/* * Copyright (c) by Jaroslav Kysela <perex@perex.cz> * Copyright (c) by Takashi Iwai <tiwai@suse.de> * * EMU10K1 memory page allocation (PTB area) * * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include <linux/pci.h> #include <linux/gfp.h> #include <linux/time.h> #include <linux/mutex.h> #include <linux/export.h> #include <sound/core.h> #include <sound/emu10k1.h> /* page arguments of these two macros are Emu page (4096 bytes), not like * aligned pages in others */ #define __set_ptb_entry(emu,page,addr) \ (((u32 *)(emu)->ptb_pages.area)[page] = cpu_to_le32(((addr) << (emu->address_mode)) | (page))) #define UNIT_PAGES (PAGE_SIZE / EMUPAGESIZE) #define MAX_ALIGN_PAGES0 (MAXPAGES0 / UNIT_PAGES) #define MAX_ALIGN_PAGES1 (MAXPAGES1 / UNIT_PAGES) /* get aligned page from offset address */ #define get_aligned_page(offset) ((offset) >> PAGE_SHIFT) /* get offset address from aligned page */ #define aligned_page_offset(page) ((page) << PAGE_SHIFT) #if PAGE_SIZE == 4096 /* page size == EMUPAGESIZE */ /* fill PTB entrie(s) corresponding to page with addr */ #define set_ptb_entry(emu,page,addr) __set_ptb_entry(emu,page,addr) /* fill PTB entrie(s) corresponding to page with silence pointer */ #define set_silent_ptb(emu,page) __set_ptb_entry(emu,page,emu->silent_page.addr) #else /* fill PTB entries -- we need to fill UNIT_PAGES entries */ static inline void set_ptb_entry(struct snd_emu10k1 *emu, int page, dma_addr_t addr) { int i; page *= UNIT_PAGES; for (i = 0; i < UNIT_PAGES; i++, page++) { __set_ptb_entry(emu, page, addr); addr += EMUPAGESIZE; } } static inline void set_silent_ptb(struct snd_emu10k1 *emu, int page) { int i; page *= UNIT_PAGES; for (i = 0; i < UNIT_PAGES; i++, page++) /* do not increment ptr */ __set_ptb_entry(emu, page, emu->silent_page.addr); } #endif /* PAGE_SIZE */ /* */ static int synth_alloc_pages(struct snd_emu10k1 *hw, struct snd_emu10k1_memblk *blk); static int synth_free_pages(struct snd_emu10k1 *hw, struct snd_emu10k1_memblk *blk); #define get_emu10k1_memblk(l,member) list_entry(l, struct snd_emu10k1_memblk, member) /* initialize emu10k1 part */ static void emu10k1_memblk_init(struct snd_emu10k1_memblk *blk) { blk->mapped_page = -1; INIT_LIST_HEAD(&blk->mapped_link); INIT_LIST_HEAD(&blk->mapped_order_link); blk->map_locked = 0; blk->first_page = get_aligned_page(blk->mem.offset); blk->last_page = get_aligned_page(blk->mem.offset + blk->mem.size - 1); blk->pages = blk->last_page - blk->first_page + 1; } /* * search empty region on PTB with the given size * * if an empty region is found, return the page and store the next mapped block * in nextp * if not found, return a negative error code. */ static int search_empty_map_area(struct snd_emu10k1 *emu, int npages, struct list_head **nextp) { int page = 0, found_page = -ENOMEM; int max_size = npages; int size; struct list_head *candidate = &emu->mapped_link_head; struct list_head *pos; list_for_each (pos, &emu->mapped_link_head) { struct snd_emu10k1_memblk *blk = get_emu10k1_memblk(pos, mapped_link); if (blk->mapped_page < 0) continue; size = blk->mapped_page - page; if (size == npages) { *nextp = pos; return page; } else if (size > max_size) { /* we look for the maximum empty hole */ max_size = size; candidate = pos; found_page = page; } page = blk->mapped_page + blk->pages; } size = (emu->address_mode ? MAX_ALIGN_PAGES1 : MAX_ALIGN_PAGES0) - page; if (size >= max_size) { *nextp = pos; return page; } *nextp = candidate; return found_page; } /* * map a memory block onto emu10k1's PTB * * call with memblk_lock held */ static int map_memblk(struct snd_emu10k1 *emu, struct snd_emu10k1_memblk *blk) { int page, pg; struct list_head *next; page = search_empty_map_area(emu, blk->pages, &next); if (page < 0) /* not found */ return page; /* insert this block in the proper position of mapped list */ list_add_tail(&blk->mapped_link, next); /* append this as a newest block in order list */ list_add_tail(&blk->mapped_order_link, &emu->mapped_order_link_head); blk->mapped_page = page; /* fill PTB */ for (pg = blk->first_page; pg <= blk->last_page; pg++) { set_ptb_entry(emu, page, emu->page_addr_table[pg]); page++; } return 0; } /* * unmap the block * return the size of resultant empty pages * * call with memblk_lock held */ static int unmap_memblk(struct snd_emu10k1 *emu, struct snd_emu10k1_memblk *blk) { int start_page, end_page, mpage, pg; struct list_head *p; struct snd_emu10k1_memblk *q; /* calculate the expected size of empty region */ if ((p = blk->mapped_link.prev) != &emu->mapped_link_head) { q = get_emu10k1_memblk(p, mapped_link); start_page = q->mapped_page + q->pages; } else start_page = 0; if ((p = blk->mapped_link.next) != &emu->mapped_link_head) { q = get_emu10k1_memblk(p, mapped_link); end_page = q->mapped_page; } else end_page = (emu->address_mode ? MAX_ALIGN_PAGES1 : MAX_ALIGN_PAGES0); /* remove links */ list_del(&blk->mapped_link); list_del(&blk->mapped_order_link); /* clear PTB */ mpage = blk->mapped_page; for (pg = blk->first_page; pg <= blk->last_page; pg++) { set_silent_ptb(emu, mpage); mpage++; } blk->mapped_page = -1; return end_page - start_page; /* return the new empty size */ } /* * search empty pages with the given size, and create a memory block * * unlike synth_alloc the memory block is aligned to the page start */ static struct snd_emu10k1_memblk * search_empty(struct snd_emu10k1 *emu, int size) { struct list_head *p; struct snd_emu10k1_memblk *blk; int page, psize; psize = get_aligned_page(size + PAGE_SIZE -1); page = 0; list_for_each(p, &emu->memhdr->block) { blk = get_emu10k1_memblk(p, mem.list); if (page + psize <= blk->first_page) goto __found_pages; page = blk->last_page + 1; } if (page + psize > emu->max_cache_pages) return NULL; __found_pages: /* create a new memory block */ blk = (struct snd_emu10k1_memblk *)__snd_util_memblk_new(emu->memhdr, psize << PAGE_SHIFT, p->prev); if (blk == NULL) return NULL; blk->mem.offset = aligned_page_offset(page); /* set aligned offset */ emu10k1_memblk_init(blk); return blk; } /* * check if the given pointer is valid for pages */ static int is_valid_page(struct snd_emu10k1 *emu, dma_addr_t addr) { if (addr & ~emu->dma_mask) { dev_err_ratelimited(emu->card->dev, "max memory size is 0x%lx (addr = 0x%lx)!!\n", emu->dma_mask, (unsigned long)addr); return 0; } if (addr & (EMUPAGESIZE-1)) { dev_err_ratelimited(emu->card->dev, "page is not aligned\n"); return 0; } return 1; } /* * map the given memory block on PTB. * if the block is already mapped, update the link order. * if no empty pages are found, tries to release unused memory blocks * and retry the mapping. */ int snd_emu10k1_memblk_map(struct snd_emu10k1 *emu, struct snd_emu10k1_memblk *blk) { int err; int size; struct list_head *p, *nextp; struct snd_emu10k1_memblk *deleted; unsigned long flags; spin_lock_irqsave(&emu->memblk_lock, flags); if (blk->mapped_page >= 0) { /* update order link */ list_move_tail(&blk->mapped_order_link, &emu->mapped_order_link_head); spin_unlock_irqrestore(&emu->memblk_lock, flags); return 0; } if ((err = map_memblk(emu, blk)) < 0) { /* no enough page - try to unmap some blocks */ /* starting from the oldest block */ p = emu->mapped_order_link_head.next; for (; p != &emu->mapped_order_link_head; p = nextp) { nextp = p->next; deleted = get_emu10k1_memblk(p, mapped_order_link); if (deleted->map_locked) continue; size = unmap_memblk(emu, deleted); if (size >= blk->pages) { /* ok the empty region is enough large */ err = map_memblk(emu, blk); break; } } } spin_unlock_irqrestore(&emu->memblk_lock, flags); return err; } EXPORT_SYMBOL(snd_emu10k1_memblk_map); /* * page allocation for DMA */ struct snd_util_memblk * snd_emu10k1_alloc_pages(struct snd_emu10k1 *emu, struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; struct snd_util_memhdr *hdr; struct snd_emu10k1_memblk *blk; int page, err, idx; if (snd_BUG_ON(!emu)) return NULL; if (snd_BUG_ON(runtime->dma_bytes <= 0 || runtime->dma_bytes >= (emu->address_mode ? MAXPAGES1 : MAXPAGES0) * EMUPAGESIZE)) return NULL; hdr = emu->memhdr; if (snd_BUG_ON(!hdr)) return NULL; idx = runtime->period_size >= runtime->buffer_size ? (emu->delay_pcm_irq * 2) : 0; mutex_lock(&hdr->block_mutex); blk = search_empty(emu, runtime->dma_bytes + idx); if (blk == NULL) { mutex_unlock(&hdr->block_mutex); return NULL; } /* fill buffer addresses but pointers are not stored so that * snd_free_pci_page() is not called in in synth_free() */ idx = 0; for (page = blk->first_page; page <= blk->last_page; page++, idx++) { unsigned long ofs = idx << PAGE_SHIFT; dma_addr_t addr; if (ofs >= runtime->dma_bytes) addr = emu->silent_page.addr; else addr = snd_pcm_sgbuf_get_addr(substream, ofs); if (! is_valid_page(emu, addr)) { dev_err_ratelimited(emu->card->dev, "emu: failure page = %d\n", idx); mutex_unlock(&hdr->block_mutex); return NULL; } emu->page_addr_table[page] = addr; emu->page_ptr_table[page] = NULL; } /* set PTB entries */ blk->map_locked = 1; /* do not unmap this block! */ err = snd_emu10k1_memblk_map(emu, blk); if (err < 0) { __snd_util_mem_free(hdr, (struct snd_util_memblk *)blk); mutex_unlock(&hdr->block_mutex); return NULL; } mutex_unlock(&hdr->block_mutex); return (struct snd_util_memblk *)blk; } /* * release DMA buffer from page table */ int snd_emu10k1_free_pages(struct snd_emu10k1 *emu, struct snd_util_memblk *blk) { if (snd_BUG_ON(!emu || !blk)) return -EINVAL; return snd_emu10k1_synth_free(emu, blk); } /* * memory allocation using multiple pages (for synth) * Unlike the DMA allocation above, non-contiguous pages are assined. */ /* * allocate a synth sample area */ struct snd_util_memblk * snd_emu10k1_synth_alloc(struct snd_emu10k1 *hw, unsigned int size) { struct snd_emu10k1_memblk *blk; struct snd_util_memhdr *hdr = hw->memhdr; mutex_lock(&hdr->block_mutex); blk = (struct snd_emu10k1_memblk *)__snd_util_mem_alloc(hdr, size); if (blk == NULL) { mutex_unlock(&hdr->block_mutex); return NULL; } if (synth_alloc_pages(hw, blk)) { __snd_util_mem_free(hdr, (struct snd_util_memblk *)blk); mutex_unlock(&hdr->block_mutex); return NULL; } snd_emu10k1_memblk_map(hw, blk); mutex_unlock(&hdr->block_mutex); return (struct snd_util_memblk *)blk; } EXPORT_SYMBOL(snd_emu10k1_synth_alloc); /* * free a synth sample area */ int snd_emu10k1_synth_free(struct snd_emu10k1 *emu, struct snd_util_memblk *memblk) { struct snd_util_memhdr *hdr = emu->memhdr; struct snd_emu10k1_memblk *blk = (struct snd_emu10k1_memblk *)memblk; unsigned long flags; mutex_lock(&hdr->block_mutex); spin_lock_irqsave(&emu->memblk_lock, flags); if (blk->mapped_page >= 0) unmap_memblk(emu, blk); spin_unlock_irqrestore(&emu->memblk_lock, flags); synth_free_pages(emu, blk); __snd_util_mem_free(hdr, memblk); mutex_unlock(&hdr->block_mutex); return 0; } EXPORT_SYMBOL(snd_emu10k1_synth_free); /* check new allocation range */ static void get_single_page_range(struct snd_util_memhdr *hdr, struct snd_emu10k1_memblk *blk, int *first_page_ret, int *last_page_ret) { struct list_head *p; struct snd_emu10k1_memblk *q; int first_page, last_page; first_page = blk->first_page; if ((p = blk->mem.list.prev) != &hdr->block) { q = get_emu10k1_memblk(p, mem.list); if (q->last_page == first_page) first_page++; /* first page was already allocated */ } last_page = blk->last_page; if ((p = blk->mem.list.next) != &hdr->block) { q = get_emu10k1_memblk(p, mem.list); if (q->first_page == last_page) last_page--; /* last page was already allocated */ } *first_page_ret = first_page; *last_page_ret = last_page; } /* release allocated pages */ static void __synth_free_pages(struct snd_emu10k1 *emu, int first_page, int last_page) { int page; for (page = first_page; page <= last_page; page++) { free_page((unsigned long)emu->page_ptr_table[page]); emu->page_addr_table[page] = 0; emu->page_ptr_table[page] = NULL; } } /* * allocate kernel pages */ static int synth_alloc_pages(struct snd_emu10k1 *emu, struct snd_emu10k1_memblk *blk) { int page, first_page, last_page; emu10k1_memblk_init(blk); get_single_page_range(emu->memhdr, blk, &first_page, &last_page); /* allocate kernel pages */ for (page = first_page; page <= last_page; page++) { /* first try to allocate from <4GB zone */ struct page *p = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_NOWARN); if (!p || (page_to_pfn(p) & ~(emu->dma_mask >> PAGE_SHIFT))) { if (p) __free_page(p); /* try to allocate from <16MB zone */ p = alloc_page(GFP_ATOMIC | GFP_DMA | __GFP_NORETRY | /* no OOM-killer */ __GFP_NOWARN); } if (!p) { __synth_free_pages(emu, first_page, page - 1); return -ENOMEM; } emu->page_addr_table[page] = page_to_phys(p); emu->page_ptr_table[page] = page_address(p); } return 0; } /* * free pages */ static int synth_free_pages(struct snd_emu10k1 *emu, struct snd_emu10k1_memblk *blk) { int first_page, last_page; get_single_page_range(emu->memhdr, blk, &first_page, &last_page); __synth_free_pages(emu, first_page, last_page); return 0; } /* calculate buffer pointer from offset address */ static inline void *offset_ptr(struct snd_emu10k1 *emu, int page, int offset) { char *ptr; if (snd_BUG_ON(page < 0 || page >= emu->max_cache_pages)) return NULL; ptr = emu->page_ptr_table[page]; if (! ptr) { dev_err(emu->card->dev, "access to NULL ptr: page = %d\n", page); return NULL; } ptr += offset & (PAGE_SIZE - 1); return (void*)ptr; } /* * bzero(blk + offset, size) */ int snd_emu10k1_synth_bzero(struct snd_emu10k1 *emu, struct snd_util_memblk *blk, int offset, int size) { int page, nextofs, end_offset, temp, temp1; void *ptr; struct snd_emu10k1_memblk *p = (struct snd_emu10k1_memblk *)blk; offset += blk->offset & (PAGE_SIZE - 1); end_offset = offset + size; page = get_aligned_page(offset); do { nextofs = aligned_page_offset(page + 1); temp = nextofs - offset; temp1 = end_offset - offset; if (temp1 < temp) temp = temp1; ptr = offset_ptr(emu, page + p->first_page, offset); if (ptr) memset(ptr, 0, temp); offset = nextofs; page++; } while (offset < end_offset); return 0; } EXPORT_SYMBOL(snd_emu10k1_synth_bzero); /* * copy_from_user(blk + offset, data, size) */ int snd_emu10k1_synth_copy_from_user(struct snd_emu10k1 *emu, struct snd_util_memblk *blk, int offset, const char __user *data, int size) { int page, nextofs, end_offset, temp, temp1; void *ptr; struct snd_emu10k1_memblk *p = (struct snd_emu10k1_memblk *)blk; offset += blk->offset & (PAGE_SIZE - 1); end_offset = offset + size; page = get_aligned_page(offset); do { nextofs = aligned_page_offset(page + 1); temp = nextofs - offset; temp1 = end_offset - offset; if (temp1 < temp) temp = temp1; ptr = offset_ptr(emu, page + p->first_page, offset); if (ptr && copy_from_user(ptr, data, temp)) return -EFAULT; offset = nextofs; data += temp; page++; } while (offset < end_offset); return 0; } EXPORT_SYMBOL(snd_emu10k1_synth_copy_from_user);