@netronome.com> */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/init.h> #include <linux/fs.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/interrupt.h> #include <linux/ip.h> #include <linux/ipv6.h> #include <linux/pci.h> #include <linux/pci_regs.h> #include <linux/msi.h> #include <linux/ethtool.h> #include <linux/log2.h> #include <linux/if_vlan.h> #include <linux/random.h> #include <linux/ktime.h> #include <net/pkt_cls.h> #include <net/vxlan.h> #include "nfp_net_ctrl.h" #include "nfp_net.h" /** * nfp_net_get_fw_version() - Read and parse the FW version * @fw_ver: Output fw_version structure to read to * @ctrl_bar: Mapped address of the control BAR */ void nfp_net_get_fw_version(struct nfp_net_fw_version *fw_ver, void __iomem *ctrl_bar) { u32 reg; reg = readl(ctrl_bar + NFP_NET_CFG_VERSION); put_unaligned_le32(reg, fw_ver); } /* Firmware reconfig * * Firmware reconfig may take a while so we have two versions of it - * synchronous and asynchronous (posted). All synchronous callers are holding * RTNL so we don't have to worry about serializing them. */ static void nfp_net_reconfig_start(struct nfp_net *nn, u32 update) { nn_writel(nn, NFP_NET_CFG_UPDATE, update); /* ensure update is written before pinging HW */ nn_pci_flush(nn); nfp_qcp_wr_ptr_add(nn->qcp_cfg, 1); } /* Pass 0 as update to run posted reconfigs. */ static void nfp_net_reconfig_start_async(struct nfp_net *nn, u32 update) { update |= nn->reconfig_posted; nn->reconfig_posted = 0; nfp_net_reconfig_start(nn, update); nn->reconfig_timer_active = true; mod_timer(&nn->reconfig_timer, jiffies + NFP_NET_POLL_TIMEOUT * HZ); } static bool nfp_net_reconfig_check_done(struct nfp_net *nn, bool last_check) { u32 reg; reg = nn_readl(nn, NFP_NET_CFG_UPDATE); if (reg == 0) return true; if (reg & NFP_NET_CFG_UPDATE_ERR) { nn_err(nn, "Reconfig error: 0x%08x\n", reg); return true; } else if (last_check) { nn_err(nn, "Reconfig timeout: 0x%08x\n", reg); return true; } return false; } static int nfp_net_reconfig_wait(struct nfp_net *nn, unsigned long deadline) { bool timed_out = false; /* Poll update field, waiting for NFP to ack the config */ while (!nfp_net_reconfig_check_done(nn, timed_out)) { msleep(1); timed_out = time_is_before_eq_jiffies(deadline); } if (nn_readl(nn, NFP_NET_CFG_UPDATE) & NFP_NET_CFG_UPDATE_ERR) return -EIO; return timed_out ? -EIO : 0; } static void nfp_net_reconfig_timer(unsigned long data) { struct nfp_net *nn = (void *)data; spin_lock_bh(&nn->reconfig_lock); nn->reconfig_timer_active = false; /* If sync caller is present it will take over from us */ if (nn->reconfig_sync_present) goto done; /* Read reconfig status and report errors */ nfp_net_reconfig_check_done(nn, true); if (nn->reconfig_posted) nfp_net_reconfig_start_async(nn, 0); done: spin_unlock_bh(&nn->reconfig_lock); } /** * nfp_net_reconfig_post() - Post async reconfig request * @nn: NFP Net device to reconfigure * @update: The value for the update field in the BAR config * * Record FW reconfiguration request. Reconfiguration will be kicked off * whenever reconfiguration machinery is idle. Multiple requests can be * merged together! */ static void nfp_net_reconfig_post(struct nfp_net *nn, u32 update) { spin_lock_bh(&nn->reconfig_lock); /* Sync caller will kick off async reconf when it's done, just post */ if (nn->reconfig_sync_present) { nn->reconfig_posted |= update; goto done; } /* Opportunistically check if the previous command is done */ if (!nn->reconfig_timer_active || nfp_net_reconfig_check_done(nn, false)) nfp_net_reconfig_start_async(nn, update); else nn->reconfig_posted |= update; done: spin_unlock_bh(&nn->reconfig_lock); } /** * nfp_net_reconfig() - Reconfigure the firmware * @nn: NFP Net device to reconfigure * @update: The value for the update field in the BAR config * * Write the update word to the BAR and ping the reconfig queue. The * poll until the firmware has acknowledged the update by zeroing the * update word. * * Return: Negative errno on error, 0 on success */ int nfp_net_reconfig(struct nfp_net *nn, u32 update) { bool cancelled_timer = false; u32 pre_posted_requests; int ret; spin_lock_bh(&nn->reconfig_lock); nn->reconfig_sync_present = true; if (nn->reconfig_timer_active) { del_timer(&nn->reconfig_timer); nn->reconfig_timer_active = false; cancelled_timer = true; } pre_posted_requests = nn->reconfig_posted; nn->reconfig_posted = 0; spin_unlock_bh(&nn->reconfig_lock); if (cancelled_timer) nfp_net_reconfig_wait(nn, nn->reconfig_timer.expires); /* Run the posted reconfigs which were issued before we started */ if (pre_posted_requests) { nfp_net_reconfig_start(nn, pre_posted_requests); nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT); } nfp_net_reconfig_start(nn, update); ret = nfp_net_reconfig_wait(nn, jiffies + HZ * NFP_NET_POLL_TIMEOUT); spin_lock_bh(&nn->reconfig_lock); if (nn->reconfig_posted) nfp_net_reconfig_start_async(nn, 0); nn->reconfig_sync_present = false; spin_unlock_bh(&nn->reconfig_lock); return ret; } /* Interrupt configuration and handling */ /** * nfp_net_irq_unmask_msix() - Unmask MSI-X after automasking * @nn: NFP Network structure * @entry_nr: MSI-X table entry * * Clear the MSI-X table mask bit for the given entry bypassing Linux irq * handling subsystem. Use *only* to reenable automasked vectors. */ static void nfp_net_irq_unmask_msix(struct nfp_net *nn, unsigned int entry_nr) { struct list_head *msi_head = &nn->pdev->dev.msi_list; struct msi_desc *entry; u32 off; /* All MSI-Xs have the same mask_base */ entry = list_first_entry(msi_head, struct msi_desc, list); off = (PCI_MSIX_ENTRY_SIZE * entry_nr) + PCI_MSIX_ENTRY_VECTOR_CTRL; writel(0, entry->mask_base + off); readl(entry->mask_base); } /** * nfp_net_irq_unmask() - Unmask automasked interrupt * @nn: NFP Network structure * @entry_nr: MSI-X table entry * * If MSI-X auto-masking is enabled clear the mask bit, otherwise * clear the ICR for the entry. */ static void nfp_net_irq_unmask(struct nfp_net *nn, unsigned int entry_nr) { if (nn->ctrl & NFP_NET_CFG_CTRL_MSIXAUTO) { nfp_net_irq_unmask_msix(nn, entry_nr); return; } nn_writeb(nn, NFP_NET_CFG_ICR(entry_nr), NFP_NET_CFG_ICR_UNMASKED); nn_pci_flush(nn); } /** * nfp_net_msix_alloc() - Try to allocate MSI-X irqs * @nn: NFP Network structure * @nr_vecs: Number of MSI-X vectors to allocate * * For MSI-X we want at least NFP_NET_NON_Q_VECTORS + 1 vectors. * * Return: Number of MSI-X vectors obtained or 0 on error. */ static int nfp_net_msix_alloc(struct nfp_net *nn, int nr_vecs) { struct pci_dev *pdev = nn->pdev; int nvecs; int i; for (i = 0; i < nr_vecs; i++) nn->irq_entries[i].entry = i; nvecs = pci_enable_msix_range(pdev, nn->irq_entries, NFP_NET_NON_Q_VECTORS + 1, nr_vecs); if (nvecs < 0) { nn_warn(nn, "Failed to enable MSI-X. Wanted %d-%d (err=%d)\n", NFP_NET_NON_Q_VECTORS + 1, nr_vecs, nvecs); return 0; } return nvecs; } /** * nfp_net_irqs_wanted() - Work out how many interrupt vectors we want * @nn: NFP Network structure * * We want a vector per CPU (or ring), whatever is smaller plus * NFP_NET_NON_Q_VECTORS for LSC etc. * * Return: Number of interrupts wanted */ static int nfp_net_irqs_wanted(struct nfp_net *nn) { int ncpus; int vecs; ncpus = num_online_cpus(); vecs = max_t(int, nn->num_tx_rings, nn->num_rx_rings); vecs = min_t(int, vecs, ncpus); return vecs + NFP_NET_NON_Q_VECTORS; } /** * nfp_net_irqs_alloc() - allocates MSI-X irqs * @nn: NFP Network structure * * Return: Number of irqs obtained or 0 on error. */ int nfp_net_irqs_alloc(struct nfp_net *nn) { int wanted_irqs; wanted_irqs = nfp_net_irqs_wanted(nn); nn->num_irqs = nfp_net_msix_alloc(nn, wanted_irqs); if (nn->num_irqs == 0) { nn_err(nn, "Failed to allocate MSI-X IRQs\n"); return 0; } nn->num_r_vecs = nn->num_irqs - NFP_NET_NON_Q_VECTORS; if (nn->num_irqs < wanted_irqs) nn_warn(nn, "Unable to allocate %d vectors. Got %d instead\n", wanted_irqs, nn->num_irqs); return nn->num_irqs; } /** * nfp_net_irqs_disable() - Disable interrupts * @nn: NFP Network structure * * Undoes what @nfp_net_irqs_alloc() does. */ void nfp_net_irqs_disable(struct nfp_net *nn) { pci_disable_msix(nn->pdev); } /** * nfp_net_irq_rxtx() - Interrupt service routine for RX/TX rings. * @irq: Interrupt * @data: Opaque data structure * * Return: Indicate if the interrupt has been handled. */ static irqreturn_t nfp_net_irq_rxtx(int irq, void *data) { struct nfp_net_r_vector *r_vec = data; napi_schedule_irqoff(&r_vec->napi); /* The FW auto-masks any interrupt, either via the MASK bit in * the MSI-X table or via the per entry ICR field. So there * is no need to disable interrupts here. */ return IRQ_HANDLED; } /** * nfp_net_read_link_status() - Reread link status from control BAR * @nn: NFP Network structure */ static void nfp_net_read_link_status(struct nfp_net *nn) { unsigned long flags; bool link_up; u32 sts; spin_lock_irqsave(&nn->link_status_lock, flags); sts = nn_readl(nn, NFP_NET_CFG_STS); link_up = !!(sts & NFP_NET_CFG_STS_LINK); if (nn->link_up == link_up) goto out; nn->link_up = link_up; if (nn->link_up) { netif_carrier_on(nn->netdev); netdev_info(nn->netdev, "NIC Link is Up\n"); } else { netif_carrier_off(nn->netdev); netdev_info(nn->netdev, "NIC Link is Down\n"); } out: spin_unlock_irqrestore(&nn->link_status_lock, flags); } /** * nfp_net_irq_lsc() - Interrupt service routine for link state changes * @irq: Interrupt * @data: Opaque data structure * * Return: Indicate if the interrupt has been handled. */ static irqreturn_t nfp_net_irq_lsc(int irq, void *data) { struct nfp_net *nn = data; nfp_net_read_link_status(nn); nfp_net_irq_unmask(nn, NFP_NET_IRQ_LSC_IDX); return IRQ_HANDLED; } /** * nfp_net_irq_exn() - Interrupt service routine for exceptions * @irq: Interrupt * @data: Opaque data structure * * Return: Indicate if the interrupt has been handled. */ static irqreturn_t nfp_net_irq_exn(int irq, void *data) { struct nfp_net *nn = data; nn_err(nn, "%s: UNIMPLEMENTED.\n", __func__); /* XXX TO BE IMPLEMENTED */ return IRQ_HANDLED; } /** * nfp_net_tx_ring_init() - Fill in the boilerplate for a TX ring * @tx_ring: TX ring structure * @r_vec: IRQ vector servicing this ring * @idx: Ring index */ static void nfp_net_tx_ring_init(struct nfp_net_tx_ring *tx_ring, struct nfp_net_r_vector *r_vec, unsigned int idx) { struct nfp_net *nn = r_vec->nfp_net; tx_ring->idx = idx; tx_ring->r_vec = r_vec; tx_ring->qcidx = tx_ring->idx * nn->stride_tx; tx_ring->qcp_q = nn->tx_bar + NFP_QCP_QUEUE_OFF(tx_ring->qcidx); } /** * nfp_net_rx_ring_init() - Fill in the boilerplate for a RX ring * @rx_ring: RX ring structure * @r_vec: IRQ vector servicing this ring * @idx: Ring index */ static void nfp_net_rx_ring_init(struct nfp_net_rx_ring *rx_ring, struct nfp_net_r_vector *r_vec, unsigned int idx) { struct nfp_net *nn = r_vec->nfp_net; rx_ring->idx = idx; rx_ring->r_vec = r_vec; rx_ring->fl_qcidx = rx_ring->idx * nn->stride_rx; rx_ring->rx_qcidx = rx_ring->fl_qcidx + (nn->stride_rx - 1); rx_ring->qcp_fl = nn->rx_bar + NFP_QCP_QUEUE_OFF(rx_ring->fl_qcidx); rx_ring->qcp_rx = nn->rx_bar + NFP_QCP_QUEUE_OFF(rx_ring->rx_qcidx); } /** * nfp_net_irqs_assign() - Assign IRQs and setup rvecs. * @netdev: netdev structure */ static void nfp_net_irqs_assign(struct net_device *netdev) { struct nfp_net *nn = netdev_priv(netdev); struct nfp_net_r_vector *r_vec; int r; /* Assumes nn->num_tx_rings == nn->num_rx_rings */ if (nn->num_tx_rings > nn->num_r_vecs) { nn_warn(nn, "More rings (%d) than vectors (%d).\n", nn->num_tx_rings, nn->num_r_vecs); nn->num_tx_rings = nn->num_r_vecs; nn->num_rx_rings = nn->num_r_vecs; } nn->lsc_handler = nfp_net_irq_lsc; nn->exn_handler = nfp_net_irq_exn; for (r = 0; r < nn->num_r_vecs; r++) { r_vec = &nn->r_vecs[r]; r_vec->nfp_net = nn; r_vec->handler = nfp_net_irq_rxtx; r_vec->irq_idx = NFP_NET_NON_Q_VECTORS + r; cpumask_set_cpu(r, &r_vec->affinity_mask); } } /** * nfp_net_aux_irq_request() - Request an auxiliary interrupt (LSC or EXN) * @nn: NFP Network structure * @ctrl_offset: Control BAR offset where IRQ configuration should be written * @format: printf-style format to construct the interrupt name * @name: Pointer to allocated space for interrupt name * @name_sz: Size of space for interrupt name * @vector_idx: Index of MSI-X vector used for this interrupt * @handler: IRQ handler to register for this interrupt */ static int nfp_net_aux_irq_request(struct nfp_net *nn, u32 ctrl_offset, const char *format, char *name, size_t name_sz, unsigned int vector_idx, irq_handler_t handler) { struct msix_entry *entry; int err; entry = &nn->irq_entries[vector_idx]; snprintf(name, name_sz, format, netdev_name(nn->netdev)); err = request_irq(entry->vector, handler, 0, name, nn); if (err) { nn_err(nn, "Failed to request IRQ %d (err=%d).\n", entry->vector, err); return err; } nn_writeb(nn, ctrl_offset, vector_idx); return 0; } /** * nfp_net_aux_irq_free() - Free an auxiliary interrupt (LSC or EXN) * @nn: NFP Network structure * @ctrl_offset: Control BAR offset where IRQ configuration should be written * @vector_idx: Index of MSI-X vector used for this interrupt */ static void nfp_net_aux_irq_free(struct nfp_net *nn, u32 ctrl_offset, unsigned int vector_idx) { nn_writeb(nn, ctrl_offset, 0xff); free_irq(nn->irq_entries[vector_idx].vector, nn); } /* Transmit * * One queue controller peripheral queue is used for transmit. The * driver en-queues packets for transmit by advancing the write * pointer. The device indicates that packets have transmitted by * advancing the read pointer. The driver maintains a local copy of * the read and write pointer in @struct nfp_net_tx_ring. The driver * keeps @wr_p in sync with the queue controller write pointer and can * determine how many packets have been transmitted by comparing its * copy of the read pointer @rd_p with the read pointer maintained by * the queue controller peripheral. */ /** * nfp_net_tx_full() - Check if the TX ring is full * @tx_ring: TX ring to check * @dcnt: Number of descriptors that need to be enqueued (must be >= 1) * * This function checks, based on the *host copy* of read/write * pointer if a given TX ring is full. The real TX queue may have * some newly made available slots. * * Return: True if the ring is full. */ static inline int nfp_net_tx_full(struct nfp_net_tx_ring *tx_ring, int dcnt) { return (tx_ring->wr_p - tx_ring->rd_p) >= (tx_ring->cnt - dcnt); } /* Wrappers for deciding when to stop and restart TX queues */ static int nfp_net_tx_ring_should_wake(struct nfp_net_tx_ring *tx_ring) { return !nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS * 4); } static int nfp_net_tx_ring_should_stop(struct nfp_net_tx_ring *tx_ring) { return nfp_net_tx_full(tx_ring, MAX_SKB_FRAGS + 1); } /** * nfp_net_tx_ring_stop() - stop tx ring * @nd_q: netdev queue * @tx_ring: driver tx queue structure * * Safely stop TX ring. Remember that while we are running .start_xmit() * someone else may be cleaning the TX ring completions so we need to be * extra careful here. */ static void nfp_net_tx_ring_stop(struct netdev_queue *nd_q, struct nfp_net_tx_ring *tx_ring) { netif_tx_stop_queue(nd_q); /* We can race with the TX completion out of NAPI so recheck */ smp_mb(); if (unlikely(nfp_net_tx_ring_should_wake(tx_ring))) netif_tx_start_queue(nd_q); } /** * nfp_net_tx_tso() - Set up Tx descriptor for LSO * @nn: NFP Net device * @r_vec: per-ring structure * @txbuf: Pointer to driver soft TX descriptor * @txd: Pointer to HW TX descriptor * @skb: Pointer to SKB * * Set up Tx descriptor for LSO, do nothing for non-LSO skbs. * Return error on packet header greater than maximum supported LSO header size. */ static void nfp_net_tx_tso(struct nfp_net *nn, struct nfp_net_r_vector *r_vec, struct nfp_net_tx_buf *txbuf, struct nfp_net_tx_desc *txd, struct sk_buff *skb) { u32 hdrlen; u16 mss; if (!skb_is_gso(skb)) return; if (!skb->encapsulation) hdrlen = skb_transport_offset(skb) + tcp_hdrlen(skb); else hdrlen = skb_inner_transport_header(skb) - skb->data + inner_tcp_hdrlen(skb); txbuf->pkt_cnt = skb_shinfo(skb)->gso_segs; txbuf->real_len += hdrlen * (txbuf->pkt_cnt - 1); mss = skb_shinfo(skb)->gso_size & PCIE_DESC_TX_MSS_MASK; txd->l4_offset = hdrlen; txd->mss = cpu_to_le16(mss); txd->flags |= PCIE_DESC_TX_LSO; u64_stats_update_begin(&r_vec->tx_sync); r_vec->tx_lso++; u64_stats_update_end(&r_vec->tx_sync); } /** * nfp_net_tx_csum() - Set TX CSUM offload flags in TX descriptor * @nn: NFP Net device * @r_vec: per-ring structure * @txbuf: Pointer to driver soft TX descriptor * @txd: Pointer to TX descriptor * @skb: Pointer to SKB * * This function sets the TX checksum flags in the TX descriptor based * on the configuration and the protocol of the packet to be transmitted. */ static void nfp_net_tx_csum(struct nfp_net *nn, struct nfp_net_r_vector *r_vec, struct nfp_net_tx_buf *txbuf, struct nfp_net_tx_desc *txd, struct sk_buff *skb) { struct ipv6hdr *ipv6h; struct iphdr *iph; u8 l4_hdr; if (!(nn->ctrl & NFP_NET_CFG_CTRL_TXCSUM)) return; if (skb->ip_summed != CHECKSUM_PARTIAL) return; txd->flags |= PCIE_DESC_TX_CSUM; if (skb->encapsulation) txd->flags |= PCIE_DESC_TX_ENCAP; iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb); ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb); if (iph->version == 4) { txd->flags |= PCIE_DESC_TX_IP4_CSUM; l4_hdr = iph->protocol; } else if (ipv6h->version == 6) { l4_hdr = ipv6h->nexthdr; } else { nn_warn_ratelimit(nn, "partial checksum but ipv=%x!\n", iph->version); return; } switch (l4_hdr) { case IPPROTO_TCP: txd->flags |= PCIE_DESC_TX_TCP_CSUM; break; case IPPROTO_UDP: txd->flags |= PCIE_DESC_TX_UDP_CSUM; break; default: nn_warn_ratelimit(nn, "partial checksum but l4 proto=%x!\n", l4_hdr); return; } u64_stats_update_begin(&r_vec->tx_sync); if (skb->encapsulation) r_vec->hw_csum_tx_inner += txbuf->pkt_cnt; else r_vec->hw_csum_tx += txbuf->pkt_cnt; u64_stats_update_end(&r_vec->tx_sync); } /** * nfp_net_tx() - Main transmit entry point * @skb: SKB to transmit * @netdev: netdev structure * * Return: NETDEV_TX_OK on success. */ static int nfp_net_tx(struct sk_buff *skb, struct net_device *netdev) { struct nfp_net *nn = netdev_priv(netdev); const struct skb_frag_struct *frag; struct nfp_net_r_vector *r_vec; struct nfp_net_tx_desc *txd, txdg; struct nfp_net_tx_buf *txbuf; struct nfp_net_tx_ring *tx_ring; struct netdev_queue *nd_q; dma_addr_t dma_addr; unsigned int fsize; int f, nr_frags; int wr_idx; u16 qidx; qidx = skb_get_queue_mapping(skb); tx_ring = &nn->tx_rings[qidx]; r_vec = tx_ring->r_vec; nd_q = netdev_get_tx_queue(nn->netdev, qidx); nr_frags = skb_shinfo(skb)->nr_frags; if (unlikely(nfp_net_tx_full(tx_ring, nr_frags + 1))) { nn_warn_ratelimit(nn, "TX ring %d busy. wrp=%u rdp=%u\n", qidx, tx_ring->wr_p, tx_ring->rd_p); netif_tx_stop_queue(nd_q); u64_stats_update_begin(&r_vec->tx_sync); r_vec->tx_busy++; u64_stats_update_end(&r_vec->tx_sync); return NETDEV_TX_BUSY; } /* Start with the head skbuf */ dma_addr = dma_map_single(&nn->pdev->dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE); if (dma_mapping_error(&nn->pdev->dev, dma_addr)) goto err_free; wr_idx = tx_ring->wr_p % tx_ring->cnt; /* Stash the soft descriptor of the head then initialize it */ txbuf = &tx_ring->txbufs[wr_idx]; txbuf->skb = skb; txbuf->dma_addr = dma_addr; txbuf->fidx = -1; txbuf->pkt_cnt = 1; txbuf->real_len = skb->len; /* Build TX descriptor */ txd = &tx_ring->txds[wr_idx]; txd->offset_eop = (nr_frags == 0) ? PCIE_DESC_TX_EOP : 0; txd->dma_len = cpu_to_le16(skb_headlen(skb)); nfp_desc_set_dma_addr(txd, dma_addr); txd->data_len = cpu_to_le16(skb->len); txd->flags = 0; txd->mss = 0; txd->l4_offset = 0; nfp_net_tx_tso(nn, r_vec, txbuf, txd, skb); nfp_net_tx_csum(nn, r_vec, txbuf, txd, skb); if (skb_vlan_tag_present(skb) && nn->ctrl & NFP_NET_CFG_CTRL_TXVLAN) { txd->flags |= PCIE_DESC_TX_VLAN; txd->vlan = cpu_to_le16(skb_vlan_tag_get(skb)); } /* Gather DMA */ if (nr_frags > 0) { /* all descs must match except for in addr, length and eop */ txdg = *txd; for (f = 0; f < nr_frags; f++) { frag = &skb_shinfo(skb)->frags[f]; fsize = skb_frag_size(frag); dma_addr = skb_frag_dma_map(&nn->pdev->dev, frag, 0, fsize, DMA_TO_DEVICE); if (dma_mapping_error(&nn->pdev->dev, dma_addr)) goto err_unmap; wr_idx = (wr_idx + 1) % tx_ring->cnt; tx_ring->txbufs[wr_idx].skb = skb; tx_ring->txbufs[wr_idx].dma_addr = dma_addr; tx_ring->txbufs[wr_idx].fidx = f; txd = &tx_ring->txds[wr_idx]; *txd = txdg; txd->dma_len = cpu_to_le16(fsize); nfp_desc_set_dma_addr(txd, dma_addr); txd->offset_eop = (f == nr_frags - 1) ? PCIE_DESC_TX_EOP : 0; } u64_stats_update_begin(&r_vec->tx_sync); r_vec->tx_gather++; u64_stats_update_end(&r_vec->tx_sync); } netdev_tx_sent_queue(nd_q, txbuf->real_len); skb_tx_timestamp(skb); tx_ring->wr_p += nr_frags + 1; if (nfp_net_tx_ring_should_stop(tx_ring)) nfp_net_tx_ring_stop(nd_q, tx_ring); tx_ring->wr_ptr_add += nr_frags + 1; if (!skb->xmit_more || netif_xmit_stopped(nd_q)) { /* force memory write before we let HW know */ wmb(); nfp_qcp_wr_ptr_add(tx_ring->qcp_q, tx_ring->wr_ptr_add); tx_ring->wr_ptr_add = 0; } return NETDEV_TX_OK; err_unmap: while (--f >= 0) { frag = &skb_shinfo(skb)->frags[f]; dma_unmap_page(&nn->pdev->dev, tx_ring->txbufs[wr_idx].dma_addr, skb_frag_size(frag), DMA_TO_DEVICE); tx_ring->txbufs[wr_idx].skb = NULL; tx_ring->txbufs[wr_idx].dma_addr = 0; tx_ring->txbufs[wr_idx].fidx = -2; wr_idx = wr_idx - 1; if (wr_idx < 0) wr_idx += tx_ring->cnt; } dma_unmap_single(&nn->pdev->dev, tx_ring->txbufs[wr_idx].dma_addr, skb_headlen(skb), DMA_TO_DEVICE); tx_ring->txbufs[wr_idx].skb = NULL; tx_ring->txbufs[wr_idx].dma_addr = 0; tx_ring->txbufs[wr_idx].fidx = -2; err_free: nn_warn_ratelimit(nn, "Failed to map DMA TX buffer\n"); u64_stats_update_begin(&r_vec->tx_sync); r_vec->tx_errors++; u64_stats_update_end(&r_vec->tx_sync); dev_kfree_skb_any(skb); return NETDEV_TX_OK; } /** * nfp_net_tx_complete() - Handled completed TX packets * @tx_ring: TX ring structure * * Return: Number of completed TX descriptors */ static void nfp_net_tx_complete(struct nfp_net_tx_ring *tx_ring) { struct nfp_net_r_vector *r_vec = tx_ring->r_vec; struct nfp_net *nn = r_vec->nfp_net; const struct skb_frag_struct *frag; struct netdev_queue *nd_q; u32 done_pkts = 0, done_bytes = 0; struct sk_buff *skb; int todo, nr_frags; u32 qcp_rd_p; int fidx; int idx; /* Work out how many descriptors have been transmitted */ qcp_rd_p = nfp_qcp_rd_ptr_read(tx_ring->qcp_q); if (qcp_rd_p == tx_ring->qcp_rd_p) return; if (qcp_rd_p > tx_ring->qcp_rd_p) todo = qcp_rd_p - tx_ring->qcp_rd_p; else todo = qcp_rd_p + tx_ring->cnt - tx_ring->qcp_rd_p; while (todo--) { idx = tx_ring->rd_p % tx_ring->cnt; tx_ring->rd_p++; skb = tx_ring->txbufs[idx].skb; if (!skb) continue; nr_frags = skb_shinfo(skb)->nr_frags; fidx = tx_ring->txbufs[idx].fidx; if (fidx == -1) { /* unmap head */ dma_unmap_single(&nn->pdev->dev, tx_ring->txbufs[idx].dma_addr, skb_headlen(skb), DMA_TO_DEVICE); done_pkts += tx_ring->txbufs[idx].pkt_cnt; done_bytes += tx_ring->txbufs[idx].real_len; } else { /* unmap fragment */ frag = &skb_shinfo(skb)->frags[fidx]; dma_unmap_page(&nn->pdev->dev, tx_ring->txbufs[idx].dma_addr, skb_frag_size(frag), DMA_TO_DEVICE); } /* check for last gather fragment */ if (fidx == nr_frags - 1) dev_kfree_skb_any(skb); tx_ring->txbufs[idx].dma_addr = 0; tx_ring->txbufs[idx].skb = NULL; tx_ring->txbufs[idx].fidx = -2; } tx_ring->qcp_rd_p = qcp_rd_p; u64_stats_update_begin(&r_vec->tx_sync); r_vec->tx_bytes += done_bytes; r_vec->tx_pkts += done_pkts; u64_stats_update_end(&r_vec->tx_sync); nd_q = netdev_get_tx_queue(nn->netdev, tx_ring->idx); netdev_tx_completed_queue(nd_q, done_pkts, done_bytes); if (nfp_net_tx_ring_should_wake(tx_ring)) { /* Make sure TX thread will see updated tx_ring->rd_p */ smp_mb(); if (unlikely(netif_tx_queue_stopped(nd_q))) netif_tx_wake_queue(nd_q); } WARN_ONCE(tx_ring->wr_p - tx_ring->rd_p > tx_ring->cnt, "TX ring corruption rd_p=%u wr_p=%u cnt=%u\n", tx_ring->rd_p, tx_ring->wr_p, tx_ring->cnt); } /** * nfp_net_tx_ring_reset() - Free any untransmitted buffers and reset pointers * @nn: NFP Net device * @tx_ring: TX ring structure * * Assumes that the device is stopped, must be idempotent. */ static void nfp_net_tx_ring_reset(struct nfp_net *nn, struct nfp_net_tx_ring *tx_ring) { const struct skb_frag_struct *frag; struct netdev_queue *nd_q; struct pci_dev *pdev = nn->pdev; while (tx_ring->rd_p != tx_ring->wr_p) { int nr_frags, fidx, idx; struct sk_buff *skb; idx = tx_ring->rd_p % tx_ring->cnt; skb = tx_ring->txbufs[idx].skb; nr_frags = skb_shinfo(skb)->nr_frags; fidx = tx_ring->txbufs[idx].fidx; if (fidx == -1) { /* unmap head */ dma_unmap_single(&pdev->dev, tx_ring->txbufs[idx].dma_addr, skb_headlen(skb), DMA_TO_DEVICE); } else { /* unmap fragment */ frag = &skb_shinfo(skb)->frags[fidx]; dma_unmap_page(&pdev->dev, tx_ring->txbufs[idx].dma_addr, skb_frag_size(frag), DMA_TO_DEVICE); } /* check for last gather fragment */ if (fidx == nr_frags - 1) dev_kfree_skb_any(skb); tx_ring->txbufs[idx].dma_addr = 0; tx_ring->txbufs[idx].skb = NULL; tx_ring->txbufs[idx].fidx = -2; tx_ring->qcp_rd_p++; tx_ring->rd_p++; } memset(tx_ring->txds, 0, sizeof(*tx_ring->txds) * tx_ring->cnt); tx_ring->wr_p = 0; tx_ring->rd_p = 0; tx_ring->qcp_rd_p = 0; tx_ring->wr_ptr_add = 0; nd_q = netdev_get_tx_queue(nn->netdev, tx_ring->idx); netdev_tx_reset_queue(nd_q); } static void nfp_net_tx_timeout(struct net_device *netdev) { struct nfp_net *nn = netdev_priv(netdev); int i; for (i = 0; i < nn->num_tx_rings; i++) { if (!netif_tx_queue_stopped(netdev_get_tx_queue(netdev, i))) continue; nn_warn(nn, "TX timeout on ring: %d\n", i); } nn_warn(nn, "TX watchdog timeout\n"); } /* Receive processing */ /** * nfp_net_rx_space() - return the number of free slots on the RX ring * @rx_ring: RX ring structure * * Make sure we leave at least one slot free. * * Return: True if there is space on the RX ring */ static inline int nfp_net_rx_space(struct nfp_net_rx_ring *rx_ring) { return (rx_ring->cnt - 1) - (rx_ring->wr_p - rx_ring->rd_p); } /** * nfp_net_rx_alloc_one() - Allocate and map skb for RX * @rx_ring: RX ring structure of the skb * @dma_addr: Pointer to storage for DMA address (output param) * @fl_bufsz: size of freelist buffers * * This function will allcate a new skb, map it for DMA. * * Return: allocated skb or NULL on failure. */ static struct sk_buff * nfp_net_rx_alloc_one(struct nfp_net_rx_ring *rx_ring, dma_addr_t *dma_addr, unsigned int fl_bufsz) { struct nfp_net *nn = rx_ring->r_vec->nfp_net; struct sk_buff *skb; skb = netdev_alloc_skb(nn->netdev, fl_bufsz); if (!skb) { nn_warn_ratelimit(nn, "Failed to alloc receive SKB\n"); return NULL; } *dma_addr = dma_map_single(&nn->pdev->dev, skb->data, fl_bufsz, DMA_FROM_DEVICE); if (dma_mapping_error(&nn->pdev->dev, *dma_addr)) { dev_kfree_skb_any(skb); nn_warn_ratelimit(nn, "Failed to map DMA RX buffer\n"); return NULL; } return skb; } /** * nfp_net_rx_give_one() - Put mapped skb on the software and hardware rings * @rx_ring: RX ring structure * @skb: Skb to put on rings * @dma_addr: DMA address of skb mapping */ static void nfp_net_rx_give_one(struct nfp_net_rx_ring *rx_ring, struct sk_buff *skb, dma_addr_t dma_addr) { unsigned int wr_idx; wr_idx = rx_ring->wr_p % rx_ring->cnt; /* Stash SKB and DMA address away */ rx_ring->rxbufs[wr_idx].skb = skb; rx_ring->rxbufs[wr_idx].dma_addr = dma_addr; /* Fill freelist descriptor */ rx_ring->rxds[wr_idx].fld.reserved = 0; rx_ring->rxds[wr_idx].fld.meta_len_dd = 0; nfp_desc_set_dma_addr(&rx_ring->rxds[wr_idx].fld, dma_addr); rx_ring->wr_p++; rx_ring->wr_ptr_add++; if (rx_ring->wr_ptr_add >= NFP_NET_FL_BATCH) { /* Update write pointer of the freelist queue. Make * sure all writes are flushed before telling the hardware. */ wmb(); nfp_qcp_wr_ptr_add(rx_ring->qcp_fl, rx_ring->wr_ptr_add); rx_ring->wr_ptr_add = 0; } } /** * nfp_net_rx_ring_reset() - Reflect in SW state of freelist after disable * @rx_ring: RX ring structure * * Assumes that the device is stopped, must be idempotent. */ static void nfp_net_rx_ring_reset(struct nfp_net_rx_ring *rx_ring) { unsigned int wr_idx, last_idx; /* wr_p == rd_p means ring was never fed FL bufs. RX rings are always * kept at cnt - 1 FL bufs. */ if (rx_ring->wr_p == 0 && rx_ring->rd_p == 0) return; /* Move the empty entry to the end of the list */ wr_idx = rx_ring->wr_p % rx_ring->cnt; last_idx = rx_ring->cnt - 1; rx_ring->rxbufs[wr_idx].dma_addr = rx_ring->rxbufs[last_idx].dma_addr; rx_ring->rxbufs[wr_idx].skb = rx_ring->rxbufs[last_idx].skb; rx_ring->rxbufs[last_idx].dma_addr = 0; rx_ring->rxbufs[last_idx].skb = NULL; memset(rx_ring->rxds, 0, sizeof(*rx_ring->rxds) * rx_ring->cnt); rx_ring->wr_p = 0; rx_ring->rd_p = 0; rx_ring->wr_ptr_add = 0; } /** * nfp_net_rx_ring_bufs_free() - Free any buffers currently on the RX ring * @nn: NFP Net device * @rx_ring: RX ring to remove buffers from * * Assumes that the device is stopped and buffers are in [0, ring->cnt - 1) * entries. After device is disabled nfp_net_rx_ring_reset() must be called * to restore required ring geometry. */ static void nfp_net_rx_ring_bufs_free(struct nfp_net *nn, struct nfp_net_rx_ring *rx_ring) { struct pci_dev *pdev = nn->pdev; unsigned int i; for (i = 0; i < rx_ring->cnt - 1; i++) { /* NULL skb can only happen when initial filling of the ring * fails to allocate enough buffers and calls here to free * already allocated ones. */ if (!rx_ring->rxbufs[i].skb) continue; dma_unmap_single(&pdev->dev, rx_ring->rxbufs[i].dma_addr, rx_ring->bufsz, DMA_FROM_DEVICE); dev_kfree_skb_any(rx_ring->rxbufs[i].skb); rx_ring->rxbufs[i].dma_addr = 0; rx_ring->rxbufs[i].skb = NULL; } } /** * nfp_net_rx_ring_bufs_alloc() - Fill RX ring with buffers (don't give to FW) * @nn: NFP Net device * @rx_ring: RX ring to remove buffers from */ static int nfp_net_rx_ring_bufs_alloc(struct nfp_net *nn, struct nfp_net_rx_ring *rx_ring) { struct nfp_net_rx_buf *rxbufs; unsigned int i; rxbufs = rx_ring->rxbufs; for (i = 0; i < rx_ring->cnt - 1; i++) { rxbufs[i].skb = nfp_net_rx_alloc_one(rx_ring, &rxbufs[i].dma_addr, rx_ring->bufsz); if (!rxbufs[i].skb) { nfp_net_rx_ring_bufs_free(nn, rx_ring); return -ENOMEM; } } return 0; } /** * nfp_net_rx_ring_fill_freelist() - Give buffers from the ring to FW * @rx_ring: RX ring to fill */ static void nfp_net_rx_ring_fill_freelist(struct nfp_net_rx_ring *rx_ring) { unsigned int i; for (i = 0; i < rx_ring->cnt - 1; i++) nfp_net_rx_give_one(rx_ring, rx_ring->rxbufs[i].skb, rx_ring->rxbufs[i].dma_addr); } /** * nfp_net_rx_csum_has_errors() - group check if rxd has any csum errors * @flags: RX descriptor flags field in CPU byte order */ static int nfp_net_rx_csum_has_errors(u16 flags) { u16 csum_all_checked, csum_all_ok; csum_all_checked = flags & __PCIE_DESC_RX_CSUM_ALL; csum_all_ok = flags & __PCIE_DESC_RX_CSUM_ALL_OK; return csum_all_checked != (csum_all_ok << PCIE_DESC_RX_CSUM_OK_SHIFT); } /** * nfp_net_rx_csum() - set SKB checksum field based on RX descriptor flags * @nn: NFP Net device * @r_vec: per-ring structure * @rxd: Pointer to RX descriptor * @skb: Pointer to SKB */ static void nfp_net_rx_csum(struct nfp_net *nn, struct nfp_net_r_vector *r_vec, struct nfp_net_rx_desc *rxd, struct sk_buff *skb) { skb_checksum_none_assert(skb); if (!(nn->netdev->features & NETIF_F_RXCSUM)) return; if (nfp_net_rx_csum_has_errors(le16_to_cpu(rxd->rxd.flags))) { u64_stats_update_begin(&r_vec->rx_sync); r_vec->hw_csum_rx_error++; u64_stats_update_end(&r_vec->rx_sync); return; } /* Assume that the firmware will never report inner CSUM_OK unless outer * L4 headers were successfully parsed. FW will always report zero UDP * checksum as CSUM_OK. */ if (rxd->rxd.flags & PCIE_DESC_RX_TCP_CSUM_OK || rxd->rxd.flags & PCIE_DESC_RX_UDP_CSUM_OK) { __skb_incr_checksum_unnecessary(skb); u64_stats_update_begin(&r_vec->rx_sync); r_vec->hw_csum_rx_ok++; u64_stats_update_end(&r_vec->rx_sync); } if (rxd->rxd.flags & PCIE_DESC_RX_I_TCP_CSUM_OK || rxd->rxd.flags & PCIE_DESC_RX_I_UDP_CSUM_OK) { __skb_incr_checksum_unnecessary(skb); u64_stats_update_begin(&r_vec->rx_sync); r_vec->hw_csum_rx_inner_ok++; u64_stats_update_end(&r_vec->rx_sync); } } static void nfp_net_set_hash(struct net_device *netdev, struct sk_buff *skb, unsigned int type, __be32 *hash) { if (!(netdev->features & NETIF_F_RXHASH)) return; switch (type) { case NFP_NET_RSS_IPV4: case NFP_NET_RSS_IPV6: case NFP_NET_RSS_IPV6_EX: skb_set_hash(skb, get_unaligned_be32(hash), PKT_HASH_TYPE_L3); break; default: skb_set_hash(skb, get_unaligned_be32(hash), PKT_HASH_TYPE_L4); break; } } static void nfp_net_set_hash_desc(struct net_device *netdev, struct sk_buff *skb, struct nfp_net_rx_desc *rxd) { struct nfp_net_rx_hash *rx_hash; if (!(rxd->rxd.flags & PCIE_DESC_RX_RSS)) return; rx_hash = (struct nfp_net_rx_hash *)(skb->data - sizeof(*rx_hash)); nfp_net_set_hash(netdev, skb, get_unaligned_be32(&rx_hash->hash_type), &rx_hash->hash); } static void * nfp_net_parse_meta(struct net_device *netdev, struct sk_buff *skb, int meta_len) { u8 *data = skb->data - meta_len; u32 meta_info; meta_info = get_unaligned_be32(data); data += 4; while (meta_info) { switch (meta_info & NFP_NET_META_FIELD_MASK) { case NFP_NET_META_HASH: meta_info >>= NFP_NET_META_FIELD_SIZE; nfp_net_set_hash(netdev, skb, meta_info & NFP_NET_META_FIELD_MASK, (__be32 *)data); data += 4; break; case NFP_NET_META_MARK: skb->mark = get_unaligned_be32(data); data += 4; break; default: return NULL; } meta_info >>= NFP_NET_META_FIELD_SIZE; } return data; } /** * nfp_net_rx() - receive up to @budget packets on @rx_ring * @rx_ring: RX ring to receive from * @budget: NAPI budget * * Note, this function is separated out from the napi poll function to * more cleanly separate packet receive code from other bookkeeping * functions performed in the napi poll function. * * There are differences between the NFP-3200 firmware and the * NFP-6000 firmware. The NFP-3200 firmware uses a dedicated RX queue * to indicate that new packets have arrived. The NFP-6000 does not * have this queue and uses the DD bit in the RX descriptor. This * method cannot be used on the NFP-3200 as it causes a race * condition: The RX ring write pointer on the NFP-3200 is updated * after packets (and descriptors) have been DMAed. If the DD bit is * used and subsequently the read pointer is updated this may lead to * the RX queue to underflow (if the firmware has not yet update the * write pointer). Therefore we use slightly ugly conditional code * below to handle the differences. We may, in the future update the * NFP-3200 firmware to behave the same as the firmware on the * NFP-6000. * * Return: Number of packets received. */ static int nfp_net_rx(struct nfp_net_rx_ring *rx_ring, int budget) { struct nfp_net_r_vector *r_vec = rx_ring->r_vec; struct nfp_net *nn = r_vec->nfp_net; unsigned int data_len, meta_len; int avail = 0, pkts_polled = 0; struct sk_buff *skb, *new_skb; struct nfp_net_rx_desc *rxd; dma_addr_t new_dma_addr; u32 qcp_wr_p; int idx; if (nn->is_nfp3200) { /* Work out how many packets arrived */ qcp_wr_p = nfp_qcp_wr_ptr_read(rx_ring->qcp_rx); idx = rx_ring->rd_p % rx_ring->cnt; if (qcp_wr_p == idx) /* No new packets */ return 0; if (qcp_wr_p > idx) avail = qcp_wr_p - idx; else avail = qcp_wr_p + rx_ring->cnt - idx; } else { avail = budget + 1; } while (avail > 0 && pkts_polled < budget) { idx = rx_ring->rd_p % rx_ring->cnt; rxd = &rx_ring->rxds[idx]; if (!(rxd->rxd.meta_len_dd & PCIE_DESC_RX_DD)) { if (nn->is_nfp3200) nn_dbg(nn, "RX descriptor not valid (DD)%d:%u rxd[0]=%#x rxd[1]=%#x\n", rx_ring->idx, idx, rxd->vals[0], rxd->vals[1]); break; } /* Memory barrier to ensure that we won't do other reads * before the DD bit. */ dma_rmb(); rx_ring->rd_p++; pkts_polled++; avail--; skb = rx_ring->rxbufs[idx].skb; new_skb = nfp_net_rx_alloc_one(rx_ring, &new_dma_addr, nn->fl_bufsz); if (!new_skb) { nfp_net_rx_give_one(rx_ring, rx_ring->rxbufs[idx].skb, rx_ring->rxbufs[idx].dma_addr); u64_stats_update_begin(&r_vec->rx_sync); r_vec->rx_drops++; u64_stats_update_end(&r_vec->rx_sync); continue; } dma_unmap_single(&nn->pdev->dev, rx_ring->rxbufs[idx].dma_addr, nn->fl_bufsz, DMA_FROM_DEVICE); nfp_net_rx_give_one(rx_ring, new_skb, new_dma_addr); /* < meta_len > * <-- [rx_offset] --> * --------------------------------------------------------- * | [XX] | metadata | packet | XXXX | * --------------------------------------------------------- * <---------------- data_len ---------------> * * The rx_offset is fixed for all packets, the meta_len can vary * on a packet by packet basis. If rx_offset is set to zero * (_RX_OFFSET_DYNAMIC) metadata starts at the beginning of the * buffer and is immediately followed by the packet (no [XX]). */ meta_len = rxd->rxd.meta_len_dd & PCIE_DESC_RX_META_LEN_MASK; data_len = le16_to_cpu(rxd->rxd.data_len); if (nn->rx_offset == NFP_NET_CFG_RX_OFFSET_DYNAMIC) skb_reserve(skb, meta_len); else skb_reserve(skb, nn->rx_offset); skb_put(skb, data_len - meta_len); /* Stats update */ u64_stats_update_begin(&r_vec->rx_sync); r_vec->rx_pkts++; r_vec->rx_bytes += skb->len; u64_stats_update_end(&r_vec->rx_sync); if (nn->fw_ver.major <= 3) { nfp_net_set_hash_desc(nn->netdev, skb, rxd); } else if (meta_len) { void *end; end = nfp_net_parse_meta(nn->netdev, skb, meta_len); if (unlikely(end != skb->data)) { u64_stats_update_begin(&r_vec->rx_sync); r_vec->rx_drops++; u64_stats_update_end(&r_vec->rx_sync); dev_kfree_skb_any(skb); nn_warn_ratelimit(nn, "invalid RX packet metadata\n"); continue; } } skb_record_rx_queue(skb, rx_ring->idx); skb->protocol = eth_type_trans(skb, nn->netdev); nfp_net_rx_csum(nn, r_vec, rxd, skb); if (rxd->rxd.flags & PCIE_DESC_RX_VLAN) __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), le16_to_cpu(rxd->rxd.vlan)); napi_gro_receive(&rx_ring->r_vec->napi, skb); } if (nn->is_nfp3200) nfp_qcp_rd_ptr_add(rx_ring->qcp_rx, pkts_polled); return pkts_polled; } /** * nfp_net_poll() - napi poll function * @napi: NAPI structure * @budget: NAPI budget * * Return: number of packets polled. */ static int nfp_net_poll(struct napi_struct *napi, int budget) { struct nfp_net_r_vector *r_vec = container_of(napi, struct nfp_net_r_vector, napi); struct nfp_net_rx_ring *rx_ring = r_vec->rx_ring; struct nfp_net_tx_ring *tx_ring = r_vec->tx_ring; struct nfp_net *nn = r_vec->nfp_net; struct netdev_queue *txq; unsigned int pkts_polled; tx_ring = &nn->tx_rings[rx_ring->idx]; txq = netdev_get_tx_queue(nn->netdev, tx_ring->idx); nfp_net_tx_complete(tx_ring); pkts_polled = nfp_net_rx(rx_ring, budget); if (pkts_polled < budget) { napi_complete_done(napi, pkts_polled); nfp_net_irq_unmask(nn, r_vec->irq_idx); } return pkts_polled; } /* Setup and Configuration */ /** * nfp_net_tx_ring_free() - Free resources allocated to a TX ring * @tx_ring: TX ring to free */ static void nfp_net_tx_ring_free(struct nfp_net_tx_ring *tx_ring) { struct nfp_net_r_vector *r_vec = tx_ring->r_vec; struct nfp_net *nn = r_vec->nfp_net; struct pci_dev *pdev = nn->pdev; kfree(tx_ring->txbufs); if (tx_ring->txds) dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->txds, tx_ring->dma); tx_ring->cnt = 0; tx_ring->txbufs = NULL; tx_ring->txds = NULL; tx_ring->dma = 0; tx_ring->size = 0; } /** * nfp_net_tx_ring_alloc() - Allocate resource for a TX ring * @tx_ring: TX Ring structure to allocate * @cnt: Ring buffer count * * Return: 0 on success, negative errno otherwise. */ static int nfp_net_tx_ring_alloc(struct nfp_net_tx_ring *tx_ring, u32 cnt) { struct nfp_net_r_vector *r_vec = tx_ring->r_vec; struct nfp_net *nn = r_vec->nfp_net; struct pci_dev *pdev = nn->pdev; int sz; tx_ring->cnt = cnt; tx_ring->size = sizeof(*tx_ring->txds) * tx_ring->cnt; tx_ring->txds = dma_zalloc_coherent(&pdev->dev, tx_ring->size, &tx_ring->dma, GFP_KERNEL); if (!tx_ring->txds) goto err_alloc; sz = sizeof(*tx_ring->txbufs) * tx_ring->cnt; tx_ring->txbufs = kzalloc(sz, GFP_KERNEL); if (!tx_ring->txbufs) goto err_alloc; netif_set_xps_queue(nn->netdev, &r_vec->affinity_mask, tx_ring->idx); nn_dbg(nn, "TxQ%02d: QCidx=%02d cnt=%d dma=%#llx host=%p\n", tx_ring->idx, tx_ring->qcidx, tx_ring->cnt, (unsigned long long)tx_ring->dma, tx_ring->txds); return 0; err_alloc: nfp_net_tx_ring_free(tx_ring); return -ENOMEM; } static struct nfp_net_tx_ring * nfp_net_shadow_tx_rings_prepare(struct nfp_net *nn, u32 buf_cnt) { struct nfp_net_tx_ring *rings; unsigned int r; rings = kcalloc(nn->num_tx_rings, sizeof(*rings), GFP_KERNEL); if (!rings) return NULL; for (r = 0; r < nn->num_tx_rings; r++) { nfp_net_tx_ring_init(&rings[r], nn->tx_rings[r].r_vec, r); if (nfp_net_tx_ring_alloc(&rings[r], buf_cnt)) goto err_free_prev; } return rings; err_free_prev: while (r--) nfp_net_tx_ring_free(&rings[r]); kfree(rings); return NULL; } static struct nfp_net_tx_ring * nfp_net_shadow_tx_rings_swap(struct nfp_net *nn, struct nfp_net_tx_ring *rings) { struct nfp_net_tx_ring *old = nn->tx_rings; unsigned int r; for (r = 0; r < nn->num_tx_rings; r++) old[r].r_vec->tx_ring = &rings[r]; nn->tx_rings = rings; return old; } static void nfp_net_shadow_tx_rings_free(struct nfp_net *nn, struct nfp_net_tx_ring *rings) { unsigned int r; if (!rings) return; for (r = 0; r < nn->num_tx_rings; r++) nfp_net_tx_ring_free(&rings[r]); kfree(rings); } /** * nfp_net_rx_ring_free() - Free resources allocated to a RX ring * @rx_ring: RX ring to free */ static void nfp_net_rx_ring_free(struct nfp_net_rx_ring *rx_ring) { struct nfp_net_r_vector *r_vec = rx_ring->r_vec; struct nfp_net *nn = r_vec->nfp_net; struct pci_dev *pdev = nn->pdev; kfree(rx_ring->rxbufs); if (rx_ring->rxds) dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->rxds, rx_ring->dma); rx_ring->cnt = 0; rx_ring->rxbufs = NULL; rx_ring->rxds = NULL; rx_ring->dma = 0; rx_ring->size = 0; } /** * nfp_net_rx_ring_alloc() - Allocate resource for a RX ring * @rx_ring: RX ring to allocate * @fl_bufsz: Size of buffers to allocate * @cnt: Ring buffer count * * Return: 0 on success, negative errno otherwise. */ static int nfp_net_rx_ring_alloc(struct nfp_net_rx_ring *rx_ring, unsigned int fl_bufsz, u32 cnt) { struct nfp_net_r_vector *r_vec = rx_ring->r_vec; struct nfp_net *nn = r_vec->nfp_net; struct pci_dev *pdev = nn->pdev; int sz; rx_ring->cnt = cnt; rx_ring->bufsz = fl_bufsz; rx_ring->size = sizeof(*rx_ring->rxds) * rx_ring->cnt; rx_ring->rxds = dma_zalloc_coherent(&pdev->dev, rx_ring->size, &rx_ring->dma, GFP_KERNEL); if (!rx_ring->rxds) goto err_alloc; sz = sizeof(*rx_ring->rxbufs) * rx_ring->cnt; rx_ring->rxbufs = kzalloc(sz, GFP_KERNEL); if (!rx_ring->rxbufs) goto err_alloc; nn_dbg(nn, "RxQ%02d: FlQCidx=%02d RxQCidx=%02d cnt=%d dma=%#llx host=%p\n", rx_ring->idx, rx_ring->fl_qcidx, rx_ring->rx_qcidx, rx_ring->cnt, (unsigned long long)rx_ring->dma, rx_ring->rxds); return 0; err_alloc: nfp_net_rx_ring_free(rx_ring); return -ENOMEM; } static struct nfp_net_rx_ring * nfp_net_shadow_rx_rings_prepare(struct nfp_net *nn, unsigned int fl_bufsz, u32 buf_cnt) { struct nfp_net_rx_ring *rings; unsigned int r; rings = kcalloc(nn->num_rx_rings, sizeof(*rings), GFP_KERNEL); if (!rings) return NULL; for (r = 0; r < nn->num_rx_rings; r++) { nfp_net_rx_ring_init(&rings[r], nn->rx_rings[r].r_vec, r); if (nfp_net_rx_ring_alloc(&rings[r], fl_bufsz, buf_cnt)) goto err_free_prev; if (nfp_net_rx_ring_bufs_alloc(nn, &rings[r])) goto err_free_ring; } return rings; err_free_prev: while (r--) { nfp_net_rx_ring_bufs_free(nn, &rings[r]); err_free_ring: nfp_net_rx_ring_free(&rings[r]); } kfree(rings); return NULL; } static struct nfp_net_rx_ring * nfp_net_shadow_rx_rings_swap(struct nfp_net *nn, struct nfp_net_rx_ring *rings) { struct nfp_net_rx_ring *old = nn->rx_rings; unsigned int r; for (r = 0; r < nn->num_rx_rings; r++) old[r].r_vec->rx_ring = &rings[r]; nn->rx_rings = rings; return old; } static void nfp_net_shadow_rx_rings_free(struct nfp_net *nn, struct nfp_net_rx_ring *rings) { unsigned int r; if (!rings) return; for (r = 0; r < nn->num_r_vecs; r++) { nfp_net_rx_ring_bufs_free(nn, &rings[r]); nfp_net_rx_ring_free(&rings[r]); } kfree(rings); } static int nfp_net_prepare_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec, int idx) { struct msix_entry *entry = &nn->irq_entries[r_vec->irq_idx]; int err; r_vec->tx_ring = &nn->tx_rings[idx]; nfp_net_tx_ring_init(r_vec->tx_ring, r_vec, idx); r_vec->rx_ring = &nn->rx_rings[idx]; nfp_net_rx_ring_init(r_vec->rx_ring, r_vec, idx); snprintf(r_vec->name, sizeof(r_vec->name), "%s-rxtx-%d", nn->netdev->name, idx); err = request_irq(entry->vector, r_vec->handler, 0, r_vec->name, r_vec); if (err) { nn_err(nn, "Error requesting IRQ %d\n", entry->vector); return err; } disable_irq(entry->vector); /* Setup NAPI */ netif_napi_add(nn->netdev, &r_vec->napi, nfp_net_poll, NAPI_POLL_WEIGHT); irq_set_affinity_hint(entry->vector, &r_vec->affinity_mask); nn_dbg(nn, "RV%02d: irq=%03d/%03d\n", idx, entry->vector, entry->entry); return 0; } static void nfp_net_cleanup_vector(struct nfp_net *nn, struct nfp_net_r_vector *r_vec) { struct msix_entry *entry = &nn->irq_entries[r_vec->irq_idx]; irq_set_affinity_hint(entry->vector, NULL); netif_napi_del(&r_vec->napi); free_irq(entry->vector, r_vec); } /** * nfp_net_rss_write_itbl() - Write RSS indirection table to device * @nn: NFP Net device to reconfigure */ void nfp_net_rss_write_itbl(struct nfp_net *nn) { int i; for (i = 0; i < NFP_NET_CFG_RSS_ITBL_SZ; i += 4) nn_writel(nn, NFP_NET_CFG_RSS_ITBL + i, get_unaligned_le32(nn->rss_itbl + i)); } /** * nfp_net_rss_write_key() - Write RSS hash key to device * @nn: NFP Net device to reconfigure */ void nfp_net_rss_write_key(struct nfp_net *nn) { int i; for (i = 0; i < NFP_NET_CFG_RSS_KEY_SZ; i += 4) nn_writel(nn, NFP_NET_CFG_RSS_KEY + i, get_unaligned_le32(nn->rss_key + i)); } /** * nfp_net_coalesce_write_cfg() - Write irq coalescence configuration to HW * @nn: NFP Net device to reconfigure */ void nfp_net_coalesce_write_cfg(struct nfp_net *nn) { u8 i; u32 factor; u32 value; /* Compute factor used to convert coalesce '_usecs' parameters to * ME timestamp ticks. There are 16 ME clock cycles for each timestamp * count. */ factor = nn->me_freq_mhz / 16; /* copy RX interrupt coalesce parameters */ value = (nn->rx_coalesce_max_frames << 16) | (factor * nn->rx_coalesce_usecs); for (i = 0; i < nn->num_r_vecs; i++) nn_writel(nn, NFP_NET_CFG_RXR_IRQ_MOD(i), value); /* copy TX interrupt coalesce parameters */ value = (nn->tx_coalesce_max_frames << 16) | (factor * nn->tx_coalesce_usecs); for (i = 0; i < nn->num_r_vecs; i++) nn_writel(nn, NFP_NET_CFG_TXR_IRQ_MOD(i), value); } /** * nfp_net_write_mac_addr() - Write mac address to the device control BAR * @nn: NFP Net device to reconfigure * * Writes the MAC address from the netdev to the device control BAR. Does not * perform the required reconfig. We do a bit of byte swapping dance because * firmware is LE. */ static void nfp_net_write_mac_addr(struct nfp_net *nn) { nn_writel(nn, NFP_NET_CFG_MACADDR + 0, get_unaligned_be32(nn->netdev->dev_addr)); /* We can't do writew for NFP-3200 compatibility */ nn_writel(nn, NFP_NET_CFG_MACADDR + 4, get_unaligned_be16(nn->netdev->dev_addr + 4) << 16); } static void nfp_net_vec_clear_ring_data(struct nfp_net *nn, unsigned int idx) { nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), 0); nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), 0); nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), 0); nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), 0); nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), 0); nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), 0); } /** * nfp_net_clear_config_and_disable() - Clear control BAR and disable NFP * @nn: NFP Net device to reconfigure * * Warning: must be fully idempotent. */ static void nfp_net_clear_config_and_disable(struct nfp_net *nn) { u32 new_ctrl, update; unsigned int r; int err; new_ctrl = nn->ctrl; new_ctrl &= ~NFP_NET_CFG_CTRL_ENABLE; update = NFP_NET_CFG_UPDATE_GEN; update |= NFP_NET_CFG_UPDATE_MSIX; update |= NFP_NET_CFG_UPDATE_RING; if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG) new_ctrl &= ~NFP_NET_CFG_CTRL_RINGCFG; nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0); nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0); nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); err = nfp_net_reconfig(nn, update); if (err) nn_err(nn, "Could not disable device: %d\n", err); for (r = 0; r < nn->num_r_vecs; r++) { nfp_net_rx_ring_reset(nn->r_vecs[r].rx_ring); nfp_net_tx_ring_reset(nn, nn->r_vecs[r].tx_ring); nfp_net_vec_clear_ring_data(nn, r); } nn->ctrl = new_ctrl; } static void nfp_net_vec_write_ring_data(struct nfp_net *nn, struct nfp_net_r_vector *r_vec, unsigned int idx) { /* Write the DMA address, size and MSI-X info to the device */ nn_writeq(nn, NFP_NET_CFG_RXR_ADDR(idx), r_vec->rx_ring->dma); nn_writeb(nn, NFP_NET_CFG_RXR_SZ(idx), ilog2(r_vec->rx_ring->cnt)); nn_writeb(nn, NFP_NET_CFG_RXR_VEC(idx), r_vec->irq_idx); nn_writeq(nn, NFP_NET_CFG_TXR_ADDR(idx), r_vec->tx_ring->dma); nn_writeb(nn, NFP_NET_CFG_TXR_SZ(idx), ilog2(r_vec->tx_ring->cnt)); nn_writeb(nn, NFP_NET_CFG_TXR_VEC(idx), r_vec->irq_idx); } static int __nfp_net_set_config_and_enable(struct nfp_net *nn) { u32 new_ctrl, update = 0; unsigned int r; int err; new_ctrl = nn->ctrl; if (nn->cap & NFP_NET_CFG_CTRL_RSS) { nfp_net_rss_write_key(nn); nfp_net_rss_write_itbl(nn); nn_writel(nn, NFP_NET_CFG_RSS_CTRL, nn->rss_cfg); update |= NFP_NET_CFG_UPDATE_RSS; } if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) { nfp_net_coalesce_write_cfg(nn); new_ctrl |= NFP_NET_CFG_CTRL_IRQMOD; update |= NFP_NET_CFG_UPDATE_IRQMOD; } for (r = 0; r < nn->num_r_vecs; r++) nfp_net_vec_write_ring_data(nn, &nn->r_vecs[r], r); nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, nn->num_tx_rings == 64 ? 0xffffffffffffffffULL : ((u64)1 << nn->num_tx_rings) - 1); nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, nn->num_rx_rings == 64 ? 0xffffffffffffffffULL : ((u64)1 << nn->num_rx_rings) - 1); nfp_net_write_mac_addr(nn); nn_writel(nn, NFP_NET_CFG_MTU, nn->netdev->mtu); nn_writel(nn, NFP_NET_CFG_FLBUFSZ, nn->fl_bufsz); /* Enable device */ new_ctrl |= NFP_NET_CFG_CTRL_ENABLE; update |= NFP_NET_CFG_UPDATE_GEN; update |= NFP_NET_CFG_UPDATE_MSIX; update |= NFP_NET_CFG_UPDATE_RING; if (nn->cap & NFP_NET_CFG_CTRL_RINGCFG) new_ctrl |= NFP_NET_CFG_CTRL_RINGCFG; nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); err = nfp_net_reconfig(nn, update); nn->ctrl = new_ctrl; for (r = 0; r < nn->num_r_vecs; r++) nfp_net_rx_ring_fill_freelist(nn->r_vecs[r].rx_ring); /* Since reconfiguration requests while NFP is down are ignored we * have to wipe the entire VXLAN configuration and reinitialize it. */ if (nn->ctrl & NFP_NET_CFG_CTRL_VXLAN) { memset(&nn->vxlan_ports, 0, sizeof(nn->vxlan_ports)); memset(&nn->vxlan_usecnt, 0, sizeof(nn->vxlan_usecnt)); udp_tunnel_get_rx_info(nn->netdev); } return err; } /** * nfp_net_set_config_and_enable() - Write control BAR and enable NFP * @nn: NFP Net device to reconfigure */ static int nfp_net_set_config_and_enable(struct nfp_net *nn) { int err; err = __nfp_net_set_config_and_enable(nn); if (err) nfp_net_clear_config_and_disable(nn); return err; } /** * nfp_net_open_stack() - Start the device from stack's perspective * @nn: NFP Net device to reconfigure */ static void nfp_net_open_stack(struct nfp_net *nn) { unsigned int r; for (r = 0; r < nn->num_r_vecs; r++) { napi_enable(&nn->r_vecs[r].napi); enable_irq(nn->irq_entries[nn->r_vecs[r].irq_idx].vector); } netif_tx_wake_all_queues(nn->netdev); enable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); nfp_net_read_link_status(nn); } static int nfp_net_netdev_open(struct net_device *netdev) { struct nfp_net *nn = netdev_priv(netdev); int err, r; if (nn->ctrl & NFP_NET_CFG_CTRL_ENABLE) { nn_err(nn, "Dev is already enabled: 0x%08x\n", nn->ctrl); return -EBUSY; } /* Step 1: Allocate resources for rings and the like * - Request interrupts * - Allocate RX and TX ring resources * - Setup initial RSS table */ err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_EXN, "%s-exn", nn->exn_name, sizeof(nn->exn_name), NFP_NET_IRQ_EXN_IDX, nn->exn_handler); if (err) return err; err = nfp_net_aux_irq_request(nn, NFP_NET_CFG_LSC, "%s-lsc", nn->lsc_name, sizeof(nn->lsc_name), NFP_NET_IRQ_LSC_IDX, nn->lsc_handler); if (err) goto err_free_exn; disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); nn->rx_rings = kcalloc(nn->num_rx_rings, sizeof(*nn->rx_rings), GFP_KERNEL); if (!nn->rx_rings) { err = -ENOMEM; goto err_free_lsc; } nn->tx_rings = kcalloc(nn->num_tx_rings, sizeof(*nn->tx_rings), GFP_KERNEL); if (!nn->tx_rings) { err = -ENOMEM; goto err_free_rx_rings; } for (r = 0; r < nn->num_r_vecs; r++) { err = nfp_net_prepare_vector(nn, &nn->r_vecs[r], r); if (err) goto err_free_prev_vecs; err = nfp_net_tx_ring_alloc(nn->r_vecs[r].tx_ring, nn->txd_cnt); if (err) goto err_cleanup_vec_p; err = nfp_net_rx_ring_alloc(nn->r_vecs[r].rx_ring, nn->fl_bufsz, nn->rxd_cnt); if (err) goto err_free_tx_ring_p; err = nfp_net_rx_ring_bufs_alloc(nn, nn->r_vecs[r].rx_ring); if (err) goto err_flush_rx_ring_p; } err = netif_set_real_num_tx_queues(netdev, nn->num_tx_rings); if (err) goto err_free_rings; err = netif_set_real_num_rx_queues(netdev, nn->num_rx_rings); if (err) goto err_free_rings; /* Step 2: Configure the NFP * - Enable rings from 0 to tx_rings/rx_rings - 1. * - Write MAC address (in case it changed) * - Set the MTU * - Set the Freelist buffer size * - Enable the FW */ err = nfp_net_set_config_and_enable(nn); if (err) goto err_free_rings; /* Step 3: Enable for kernel * - put some freelist descriptors on each RX ring * - enable NAPI on each ring * - enable all TX queues * - set link state */ nfp_net_open_stack(nn); return 0; err_free_rings: r = nn->num_r_vecs; err_free_prev_vecs: while (r--) { nfp_net_rx_ring_bufs_free(nn, nn->r_vecs[r].rx_ring); err_flush_rx_ring_p: nfp_net_rx_ring_free(nn->r_vecs[r].rx_ring); err_free_tx_ring_p: nfp_net_tx_ring_free(nn->r_vecs[r].tx_ring); err_cleanup_vec_p: nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); } kfree(nn->tx_rings); err_free_rx_rings: kfree(nn->rx_rings); err_free_lsc: nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX); err_free_exn: nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX); return err; } /** * nfp_net_close_stack() - Quiescent the stack (part of close) * @nn: NFP Net device to reconfigure */ static void nfp_net_close_stack(struct nfp_net *nn) { unsigned int r; disable_irq(nn->irq_entries[NFP_NET_IRQ_LSC_IDX].vector); netif_carrier_off(nn->netdev); nn->link_up = false; for (r = 0; r < nn->num_r_vecs; r++) { disable_irq(nn->irq_entries[nn->r_vecs[r].irq_idx].vector); napi_disable(&nn->r_vecs[r].napi); } netif_tx_disable(nn->netdev); } /** * nfp_net_close_free_all() - Free all runtime resources * @nn: NFP Net device to reconfigure */ static void nfp_net_close_free_all(struct nfp_net *nn) { unsigned int r; for (r = 0; r < nn->num_r_vecs; r++) { nfp_net_rx_ring_bufs_free(nn, nn->r_vecs[r].rx_ring); nfp_net_rx_ring_free(nn->r_vecs[r].rx_ring); nfp_net_tx_ring_free(nn->r_vecs[r].tx_ring); nfp_net_cleanup_vector(nn, &nn->r_vecs[r]); } kfree(nn->rx_rings); kfree(nn->tx_rings); nfp_net_aux_irq_free(nn, NFP_NET_CFG_LSC, NFP_NET_IRQ_LSC_IDX); nfp_net_aux_irq_free(nn, NFP_NET_CFG_EXN, NFP_NET_IRQ_EXN_IDX); } /** * nfp_net_netdev_close() - Called when the device is downed * @netdev: netdev structure */ static int nfp_net_netdev_close(struct net_device *netdev) { struct nfp_net *nn = netdev_priv(netdev); if (!(nn->ctrl & NFP_NET_CFG_CTRL_ENABLE)) { nn_err(nn, "Dev is not up: 0x%08x\n", nn->ctrl); return 0; } /* Step 1: Disable RX and TX rings from the Linux kernel perspective */ nfp_net_close_stack(nn); /* Step 2: Tell NFP */ nfp_net_clear_config_and_disable(nn); /* Step 3: Free resources */ nfp_net_close_free_all(nn); nn_dbg(nn, "%s down", netdev->name); return 0; } static void nfp_net_set_rx_mode(struct net_device *netdev) { struct nfp_net *nn = netdev_priv(netdev); u32 new_ctrl; new_ctrl = nn->ctrl; if (netdev->flags & IFF_PROMISC) { if (nn->cap & NFP_NET_CFG_CTRL_PROMISC) new_ctrl |= NFP_NET_CFG_CTRL_PROMISC; else nn_warn(nn, "FW does not support promiscuous mode\n"); } else { new_ctrl &= ~NFP_NET_CFG_CTRL_PROMISC; } if (new_ctrl == nn->ctrl) return; nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_GEN); nn->ctrl = new_ctrl; } static int nfp_net_change_mtu(struct net_device *netdev, int new_mtu) { unsigned int old_mtu, old_fl_bufsz, new_fl_bufsz; struct nfp_net *nn = netdev_priv(netdev); struct nfp_net_rx_ring *tmp_rings; int err; if (new_mtu < 68 || new_mtu > nn->max_mtu) { nn_err(nn, "New MTU (%d) is not valid\n", new_mtu); return -EINVAL; } old_mtu = netdev->mtu; old_fl_bufsz = nn->fl_bufsz; new_fl_bufsz = NFP_NET_MAX_PREPEND + ETH_HLEN + VLAN_HLEN * 2 + new_mtu; if (!netif_running(netdev)) { netdev->mtu = new_mtu; nn->fl_bufsz = new_fl_bufsz; return 0; } /* Prepare new rings */ tmp_rings = nfp_net_shadow_rx_rings_prepare(nn, new_fl_bufsz, nn->rxd_cnt); if (!tmp_rings) return -ENOMEM; /* Stop device, swap in new rings, try to start the firmware */ nfp_net_close_stack(nn); nfp_net_clear_config_and_disable(nn); tmp_rings = nfp_net_shadow_rx_rings_swap(nn, tmp_rings); netdev->mtu = new_mtu; nn->fl_bufsz = new_fl_bufsz; err = nfp_net_set_config_and_enable(nn); if (err) { const int err_new = err; /* Try with old configuration and old rings */ tmp_rings = nfp_net_shadow_rx_rings_swap(nn, tmp_rings); netdev->mtu = old_mtu; nn->fl_bufsz = old_fl_bufsz; err = __nfp_net_set_config_and_enable(nn); if (err) nn_err(nn, "Can't restore MTU - FW communication failed (%d,%d)\n", err_new, err); } nfp_net_shadow_rx_rings_free(nn, tmp_rings); nfp_net_open_stack(nn); return err; } int nfp_net_set_ring_size(struct nfp_net *nn, u32 rxd_cnt, u32 txd_cnt) { struct nfp_net_tx_ring *tx_rings = NULL; struct nfp_net_rx_ring *rx_rings = NULL; u32 old_rxd_cnt, old_txd_cnt; int err; if (!netif_running(nn->netdev)) { nn->rxd_cnt = rxd_cnt; nn->txd_cnt = txd_cnt; return 0; } old_rxd_cnt = nn->rxd_cnt; old_txd_cnt = nn->txd_cnt; /* Prepare new rings */ if (nn->rxd_cnt != rxd_cnt) { rx_rings = nfp_net_shadow_rx_rings_prepare(nn, nn->fl_bufsz, rxd_cnt); if (!rx_rings) return -ENOMEM; } if (nn->txd_cnt != txd_cnt) { tx_rings = nfp_net_shadow_tx_rings_prepare(nn, txd_cnt); if (!tx_rings) { nfp_net_shadow_rx_rings_free(nn, rx_rings); return -ENOMEM; } } /* Stop device, swap in new rings, try to start the firmware */ nfp_net_close_stack(nn); nfp_net_clear_config_and_disable(nn); if (rx_rings) rx_rings = nfp_net_shadow_rx_rings_swap(nn, rx_rings); if (tx_rings) tx_rings = nfp_net_shadow_tx_rings_swap(nn, tx_rings); nn->rxd_cnt = rxd_cnt; nn->txd_cnt = txd_cnt; err = nfp_net_set_config_and_enable(nn); if (err) { const int err_new = err; /* Try with old configuration and old rings */ if (rx_rings) rx_rings = nfp_net_shadow_rx_rings_swap(nn, rx_rings); if (tx_rings) tx_rings = nfp_net_shadow_tx_rings_swap(nn, tx_rings); nn->rxd_cnt = old_rxd_cnt; nn->txd_cnt = old_txd_cnt; err = __nfp_net_set_config_and_enable(nn); if (err) nn_err(nn, "Can't restore ring config - FW communication failed (%d,%d)\n", err_new, err); } nfp_net_shadow_rx_rings_free(nn, rx_rings); nfp_net_shadow_tx_rings_free(nn, tx_rings); nfp_net_open_stack(nn); return err; } static struct rtnl_link_stats64 *nfp_net_stat64(struct net_device *netdev, struct rtnl_link_stats64 *stats) { struct nfp_net *nn = netdev_priv(netdev); int r; for (r = 0; r < nn->num_r_vecs; r++) { struct nfp_net_r_vector *r_vec = &nn->r_vecs[r]; u64 data[3]; unsigned int start; do { start = u64_stats_fetch_begin(&r_vec->rx_sync); data[0] = r_vec->rx_pkts; data[1] = r_vec->rx_bytes; data[2] = r_vec->rx_drops; } while (u64_stats_fetch_retry(&r_vec->rx_sync, start)); stats->rx_packets += data[0]; stats->rx_bytes += data[1]; stats->rx_dropped += data[2]; do { start = u64_stats_fetch_begin(&r_vec->tx_sync); data[0] = r_vec->tx_pkts; data[1] = r_vec->tx_bytes; data[2] = r_vec->tx_errors; } while (u64_stats_fetch_retry(&r_vec->tx_sync, start)); stats->tx_packets += data[0]; stats->tx_bytes += data[1]; stats->tx_errors += data[2]; } return stats; } static bool nfp_net_ebpf_capable(struct nfp_net *nn) { if (nn->cap & NFP_NET_CFG_CTRL_BPF && nn_readb(nn, NFP_NET_CFG_BPF_ABI) == NFP_NET_BPF_ABI) return true; return false; } static int nfp_net_setup_tc(struct net_device *netdev, u32 handle, __be16 proto, struct tc_to_netdev *tc) { struct nfp_net *nn = netdev_priv(netdev); if (TC_H_MAJ(handle) != TC_H_MAJ(TC_H_INGRESS)) return -ENOTSUPP; if (proto != htons(ETH_P_ALL)) return -ENOTSUPP; if (tc->type == TC_SETUP_CLSBPF && nfp_net_ebpf_capable(nn)) return nfp_net_bpf_offload(nn, handle, proto, tc->cls_bpf); return -EINVAL; } static int nfp_net_set_features(struct net_device *netdev, netdev_features_t features) { netdev_features_t changed = netdev->features ^ features; struct nfp_net *nn = netdev_priv(netdev); u32 new_ctrl; int err; /* Assume this is not called with features we have not advertised */ new_ctrl = nn->ctrl; if (changed & NETIF_F_RXCSUM) { if (features & NETIF_F_RXCSUM) new_ctrl |= NFP_NET_CFG_CTRL_RXCSUM; else new_ctrl &= ~NFP_NET_CFG_CTRL_RXCSUM; } if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) new_ctrl |= NFP_NET_CFG_CTRL_TXCSUM; else new_ctrl &= ~NFP_NET_CFG_CTRL_TXCSUM; } if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) { if (features & (NETIF_F_TSO | NETIF_F_TSO6)) new_ctrl |= NFP_NET_CFG_CTRL_LSO; else new_ctrl &= ~NFP_NET_CFG_CTRL_LSO; } if (changed & NETIF_F_HW_VLAN_CTAG_RX) { if (features & NETIF_F_HW_VLAN_CTAG_RX) new_ctrl |= NFP_NET_CFG_CTRL_RXVLAN; else new_ctrl &= ~NFP_NET_CFG_CTRL_RXVLAN; } if (changed & NETIF_F_HW_VLAN_CTAG_TX) { if (features & NETIF_F_HW_VLAN_CTAG_TX) new_ctrl |= NFP_NET_CFG_CTRL_TXVLAN; else new_ctrl &= ~NFP_NET_CFG_CTRL_TXVLAN; } if (changed & NETIF_F_SG) { if (features & NETIF_F_SG) new_ctrl |= NFP_NET_CFG_CTRL_GATHER; else new_ctrl &= ~NFP_NET_CFG_CTRL_GATHER; } if (changed & NETIF_F_HW_TC && nn->ctrl & NFP_NET_CFG_CTRL_BPF) { nn_err(nn, "Cannot disable HW TC offload while in use\n"); return -EBUSY; } nn_dbg(nn, "Feature change 0x%llx -> 0x%llx (changed=0x%llx)\n", netdev->features, features, changed); if (new_ctrl == nn->ctrl) return 0; nn_dbg(nn, "NIC ctrl: 0x%x -> 0x%x\n", nn->ctrl, new_ctrl); nn_writel(nn, NFP_NET_CFG_CTRL, new_ctrl); err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_GEN); if (err) return err; nn->ctrl = new_ctrl; return 0; } static netdev_features_t nfp_net_features_check(struct sk_buff *skb, struct net_device *dev, netdev_features_t features) { u8 l4_hdr; /* We can't do TSO over double tagged packets (802.1AD) */ features &= vlan_features_check(skb, features); if (!skb->encapsulation) return features; /* Ensure that inner L4 header offset fits into TX descriptor field */ if (skb_is_gso(skb)) { u32 hdrlen; hdrlen = skb_inner_transport_header(skb) - skb->data + inner_tcp_hdrlen(skb); if (unlikely(hdrlen > NFP_NET_LSO_MAX_HDR_SZ)) features &= ~NETIF_F_GSO_MASK; } /* VXLAN/GRE check */ switch (vlan_get_protocol(skb)) { case htons(ETH_P_IP): l4_hdr = ip_hdr(skb)->protocol; break; case htons(ETH_P_IPV6): l4_hdr = ipv6_hdr(skb)->nexthdr; break; default: return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); } if (skb->inner_protocol_type != ENCAP_TYPE_ETHER || skb->inner_protocol != htons(ETH_P_TEB) || (l4_hdr != IPPROTO_UDP && l4_hdr != IPPROTO_GRE) || (l4_hdr == IPPROTO_UDP && (skb_inner_mac_header(skb) - skb_transport_header(skb) != sizeof(struct udphdr) + sizeof(struct vxlanhdr)))) return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); return features; } /** * nfp_net_set_vxlan_port() - set vxlan port in SW and reconfigure HW * @nn: NFP Net device to reconfigure * @idx: Index into the port table where new port should be written * @port: UDP port to configure (pass zero to remove VXLAN port) */ static void nfp_net_set_vxlan_port(struct nfp_net *nn, int idx, __be16 port) { int i; nn->vxlan_ports[idx] = port; if (!(nn->ctrl & NFP_NET_CFG_CTRL_VXLAN)) return; BUILD_BUG_ON(NFP_NET_N_VXLAN_PORTS & 1); for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i += 2) nn_writel(nn, NFP_NET_CFG_VXLAN_PORT + i * sizeof(port), be16_to_cpu(nn->vxlan_ports[i + 1]) << 16 | be16_to_cpu(nn->vxlan_ports[i])); nfp_net_reconfig_post(nn, NFP_NET_CFG_UPDATE_VXLAN); } /** * nfp_net_find_vxlan_idx() - find table entry of the port or a free one * @nn: NFP Network structure * @port: UDP port to look for * * Return: if the port is already in the table -- it's position; * if the port is not in the table -- free position to use; * if the table is full -- -ENOSPC. */ static int nfp_net_find_vxlan_idx(struct nfp_net *nn, __be16 port) { int i, free_idx = -ENOSPC; for (i = 0; i < NFP_NET_N_VXLAN_PORTS; i++) { if (nn->vxlan_ports[i] == port) return i; if (!nn->vxlan_usecnt[i]) free_idx = i; } return free_idx; } static void nfp_net_add_vxlan_port(struct net_device *netdev, struct udp_tunnel_info *ti) { struct nfp_net *nn = netdev_priv(netdev); int idx; if (ti->type != UDP_TUNNEL_TYPE_VXLAN) return; idx = nfp_net_find_vxlan_idx(nn, ti->port); if (idx == -ENOSPC) return; if (!nn->vxlan_usecnt[idx]++) nfp_net_set_vxlan_port(nn, idx, ti->port); } static void nfp_net_del_vxlan_port(struct net_device *netdev, struct udp_tunnel_info *ti) { struct nfp_net *nn = netdev_priv(netdev); int idx; if (ti->type != UDP_TUNNEL_TYPE_VXLAN) return; idx = nfp_net_find_vxlan_idx(nn, ti->port); if (idx == -ENOSPC || !nn->vxlan_usecnt[idx]) return; if (!--nn->vxlan_usecnt[idx]) nfp_net_set_vxlan_port(nn, idx, 0); } static const struct net_device_ops nfp_net_netdev_ops = { .ndo_open = nfp_net_netdev_open, .ndo_stop = nfp_net_netdev_close, .ndo_start_xmit = nfp_net_tx, .ndo_get_stats64 = nfp_net_stat64, .ndo_setup_tc = nfp_net_setup_tc, .ndo_tx_timeout = nfp_net_tx_timeout, .ndo_set_rx_mode = nfp_net_set_rx_mode, .ndo_change_mtu = nfp_net_change_mtu, .ndo_set_mac_address = eth_mac_addr, .ndo_set_features = nfp_net_set_features, .ndo_features_check = nfp_net_features_check, .ndo_udp_tunnel_add = nfp_net_add_vxlan_port, .ndo_udp_tunnel_del = nfp_net_del_vxlan_port, }; /** * nfp_net_info() - Print general info about the NIC * @nn: NFP Net device to reconfigure */ void nfp_net_info(struct nfp_net *nn) { nn_info(nn, "Netronome %s %sNetdev: TxQs=%d/%d RxQs=%d/%d\n", nn->is_nfp3200 ? "NFP-32xx" : "NFP-6xxx", nn->is_vf ? "VF " : "", nn->num_tx_rings, nn->max_tx_rings, nn->num_rx_rings, nn->max_rx_rings); nn_info(nn, "VER: %d.%d.%d.%d, Maximum supported MTU: %d\n", nn->fw_ver.resv, nn->fw_ver.class, nn->fw_ver.major, nn->fw_ver.minor, nn->max_mtu); nn_info(nn, "CAP: %#x %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", nn->cap, nn->cap & NFP_NET_CFG_CTRL_PROMISC ? "PROMISC " : "", nn->cap & NFP_NET_CFG_CTRL_L2BC ? "L2BCFILT " : "", nn->cap & NFP_NET_CFG_CTRL_L2MC ? "L2MCFILT " : "", nn->cap & NFP_NET_CFG_CTRL_RXCSUM ? "RXCSUM " : "", nn->cap & NFP_NET_CFG_CTRL_TXCSUM ? "TXCSUM " : "", nn->cap & NFP_NET_CFG_CTRL_RXVLAN ? "RXVLAN " : "", nn->cap & NFP_NET_CFG_CTRL_TXVLAN ? "TXVLAN " : "", nn->cap & NFP_NET_CFG_CTRL_SCATTER ? "SCATTER " : "", nn->cap & NFP_NET_CFG_CTRL_GATHER ? "GATHER " : "", nn->cap & NFP_NET_CFG_CTRL_LSO ? "TSO " : "", nn->cap & NFP_NET_CFG_CTRL_RSS ? "RSS " : "", nn->cap & NFP_NET_CFG_CTRL_L2SWITCH ? "L2SWITCH " : "", nn->cap & NFP_NET_CFG_CTRL_MSIXAUTO ? "AUTOMASK " : "", nn->cap & NFP_NET_CFG_CTRL_IRQMOD ? "IRQMOD " : "", nn->cap & NFP_NET_CFG_CTRL_VXLAN ? "VXLAN " : "", nn->cap & NFP_NET_CFG_CTRL_NVGRE ? "NVGRE " : "", nfp_net_ebpf_capable(nn) ? "BPF " : ""); } /** * nfp_net_netdev_alloc() - Allocate netdev and related structure * @pdev: PCI device * @max_tx_rings: Maximum number of TX rings supported by device * @max_rx_rings: Maximum number of RX rings supported by device * * This function allocates a netdev device and fills in the initial * part of the @struct nfp_net structure. * * Return: NFP Net device structure, or ERR_PTR on error. */ struct nfp_net *nfp_net_netdev_alloc(struct pci_dev *pdev, int max_tx_rings, int max_rx_rings) { struct net_device *netdev; struct nfp_net *nn; int nqs; netdev = alloc_etherdev_mqs(sizeof(struct nfp_net), max_tx_rings, max_rx_rings); if (!netdev) return ERR_PTR(-ENOMEM); SET_NETDEV_DEV(netdev, &pdev->dev); nn = netdev_priv(netdev); nn->netdev = netdev; nn->pdev = pdev; nn->max_tx_rings = max_tx_rings; nn->max_rx_rings = max_rx_rings; nqs = netif_get_num_default_rss_queues(); nn->num_tx_rings = min_t(int, nqs, max_tx_rings); nn->num_rx_rings = min_t(int, nqs, max_rx_rings); nn->txd_cnt = NFP_NET_TX_DESCS_DEFAULT; nn->rxd_cnt = NFP_NET_RX_DESCS_DEFAULT; spin_lock_init(&nn->reconfig_lock); spin_lock_init(&nn->rx_filter_lock); spin_lock_init(&nn->link_status_lock); setup_timer(&nn->reconfig_timer, nfp_net_reconfig_timer, (unsigned long)nn); setup_timer(&nn->rx_filter_stats_timer, nfp_net_filter_stats_timer, (unsigned long)nn); return nn; } /** * nfp_net_netdev_free() - Undo what @nfp_net_netdev_alloc() did * @nn: NFP Net device to reconfigure */ void nfp_net_netdev_free(struct nfp_net *nn) { free_netdev(nn->netdev); } /** * nfp_net_rss_init() - Set the initial RSS parameters * @nn: NFP Net device to reconfigure */ static void nfp_net_rss_init(struct nfp_net *nn) { int i; netdev_rss_key_fill(nn->rss_key, NFP_NET_CFG_RSS_KEY_SZ); for (i = 0; i < sizeof(nn->rss_itbl); i++) nn->rss_itbl[i] = ethtool_rxfh_indir_default(i, nn->num_rx_rings); /* Enable IPv4/IPv6 TCP by default */ nn->rss_cfg = NFP_NET_CFG_RSS_IPV4_TCP | NFP_NET_CFG_RSS_IPV6_TCP | NFP_NET_CFG_RSS_TOEPLITZ | NFP_NET_CFG_RSS_MASK; } /** * nfp_net_irqmod_init() - Set the initial IRQ moderation parameters * @nn: NFP Net device to reconfigure */ static void nfp_net_irqmod_init(struct nfp_net *nn) { nn->rx_coalesce_usecs = 50; nn->rx_coalesce_max_frames = 64; nn->tx_coalesce_usecs = 50; nn->tx_coalesce_max_frames = 64; } /** * nfp_net_netdev_init() - Initialise/finalise the netdev structure * @netdev: netdev structure * * Return: 0 on success or negative errno on error. */ int nfp_net_netdev_init(struct net_device *netdev) { struct nfp_net *nn = netdev_priv(netdev); int err; /* Get some of the read-only fields from the BAR */ nn->cap = nn_readl(nn, NFP_NET_CFG_CAP); nn->max_mtu = nn_readl(nn, NFP_NET_CFG_MAX_MTU); nfp_net_write_mac_addr(nn); /* Set default MTU and Freelist buffer size */ if (nn->max_mtu < NFP_NET_DEFAULT_MTU) netdev->mtu = nn->max_mtu; else netdev->mtu = NFP_NET_DEFAULT_MTU; nn->fl_bufsz = NFP_NET_DEFAULT_RX_BUFSZ; /* Advertise/enable offloads based on capabilities * * Note: netdev->features show the currently enabled features * and netdev->hw_features advertises which features are * supported. By default we enable most features. */ netdev->hw_features = NETIF_F_HIGHDMA; if (nn->cap & NFP_NET_CFG_CTRL_RXCSUM) { netdev->hw_features |= NETIF_F_RXCSUM; nn->ctrl |= NFP_NET_CFG_CTRL_RXCSUM; } if (nn->cap & NFP_NET_CFG_CTRL_TXCSUM) { netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; nn->ctrl |= NFP_NET_CFG_CTRL_TXCSUM; } if (nn->cap & NFP_NET_CFG_CTRL_GATHER) { netdev->hw_features |= NETIF_F_SG; nn->ctrl |= NFP_NET_CFG_CTRL_GATHER; } if ((nn->cap & NFP_NET_CFG_CTRL_LSO) && nn->fw_ver.major > 2) { netdev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6; nn->ctrl |= NFP_NET_CFG_CTRL_LSO; } if (nn->cap & NFP_NET_CFG_CTRL_RSS) { netdev->hw_features |= NETIF_F_RXHASH; nfp_net_rss_init(nn); nn->ctrl |= NFP_NET_CFG_CTRL_RSS; } if (nn->cap & NFP_NET_CFG_CTRL_VXLAN && nn->cap & NFP_NET_CFG_CTRL_NVGRE) { if (nn->cap & NFP_NET_CFG_CTRL_LSO) netdev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL; nn->ctrl |= NFP_NET_CFG_CTRL_VXLAN | NFP_NET_CFG_CTRL_NVGRE; netdev->hw_enc_features = netdev->hw_features; } netdev->vlan_features = netdev->hw_features; if (nn->cap & NFP_NET_CFG_CTRL_RXVLAN) { netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX; nn->ctrl |= NFP_NET_CFG_CTRL_RXVLAN; } if (nn->cap & NFP_NET_CFG_CTRL_TXVLAN) { netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX; nn->ctrl |= NFP_NET_CFG_CTRL_TXVLAN; } netdev->features = netdev->hw_features; if (nfp_net_ebpf_capable(nn)) netdev->hw_features |= NETIF_F_HW_TC; /* Advertise but disable TSO by default. */ netdev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6); /* Allow L2 Broadcast and Multicast through by default, if supported */ if (nn->cap & NFP_NET_CFG_CTRL_L2BC) nn->ctrl |= NFP_NET_CFG_CTRL_L2BC; if (nn->cap & NFP_NET_CFG_CTRL_L2MC) nn->ctrl |= NFP_NET_CFG_CTRL_L2MC; /* Allow IRQ moderation, if supported */ if (nn->cap & NFP_NET_CFG_CTRL_IRQMOD) { nfp_net_irqmod_init(nn); nn->ctrl |= NFP_NET_CFG_CTRL_IRQMOD; } /* On NFP-3200 enable MSI-X auto-masking, if supported and the * interrupts are not shared. */ if (nn->is_nfp3200 && nn->cap & NFP_NET_CFG_CTRL_MSIXAUTO) nn->ctrl |= NFP_NET_CFG_CTRL_MSIXAUTO; /* On NFP4000/NFP6000, determine RX packet/metadata boundary offset */ if (nn->fw_ver.major >= 2) nn->rx_offset = nn_readl(nn, NFP_NET_CFG_RX_OFFSET); else nn->rx_offset = NFP_NET_RX_OFFSET; /* Stash the re-configuration queue away. First odd queue in TX Bar */ nn->qcp_cfg = nn->tx_bar + NFP_QCP_QUEUE_ADDR_SZ; /* Make sure the FW knows the netdev is supposed to be disabled here */ nn_writel(nn, NFP_NET_CFG_CTRL, 0); nn_writeq(nn, NFP_NET_CFG_TXRS_ENABLE, 0); nn_writeq(nn, NFP_NET_CFG_RXRS_ENABLE, 0); err = nfp_net_reconfig(nn, NFP_NET_CFG_UPDATE_RING | NFP_NET_CFG_UPDATE_GEN); if (err) return err; /* Finalise the netdev setup */ ether_setup(netdev); netdev->netdev_ops = &nfp_net_netdev_ops; netdev->watchdog_timeo = msecs_to_jiffies(5 * 1000); netif_carrier_off(netdev); nfp_net_set_ethtool_ops(netdev); nfp_net_irqs_assign(netdev); return register_netdev(netdev); } /** * nfp_net_netdev_clean() - Undo what nfp_net_netdev_init() did. * @netdev: netdev structure */ void nfp_net_netdev_clean(struct net_device *netdev) { unregister_netdev(netdev); }