/* * Broadcom GENET (Gigabit Ethernet) controller driver * * Copyright (c) 2014-2017 Broadcom * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #define pr_fmt(fmt) "bcmgenet: " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "bcmgenet.h" /* Maximum number of hardware queues, downsized if needed */ #define GENET_MAX_MQ_CNT 4 /* Default highest priority queue for multi queue support */ #define GENET_Q0_PRIORITY 0 #define GENET_Q16_RX_BD_CNT \ (TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q) #define GENET_Q16_TX_BD_CNT \ (TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q) #define RX_BUF_LENGTH 2048 #define SKB_ALIGNMENT 32 /* Tx/Rx DMA register offset, skip 256 descriptors */ #define WORDS_PER_BD(p) (p->hw_params->words_per_bd) #define DMA_DESC_SIZE (WORDS_PER_BD(priv) * sizeof(u32)) #define GENET_TDMA_REG_OFF (priv->hw_params->tdma_offset + \ TOTAL_DESC * DMA_DESC_SIZE) #define GENET_RDMA_REG_OFF (priv->hw_params->rdma_offset + \ TOTAL_DESC * DMA_DESC_SIZE) static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv, void __iomem *d, u32 value) { __raw_writel(value, d + DMA_DESC_LENGTH_STATUS); } static inline u32 dmadesc_get_length_status(struct bcmgenet_priv *priv, void __iomem *d) { return __raw_readl(d + DMA_DESC_LENGTH_STATUS); } static inline void dmadesc_set_addr(struct bcmgenet_priv *priv, void __iomem *d, dma_addr_t addr) { __raw_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO); /* Register writes to GISB bus can take couple hundred nanoseconds * and are done for each packet, save these expensive writes unless * the platform is explicitly configured for 64-bits/LPAE. */ #ifdef CONFIG_PHYS_ADDR_T_64BIT if (priv->hw_params->flags & GENET_HAS_40BITS) __raw_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI); #endif } /* Combined address + length/status setter */ static inline void dmadesc_set(struct bcmgenet_priv *priv, void __iomem *d, dma_addr_t addr, u32 val) { dmadesc_set_addr(priv, d, addr); dmadesc_set_length_status(priv, d, val); } static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv, void __iomem *d) { dma_addr_t addr; addr = __raw_readl(d + DMA_DESC_ADDRESS_LO); /* Register writes to GISB bus can take couple hundred nanoseconds * and are done for each packet, save these expensive writes unless * the platform is explicitly configured for 64-bits/LPAE. */ #ifdef CONFIG_PHYS_ADDR_T_64BIT if (priv->hw_params->flags & GENET_HAS_40BITS) addr |= (u64)__raw_readl(d + DMA_DESC_ADDRESS_HI) << 32; #endif return addr; } #define GENET_VER_FMT "%1d.%1d EPHY: 0x%04x" #define GENET_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \ NETIF_MSG_LINK) static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv) { if (GENET_IS_V1(priv)) return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1); else return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL); } static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val) { if (GENET_IS_V1(priv)) bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1); else bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL); } /* These macros are defined to deal with register map change * between GENET1.1 and GENET2. Only those currently being used * by driver are defined. */ static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv) { if (GENET_IS_V1(priv)) return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1); else return __raw_readl(priv->base + priv->hw_params->tbuf_offset + TBUF_CTRL); } static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val) { if (GENET_IS_V1(priv)) bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1); else __raw_writel(val, priv->base + priv->hw_params->tbuf_offset + TBUF_CTRL); } static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv) { if (GENET_IS_V1(priv)) return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1); else return __raw_readl(priv->base + priv->hw_params->tbuf_offset + TBUF_BP_MC); } static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val) { if (GENET_IS_V1(priv)) bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1); else __raw_writel(val, priv->base + priv->hw_params->tbuf_offset + TBUF_BP_MC); } /* RX/TX DMA register accessors */ enum dma_reg { DMA_RING_CFG = 0, DMA_CTRL, DMA_STATUS, DMA_SCB_BURST_SIZE, DMA_ARB_CTRL, DMA_PRIORITY_0, DMA_PRIORITY_1, DMA_PRIORITY_2, DMA_INDEX2RING_0, DMA_INDEX2RING_1, DMA_INDEX2RING_2, DMA_INDEX2RING_3, DMA_INDEX2RING_4, DMA_INDEX2RING_5, DMA_INDEX2RING_6, DMA_INDEX2RING_7, DMA_RING0_TIMEOUT, DMA_RING1_TIMEOUT, DMA_RING2_TIMEOUT, DMA_RING3_TIMEOUT, DMA_RING4_TIMEOUT, DMA_RING5_TIMEOUT, DMA_RING6_TIMEOUT, DMA_RING7_TIMEOUT, DMA_RING8_TIMEOUT, DMA_RING9_TIMEOUT, DMA_RING10_TIMEOUT, DMA_RING11_TIMEOUT, DMA_RING12_TIMEOUT, DMA_RING13_TIMEOUT, DMA_RING14_TIMEOUT, DMA_RING15_TIMEOUT, DMA_RING16_TIMEOUT, }; static const u8 bcmgenet_dma_regs_v3plus[] = { [DMA_RING_CFG] = 0x00, [DMA_CTRL] = 0x04, [DMA_STATUS] = 0x08, [DMA_SCB_BURST_SIZE] = 0x0C, [DMA_ARB_CTRL] = 0x2C, [DMA_PRIORITY_0] = 0x30, [DMA_PRIORITY_1] = 0x34, [DMA_PRIORITY_2] = 0x38, [DMA_RING0_TIMEOUT] = 0x2C, [DMA_RING1_TIMEOUT] = 0x30, [DMA_RING2_TIMEOUT] = 0x34, [DMA_RING3_TIMEOUT] = 0x38, [DMA_RING4_TIMEOUT] = 0x3c, [DMA_RING5_TIMEOUT] = 0x40, [DMA_RING6_TIMEOUT] = 0x44, [DMA_RING7_TIMEOUT] = 0x48, [DMA_RING8_TIMEOUT] = 0x4c, [DMA_RING9_TIMEOUT] = 0x50, [DMA_RING10_TIMEOUT] = 0x54, [DMA_RING11_TIMEOUT] = 0x58, [DMA_RING12_TIMEOUT] = 0x5c, [DMA_RING13_TIMEOUT] = 0x60, [DMA_RING14_TIMEOUT] = 0x64, [DMA_RING15_TIMEOUT] = 0x68, [DMA_RING16_TIMEOUT] = 0x6C, [DMA_INDEX2RING_0] = 0x70, [DMA_INDEX2RING_1] = 0x74, [DMA_INDEX2RING_2] = 0x78, [DMA_INDEX2RING_3] = 0x7C, [DMA_INDEX2RING_4] = 0x80, [DMA_INDEX2RING_5] = 0x84, [DMA_INDEX2RING_6] = 0x88, [DMA_INDEX2RING_7] = 0x8C, }; static const u8 bcmgenet_dma_regs_v2[] = { [DMA_RING_CFG] = 0x00, [DMA_CTRL] = 0x04, [DMA_STATUS] = 0x08, [DMA_SCB_BURST_SIZE] = 0x0C, [DMA_ARB_CTRL] = 0x30, [DMA_PRIORITY_0] = 0x34, [DMA_PRIORITY_1] = 0x38, [DMA_PRIORITY_2] = 0x3C, [DMA_RING0_TIMEOUT] = 0x2C, [DMA_RING1_TIMEOUT] = 0x30, [DMA_RING2_TIMEOUT] = 0x34, [DMA_RING3_TIMEOUT] = 0x38, [DMA_RING4_TIMEOUT] = 0x3c, [DMA_RING5_TIMEOUT] = 0x40, [DMA_RING6_TIMEOUT] = 0x44, [DMA_RING7_TIMEOUT] = 0x48, [DMA_RING8_TIMEOUT] = 0x4c, [DMA_RING9_TIMEOUT] = 0x50, [DMA_RING10_TIMEOUT] = 0x54, [DMA_RING11_TIMEOUT] = 0x58, [DMA_RING12_TIMEOUT] = 0x5c, [DMA_RING13_TIMEOUT] = 0x60, [DMA_RING14_TIMEOUT] = 0x64, [DMA_RING15_TIMEOUT] = 0x68, [DMA_RING16_TIMEOUT] = 0x6C, }; static const u8 bcmgenet_dma_regs_v1[] = { [DMA_CTRL] = 0x00, [DMA_STATUS] = 0x04, [DMA_SCB_BURST_SIZE] = 0x0C, [DMA_ARB_CTRL] = 0x30, [DMA_PRIORITY_0] = 0x34, [DMA_PRIORITY_1] = 0x38, [DMA_PRIORITY_2] = 0x3C, [DMA_RING0_TIMEOUT] = 0x2C, [DMA_RING1_TIMEOUT] = 0x30, [DMA_RING2_TIMEOUT] = 0x34, [DMA_RING3_TIMEOUT] = 0x38, [DMA_RING4_TIMEOUT] = 0x3c, [DMA_RING5_TIMEOUT] = 0x40, [DMA_RING6_TIMEOUT] = 0x44, [DMA_RING7_TIMEOUT] = 0x48, [DMA_RING8_TIMEOUT] = 0x4c, [DMA_RING9_TIMEOUT] = 0x50, [DMA_RING10_TIMEOUT] = 0x54, [DMA_RING11_TIMEOUT] = 0x58, [DMA_RING12_TIMEOUT] = 0x5c, [DMA_RING13_TIMEOUT] = 0x60, [DMA_RING14_TIMEOUT] = 0x64, [DMA_RING15_TIMEOUT] = 0x68, [DMA_RING16_TIMEOUT] = 0x6C, }; /* Set at runtime once bcmgenet version is known */ static const u8 *bcmgenet_dma_regs; static inline struct bcmgenet_priv *dev_to_priv(struct device *dev) { return netdev_priv(dev_get_drvdata(dev)); } static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv, enum dma_reg r) { return __raw_readl(priv->base + GENET_TDMA_REG_OFF + DMA_RINGS_SIZE + bcmgenet_dma_regs[r]); } static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv, u32 val, enum dma_reg r) { __raw_writel(val, priv->base + GENET_TDMA_REG_OFF + DMA_RINGS_SIZE + bcmgenet_dma_regs[r]); } static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv, enum dma_reg r) { return __raw_readl(priv->base + GENET_RDMA_REG_OFF + DMA_RINGS_SIZE + bcmgenet_dma_regs[r]); } static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv, u32 val, enum dma_reg r) { __raw_writel(val, priv->base + GENET_RDMA_REG_OFF + DMA_RINGS_SIZE + bcmgenet_dma_regs[r]); } /* RDMA/TDMA ring registers and accessors * we merge the common fields and just prefix with T/D the registers * having different meaning depending on the direction */ enum dma_ring_reg { TDMA_READ_PTR = 0, RDMA_WRITE_PTR = TDMA_READ_PTR, TDMA_READ_PTR_HI, RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI, TDMA_CONS_INDEX, RDMA_PROD_INDEX = TDMA_CONS_INDEX, TDMA_PROD_INDEX, RDMA_CONS_INDEX = TDMA_PROD_INDEX, DMA_RING_BUF_SIZE, DMA_START_ADDR, DMA_START_ADDR_HI, DMA_END_ADDR, DMA_END_ADDR_HI, DMA_MBUF_DONE_THRESH, TDMA_FLOW_PERIOD, RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD, TDMA_WRITE_PTR, RDMA_READ_PTR = TDMA_WRITE_PTR, TDMA_WRITE_PTR_HI, RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI }; /* GENET v4 supports 40-bits pointer addressing * for obvious reasons the LO and HI word parts * are contiguous, but this offsets the other * registers. */ static const u8 genet_dma_ring_regs_v4[] = { [TDMA_READ_PTR] = 0x00, [TDMA_READ_PTR_HI] = 0x04, [TDMA_CONS_INDEX] = 0x08, [TDMA_PROD_INDEX] = 0x0C, [DMA_RING_BUF_SIZE] = 0x10, [DMA_START_ADDR] = 0x14, [DMA_START_ADDR_HI] = 0x18, [DMA_END_ADDR] = 0x1C, [DMA_END_ADDR_HI] = 0x20, [DMA_MBUF_DONE_THRESH] = 0x24, [TDMA_FLOW_PERIOD] = 0x28, [TDMA_WRITE_PTR] = 0x2C, [TDMA_WRITE_PTR_HI] = 0x30, }; static const u8 genet_dma_ring_regs_v123[] = { [TDMA_READ_PTR] = 0x00, [TDMA_CONS_INDEX] = 0x04, [TDMA_PROD_INDEX] = 0x08, [DMA_RING_BUF_SIZE] = 0x0C, [DMA_START_ADDR] = 0x10, [DMA_END_ADDR] = 0x14, [DMA_MBUF_DONE_THRESH] = 0x18, [TDMA_FLOW_PERIOD] = 0x1C, [TDMA_WRITE_PTR] = 0x20, }; /* Set at runtime once GENET version is known */ static const u8 *genet_dma_ring_regs; static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv, unsigned int ring, enum dma_ring_reg r) { return __raw_readl(priv->base + GENET_TDMA_REG_OFF + (DMA_RING_SIZE * ring) + genet_dma_ring_regs[r]); } static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv, unsigned int ring, u32 val, enum dma_ring_reg r) { __raw_writel(val, priv->base + GENET_TDMA_REG_OFF + (DMA_RING_SIZE * ring) + genet_dma_ring_regs[r]); } static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv, unsigned int ring, enum dma_ring_reg r) { return __raw_readl(priv->base + GENET_RDMA_REG_OFF + (DMA_RING_SIZE * ring) + genet_dma_ring_regs[r]); } static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv, unsigned int ring, u32 val, enum dma_ring_reg r) { __raw_writel(val, priv->base + GENET_RDMA_REG_OFF + (DMA_RING_SIZE * ring) + genet_dma_ring_regs[r]); } static int bcmgenet_get_link_ksettings(struct net_device *dev, struct ethtool_link_ksettings *cmd) { struct bcmgenet_priv *priv = netdev_priv(dev); if (!netif_running(dev)) return -EINVAL; if (!priv->phydev) return -ENODEV; return phy_ethtool_ksettings_get(priv->phydev, cmd); } static int bcmgenet_set_link_ksettings(struct net_device *dev, const struct ethtool_link_ksettings *cmd) { struct bcmgenet_priv *priv = netdev_priv(dev); if (!netif_running(dev)) return -EINVAL; if (!priv->phydev) return -ENODEV; return phy_ethtool_ksettings_set(priv->phydev, cmd); } static int bcmgenet_set_rx_csum(struct net_device *dev, netdev_features_t wanted) { struct bcmgenet_priv *priv = netdev_priv(dev); u32 rbuf_chk_ctrl; bool rx_csum_en; rx_csum_en = !!(wanted & NETIF_F_RXCSUM); rbuf_chk_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL); /* enable rx checksumming */ if (rx_csum_en) rbuf_chk_ctrl |= RBUF_RXCHK_EN; else rbuf_chk_ctrl &= ~RBUF_RXCHK_EN; priv->desc_rxchk_en = rx_csum_en; /* If UniMAC forwards CRC, we need to skip over it to get * a valid CHK bit to be set in the per-packet status word */ if (rx_csum_en && priv->crc_fwd_en) rbuf_chk_ctrl |= RBUF_SKIP_FCS; else rbuf_chk_ctrl &= ~RBUF_SKIP_FCS; bcmgenet_rbuf_writel(priv, rbuf_chk_ctrl, RBUF_CHK_CTRL); return 0; } static int bcmgenet_set_tx_csum(struct net_device *dev, netdev_features_t wanted) { struct bcmgenet_priv *priv = netdev_priv(dev); bool desc_64b_en; u32 tbuf_ctrl, rbuf_ctrl; tbuf_ctrl = bcmgenet_tbuf_ctrl_get(priv); rbuf_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CTRL); desc_64b_en = !!(wanted & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)); /* enable 64 bytes descriptor in both directions (RBUF and TBUF) */ if (desc_64b_en) { tbuf_ctrl |= RBUF_64B_EN; rbuf_ctrl |= RBUF_64B_EN; } else { tbuf_ctrl &= ~RBUF_64B_EN; rbuf_ctrl &= ~RBUF_64B_EN; } priv->desc_64b_en = desc_64b_en; bcmgenet_tbuf_ctrl_set(priv, tbuf_ctrl); bcmgenet_rbuf_writel(priv, rbuf_ctrl, RBUF_CTRL); return 0; } static int bcmgenet_set_features(struct net_device *dev, netdev_features_t features) { netdev_features_t changed = features ^ dev->features; netdev_features_t wanted = dev->wanted_features; int ret = 0; if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ret = bcmgenet_set_tx_csum(dev, wanted); if (changed & (NETIF_F_RXCSUM)) ret = bcmgenet_set_rx_csum(dev, wanted); return ret; } static u32 bcmgenet_get_msglevel(struct net_device *dev) { struct bcmgenet_priv *priv = netdev_priv(dev); return priv->msg_enable; } static void bcmgenet_set_msglevel(struct net_device *dev, u32 level) { struct bcmgenet_priv *priv = netdev_priv(dev); priv->msg_enable = level; } static int bcmgenet_get_coalesce(struct net_device *dev, struct ethtool_coalesce *ec) { struct bcmgenet_priv *priv = netdev_priv(dev); ec->tx_max_coalesced_frames = bcmgenet_tdma_ring_readl(priv, DESC_INDEX, DMA_MBUF_DONE_THRESH); ec->rx_max_coalesced_frames = bcmgenet_rdma_ring_readl(priv, DESC_INDEX, DMA_MBUF_DONE_THRESH); ec->rx_coalesce_usecs = bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT) * 8192 / 1000; return 0; } static int bcmgenet_set_coalesce(struct net_device *dev, struct ethtool_coalesce *ec) { struct bcmgenet_priv *priv = netdev_priv(dev); unsigned int i; u32 reg; /* Base system clock is 125Mhz, DMA timeout is this reference clock * divided by 1024, which yields roughly 8.192us, our maximum value * has to fit in the DMA_TIMEOUT_MASK (16 bits) */ if (ec->tx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK || ec->tx_max_coalesced_frames == 0 || ec->rx_max_coalesced_frames > DMA_INTR_THRESHOLD_MASK || ec->rx_coalesce_usecs > (DMA_TIMEOUT_MASK * 8) + 1) return -EINVAL; if (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0) return -EINVAL; /* GENET TDMA hardware does not support a configurable timeout, but will * always generate an interrupt either after MBDONE packets have been * transmitted, or when the ring is emtpy. */ if (ec->tx_coalesce_usecs || ec->tx_coalesce_usecs_high || ec->tx_coalesce_usecs_irq || ec->tx_coalesce_usecs_low) return -EOPNOTSUPP; /* Program all TX queues with the same values, as there is no * ethtool knob to do coalescing on a per-queue basis */ for (i = 0; i < priv->hw_params->tx_queues; i++) bcmgenet_tdma_ring_writel(priv, i, ec->tx_max_coalesced_frames, DMA_MBUF_DONE_THRESH); bcmgenet_tdma_ring_writel(priv, DESC_INDEX, ec->tx_max_coalesced_frames, DMA_MBUF_DONE_THRESH); for (i = 0; i < priv->hw_params->rx_queues; i++) { bcmgenet_rdma_ring_writel(priv, i, ec->rx_max_coalesced_frames, DMA_MBUF_DONE_THRESH); reg = bcmgenet_rdma_readl(priv, DMA_RING0_TIMEOUT + i); reg &= ~DMA_TIMEOUT_MASK; reg |= DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000, 8192); bcmgenet_rdma_writel(priv, reg, DMA_RING0_TIMEOUT + i); } bcmgenet_rdma_ring_writel(priv, DESC_INDEX, ec->rx_max_coalesced_frames, DMA_MBUF_DONE_THRESH); reg = bcmgenet_rdma_readl(priv, DMA_RING16_TIMEOUT); reg &= ~DMA_TIMEOUT_MASK; reg |= DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000, 8192); bcmgenet_rdma_writel(priv, reg, DMA_RING16_TIMEOUT); return 0; } /* standard ethtool support functions. */ enum bcmgenet_stat_type { BCMGENET_STAT_NETDEV = -1, BCMGENET_STAT_MIB_RX, BCMGENET_STAT_MIB_TX, BCMGENET_STAT_RUNT, BCMGENET_STAT_MISC, BCMGENET_STAT_SOFT, }; struct bcmgenet_stats { char stat_string[ETH_GSTRING_LEN]; int stat_sizeof; int stat_offset; enum bcmgenet_stat_type type; /* reg offset from UMAC base for misc counters */ u16 reg_offset; }; #define STAT_NETDEV(m) { \ .stat_string = __stringify(m), \ .stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \ .stat_offset = offsetof(struct net_device_stats, m), \ .type = BCMGENET_STAT_NETDEV, \ } #define STAT_GENET_MIB(str, m, _type) { \ .stat_string = str, \ .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \ .stat_offset = offsetof(struct bcmgenet_priv, m), \ .type = _type, \ } #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX) #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX) #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT) #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT) #define STAT_GENET_MISC(str, m, offset) { \ .stat_string = str, \ .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \ .stat_offset = offsetof(struct bcmgenet_priv, m), \ .type = BCMGENET_STAT_MISC, \ .reg_offset = offset, \ } /* There is a 0xC gap between the end of RX and beginning of TX stats and then * between the end of TX stats and the beginning of the RX RUNT */ #define BCMGENET_STAT_OFFSET 0xc /* Hardware counters must be kept in sync because the order/offset * is important here (order in structure declaration = order in hardware) */ static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = { /* general stats */ STAT_NETDEV(rx_packets), STAT_NETDEV(tx_packets), STAT_NETDEV(rx_bytes), STAT_NETDEV(tx_bytes), STAT_NETDEV(rx_errors), STAT_NETDEV(tx_errors), STAT_NETDEV(rx_dropped), STAT_NETDEV(tx_dropped), STAT_NETDEV(multicast), /* UniMAC RSV counters */ STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64), STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127), STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255), STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511), STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023), STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518), STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv), STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047), STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095), STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216), STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt), STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes), STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca), STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca), STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs), STAT_GENET_MIB_RX("rx_control", mib.rx.cf), STAT_GENET_MIB_RX("rx_pause", mib.rx.pf), STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo), STAT_GENET_MIB_RX("rx_align", mib.rx.aln), STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr), STAT_GENET_MIB_RX("rx_code", mib.rx.cde), STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr), STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr), STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr), STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue), STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok), STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc), STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp), STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc), /* UniMAC TSV counters */ STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64), STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127), STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255), STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511), STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023), STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518), STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv), STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047), STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095), STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216), STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts), STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca), STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca), STAT_GENET_MIB_TX("tx_pause", mib.tx.pf), STAT_GENET_MIB_TX("tx_control", mib.tx.cf), STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs), STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr), STAT_GENET_MIB_TX("tx_defer", mib.tx.drf), STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf), STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl), STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl), STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl), STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl), STAT_GENET_MIB_TX("tx_frags", mib.tx.frg), STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl), STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr), STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes), STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok), STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc), /* UniMAC RUNT counters */ STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt), STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs), STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align), STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes), /* Misc UniMAC counters */ STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt, UMAC_RBUF_OVFL_CNT_V1), STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt, UMAC_RBUF_ERR_CNT_V1), STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT), STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed), STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed), STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed), }; #define BCMGENET_STATS_LEN ARRAY_SIZE(bcmgenet_gstrings_stats) static void bcmgenet_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { strlcpy(info->driver, "bcmgenet", sizeof(info->driver)); strlcpy(info->version, "v2.0", sizeof(info->version)); } static int bcmgenet_get_sset_count(struct net_device *dev, int string_set) { switch (string_set) { case ETH_SS_STATS: return BCMGENET_STATS_LEN; default: return -EOPNOTSUPP; } } static void bcmgenet_get_strings(struct net_device *dev, u32 stringset, u8 *data) { int i; switch (stringset) { case ETH_SS_STATS: for (i = 0; i < BCMGENET_STATS_LEN; i++) { memcpy(data + i * ETH_GSTRING_LEN, bcmgenet_gstrings_stats[i].stat_string, ETH_GSTRING_LEN); } break; } } static u32 bcmgenet_update_stat_misc(struct bcmgenet_priv *priv, u16 offset) { u16 new_offset; u32 val; switch (offset) { case UMAC_RBUF_OVFL_CNT_V1: if (GENET_IS_V2(priv)) new_offset = RBUF_OVFL_CNT_V2; else new_offset = RBUF_OVFL_CNT_V3PLUS; val = bcmgenet_rbuf_readl(priv, new_offset); /* clear if overflowed */ if (val == ~0) bcmgenet_rbuf_writel(priv, 0, new_offset); break; case UMAC_RBUF_ERR_CNT_V1: if (GENET_IS_V2(priv)) new_offset = RBUF_ERR_CNT_V2; else new_offset = RBUF_ERR_CNT_V3PLUS; val = bcmgenet_rbuf_readl(priv, new_offset); /* clear if overflowed */ if (val == ~0) bcmgenet_rbuf_writel(priv, 0, new_offset); break; default: val = bcmgenet_umac_readl(priv, offset); /* clear if overflowed */ if (val == ~0) bcmgenet_umac_writel(priv, 0, offset); break; } return val; } static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv) { int i, j = 0; for (i = 0; i < BCMGENET_STATS_LEN; i++) { const struct bcmgenet_stats *s; u8 offset = 0; u32 val = 0; char *p; s = &bcmgenet_gstrings_stats[i]; switch (s->type) { case BCMGENET_STAT_NETDEV: case BCMGENET_STAT_SOFT: continue; case BCMGENET_STAT_RUNT: offset += BCMGENET_STAT_OFFSET; /* fall through */ case BCMGENET_STAT_MIB_TX: offset += BCMGENET_STAT_OFFSET; /* fall through */ case BCMGENET_STAT_MIB_RX: val = bcmgenet_umac_readl(priv, UMAC_MIB_START + j + offset); offset = 0; /* Reset Offset */ break; case BCMGENET_STAT_MISC: if (GENET_IS_V1(priv)) { val = bcmgenet_umac_readl(priv, s->reg_offset); /* clear if overflowed */ if (val == ~0) bcmgenet_umac_writel(priv, 0, s->reg_offset); } else { val = bcmgenet_update_stat_misc(priv, s->reg_offset); } break; } j += s->stat_sizeof; p = (char *)priv + s->stat_offset; *(u32 *)p = val; } } static void bcmgenet_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data) { struct bcmgenet_priv *priv = netdev_priv(dev); int i; if (netif_running(dev)) bcmgenet_update_mib_counters(priv); for (i = 0; i < BCMGENET_STATS_LEN; i++) { const struct bcmgenet_stats *s; char *p; s = &bcmgenet_gstrings_stats[i]; if (s->type == BCMGENET_STAT_NETDEV) p = (char *)&dev->stats; else p = (char *)priv; p += s->stat_offset; if (sizeof(unsigned long) != sizeof(u32) && s->stat_sizeof == sizeof(unsigned long)) data[i] = *(unsigned long *)p; else data[i] = *(u32 *)p; } } static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable) { struct bcmgenet_priv *priv = netdev_priv(dev); u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL; u32 reg; if (enable && !priv->clk_eee_enabled) { clk_prepare_enable(priv->clk_eee); priv->clk_eee_enabled = true; } reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL); if (enable) reg |= EEE_EN; else reg &= ~EEE_EN; bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL); /* Enable EEE and switch to a 27Mhz clock automatically */ reg = __raw_readl(priv->base + off); if (enable) reg |= TBUF_EEE_EN | TBUF_PM_EN; else reg &= ~(TBUF_EEE_EN | TBUF_PM_EN); __raw_writel(reg, priv->base + off); /* Do the same for thing for RBUF */ reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL); if (enable) reg |= RBUF_EEE_EN | RBUF_PM_EN; else reg &= ~(RBUF_EEE_EN | RBUF_PM_EN); bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL); if (!enable && priv->clk_eee_enabled) { clk_disable_unprepare(priv->clk_eee); priv->clk_eee_enabled = false; } priv->eee.eee_enabled = enable; priv->eee.eee_active = enable; } static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e) { struct bcmgenet_priv *priv = netdev_priv(dev); struct ethtool_eee *p = &priv->eee; if (GENET_IS_V1(priv)) return -EOPNOTSUPP; e->eee_enabled = p->eee_enabled; e->eee_active = p->eee_active; e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER); return phy_ethtool_get_eee(priv->phydev, e); } static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e) { struct bcmgenet_priv *priv = netdev_priv(dev); struct ethtool_eee *p = &priv->eee; int ret = 0; if (GENET_IS_V1(priv)) return -EOPNOTSUPP; p->eee_enabled = e->eee_enabled; if (!p->eee_enabled) { bcmgenet_eee_enable_set(dev, false); } else { ret = phy_init_eee(priv->phydev, 0); if (ret) { netif_err(priv, hw, dev, "EEE initialization failed\n"); return ret; } bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER); bcmgenet_eee_enable_set(dev, true); } return phy_ethtool_set_eee(priv->phydev, e); } static int bcmgenet_nway_reset(struct net_device *dev) { struct bcmgenet_priv *priv = netdev_priv(dev); return genphy_restart_aneg(priv->phydev); } /* standard ethtool support functions. */ static const struct ethtool_ops bcmgenet_ethtool_ops = { .get_strings = bcmgenet_get_strings, .get_sset_count = bcmgenet_get_sset_count, .get_ethtool_stats = bcmgenet_get_ethtool_stats, .get_drvinfo = bcmgenet_get_drvinfo, .get_link = ethtool_op_get_link, .get_msglevel = bcmgenet_get_msglevel, .set_msglevel = bcmgenet_set_msglevel, .get_wol = bcmgenet_get_wol, .set_wol = bcmgenet_set_wol, .get_eee = bcmgenet_get_eee, .set_eee = bcmgenet_set_eee, .nway_reset = bcmgenet_nway_reset, .get_coalesce = bcmgenet_get_coalesce, .set_coalesce = bcmgenet_set_coalesce, .get_link_ksettings = bcmgenet_get_link_ksettings, .set_link_ksettings = bcmgenet_set_link_ksettings, }; /* Power down the unimac, based on mode. */ static int bcmgenet_power_down(struct bcmgenet_priv *priv, enum bcmgenet_power_mode mode) { int ret = 0; u32 reg; switch (mode) { case GENET_POWER_CABLE_SENSE: phy_detach(priv->phydev); break; case GENET_POWER_WOL_MAGIC: ret = bcmgenet_wol_power_down_cfg(priv, mode); break; case GENET_POWER_PASSIVE: /* Power down LED */ if (priv->hw_params->flags & GENET_HAS_EXT) { reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT); reg |= (EXT_PWR_DOWN_PHY | EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS); bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT); bcmgenet_phy_power_set(priv->dev, false); } break; default: break; } return ret; } static void bcmgenet_power_up(struct bcmgenet_priv *priv, enum bcmgenet_power_mode mode) { u32 reg; if (!(priv->hw_params->flags & GENET_HAS_EXT)) return; reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT); switch (mode) { case GENET_POWER_PASSIVE: reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_PHY | EXT_PWR_DOWN_BIAS); /* fallthrough */ case GENET_POWER_CABLE_SENSE: /* enable APD */ reg |= EXT_PWR_DN_EN_LD; break; case GENET_POWER_WOL_MAGIC: bcmgenet_wol_power_up_cfg(priv, mode); return; default: break; } bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT); if (mode == GENET_POWER_PASSIVE) { bcmgenet_phy_power_set(priv->dev, true); bcmgenet_mii_reset(priv->dev); } } /* ioctl handle special commands that are not present in ethtool. */ static int bcmgenet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) { struct bcmgenet_priv *priv = netdev_priv(dev); int val = 0; if (!netif_running(dev)) return -EINVAL; switch (cmd) { case SIOCGMIIPHY: case SIOCGMIIREG: case SIOCSMIIREG: if (!priv->phydev) val = -ENODEV; else val = phy_mii_ioctl(priv->phydev, rq, cmd); break; default: val = -EINVAL; break; } return val; } static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv, struct bcmgenet_tx_ring *ring) { struct enet_cb *tx_cb_ptr; tx_cb_ptr = ring->cbs; tx_cb_ptr += ring->write_ptr - ring->cb_ptr; /* Advancing local write pointer */ if (ring->write_ptr == ring->end_ptr) ring->write_ptr = ring->cb_ptr; else ring->write_ptr++; return tx_cb_ptr; } /* Simple helper to free a control block's resources */ static void bcmgenet_free_cb(struct enet_cb *cb) { dev_kfree_skb_any(cb->skb); cb->skb = NULL; dma_unmap_addr_set(cb, dma_addr, 0); } static inline void bcmgenet_rx_ring16_int_disable(struct bcmgenet_rx_ring *ring) { bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE, INTRL2_CPU_MASK_SET); } static inline void bcmgenet_rx_ring16_int_enable(struct bcmgenet_rx_ring *ring) { bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_RXDMA_DONE, INTRL2_CPU_MASK_CLEAR); } static inline void bcmgenet_rx_ring_int_disable(struct bcmgenet_rx_ring *ring) { bcmgenet_intrl2_1_writel(ring->priv, 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index), INTRL2_CPU_MASK_SET); } static inline void bcmgenet_rx_ring_int_enable(struct bcmgenet_rx_ring *ring) { bcmgenet_intrl2_1_writel(ring->priv, 1 << (UMAC_IRQ1_RX_INTR_SHIFT + ring->index), INTRL2_CPU_MASK_CLEAR); } static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_tx_ring *ring) { bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE, INTRL2_CPU_MASK_SET); } static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_tx_ring *ring) { bcmgenet_intrl2_0_writel(ring->priv, UMAC_IRQ_TXDMA_DONE, INTRL2_CPU_MASK_CLEAR); } static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_tx_ring *ring) { bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index, INTRL2_CPU_MASK_CLEAR); } static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_tx_ring *ring) { bcmgenet_intrl2_1_writel(ring->priv, 1 << ring->index, INTRL2_CPU_MASK_SET); } /* Unlocked version of the reclaim routine */ static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev, struct bcmgenet_tx_ring *ring) { struct bcmgenet_priv *priv = netdev_priv(dev); struct device *kdev = &priv->pdev->dev; struct enet_cb *tx_cb_ptr; struct netdev_queue *txq; unsigned int pkts_compl = 0; unsigned int bytes_compl = 0; unsigned int c_index; unsigned int txbds_ready; unsigned int txbds_processed = 0; /* Compute how many buffers are transmitted since last xmit call */ c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX); c_index &= DMA_C_INDEX_MASK; if (likely(c_index >= ring->c_index)) txbds_ready = c_index - ring->c_index; else txbds_ready = (DMA_C_INDEX_MASK + 1) - ring->c_index + c_index; netif_dbg(priv, tx_done, dev, "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n", __func__, ring->index, ring->c_index, c_index, txbds_ready); /* Reclaim transmitted buffers */ while (txbds_processed < txbds_ready) { tx_cb_ptr = &priv->tx_cbs[ring->clean_ptr]; if (tx_cb_ptr->skb) { pkts_compl++; bytes_compl += GENET_CB(tx_cb_ptr->skb)->bytes_sent; dma_unmap_single(kdev, dma_unmap_addr(tx_cb_ptr, dma_addr), dma_unmap_len(tx_cb_ptr, dma_len), DMA_TO_DEVICE); bcmgenet_free_cb(tx_cb_ptr); } else if (dma_unmap_addr(tx_cb_ptr, dma_addr)) { dma_unmap_page(kdev, dma_unmap_addr(tx_cb_ptr, dma_addr), dma_unmap_len(tx_cb_ptr, dma_len), DMA_TO_DEVICE); dma_unmap_addr_set(tx_cb_ptr, dma_addr, 0); } txbds_processed++; if (likely(ring->clean_ptr < ring->end_ptr)) ring->clean_ptr++; else ring->clean_ptr = ring->cb_ptr; } ring->free_bds += txbds_processed; ring->c_index = (ring->c_index + txbds_processed) & DMA_C_INDEX_MASK; dev->stats.tx_packets += pkts_compl; dev->stats.tx_bytes += bytes_compl; txq = netdev_get_tx_queue(dev, ring->queue); netdev_tx_completed_queue(txq, pkts_compl, bytes_compl); if (ring->free_bds > (MAX_SKB_FRAGS + 1)) { if (netif_tx_queue_stopped(txq)) netif_tx_wake_queue(txq); } return pkts_compl; } static unsigned int bcmgenet_tx_reclaim(struct net_device *dev, struct bcmgenet_tx_ring *ring) { unsigned int released; unsigned long flags; spin_lock_irqsave(&ring->lock, flags); released = __bcmgenet_tx_reclaim(dev, ring); spin_unlock_irqrestore(&ring->lock, flags); return released; } static int bcmgenet_tx_poll(struct napi_struct *napi, int budget) { struct bcmgenet_tx_ring *ring = container_of(napi, struct bcmgenet_tx_ring, napi); unsigned int work_done = 0; work_done = bcmgenet_tx_reclaim(ring->priv->dev, ring); if (work_done == 0) { napi_complete(napi); ring->int_enable(ring); return 0; } return budget; } static void bcmgenet_tx_reclaim_all(struct net_device *dev) { struct bcmgenet_priv *priv = netdev_priv(dev); int i; if (netif_is_multiqueue(dev)) { for (i = 0; i < priv->hw_params->tx_queues; i++) bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]); } bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]); } /* Transmits a single SKB (either head of a fragment or a single SKB) * caller must hold priv->lock */ static int bcmgenet_xmit_single(struct net_device *dev, struct sk_buff *skb, u16 dma_desc_flags, struct bcmgenet_tx_ring *ring) { struct bcmgenet_priv *priv = netdev_priv(dev); struct device *kdev = &priv->pdev->dev; struct enet_cb *tx_cb_ptr; unsigned int skb_len; dma_addr_t mapping; u32 length_status; int ret; tx_cb_ptr = bcmgenet_get_txcb(priv, ring); if (unlikely(!tx_cb_ptr)) BUG(); tx_cb_ptr->skb = skb; skb_len = skb_headlen(skb); mapping = dma_map_single(kdev, skb->data, skb_len, DMA_TO_DEVICE); ret = dma_mapping_error(kdev, mapping); if (ret) { priv->mib.tx_dma_failed++; netif_err(priv, tx_err, dev, "Tx DMA map failed\n"); dev_kfree_skb(skb); return ret; } dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping); dma_unmap_len_set(tx_cb_ptr, dma_len, skb_len); length_status = (skb_len << DMA_BUFLENGTH_SHIFT) | dma_desc_flags | (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT) | DMA_TX_APPEND_CRC; if (skb->ip_summed == CHECKSUM_PARTIAL) length_status |= DMA_TX_DO_CSUM; dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, length_status); return 0; } /* Transmit a SKB fragment */ static int bcmgenet_xmit_frag(struct net_device *dev, skb_frag_t *frag, u16 dma_desc_flags, struct bcmgenet_tx_ring *ring) { struct bcmgenet_priv *priv = netdev_priv(dev); struct device *kdev = &priv->pdev->dev; struct enet_cb *tx_cb_ptr; unsigned int frag_size; dma_addr_t mapping; int ret; tx_cb_ptr = bcmgenet_get_txcb(priv, ring); if (unlikely(!tx_cb_ptr)) BUG(); tx_cb_ptr->skb = NULL; frag_size = skb_frag_size(frag); mapping = skb_frag_dma_map(kdev, frag, 0, frag_size, DMA_TO_DEVICE); ret = dma_mapping_error(kdev, mapping); if (ret) { priv->mib.tx_dma_failed++; netif_err(priv, tx_err, dev, "%s: Tx DMA map failed\n", __func__); return ret; } dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping); dma_unmap_len_set(tx_cb_ptr, dma_len, frag_size); dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, (frag_size << DMA_BUFLENGTH_SHIFT) | dma_desc_flags | (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT)); return 0; } /* Reallocate the SKB to put enough headroom in front of it and insert * the transmit checksum offsets in the descriptors */ static struct sk_buff *bcmgenet_put_tx_csum(struct net_device *dev, struct sk_buff *skb) { struct status_64 *status = NULL; struct sk_buff *new_skb; u16 offset; u8 ip_proto; u16 ip_ver; u32 tx_csum_info; if (unlikely(skb_headroom(skb) < sizeof(*status))) { /* If 64 byte status block enabled, must make sure skb has * enough headroom for us to insert 64B status block. */ new_skb = skb_realloc_headroom(skb, sizeof(*status)); dev_kfree_skb(skb); if (!new_skb) { dev->stats.tx_dropped++; return NULL; } skb = new_skb; } skb_push(skb, sizeof(*status)); status = (struct status_64 *)skb->data; if (skb->ip_summed == CHECKSUM_PARTIAL) { ip_ver = htons(skb->protocol); switch (ip_ver) { case ETH_P_IP: ip_proto = ip_hdr(skb)->protocol; break; case ETH_P_IPV6: ip_proto = ipv6_hdr(skb)->nexthdr; break; default: return skb; } offset = skb_checksum_start_offset(skb) - sizeof(*status); tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) | (offset + skb->csum_offset); /* Set the length valid bit for TCP and UDP and just set * the special UDP flag for IPv4, else just set to 0. */ if (ip_proto == IPPROTO_TCP || ip_proto == IPPROTO_UDP) { tx_csum_info |= STATUS_TX_CSUM_LV; if (ip_proto == IPPROTO_UDP && ip_ver == ETH_P_IP) tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP; } else { tx_csum_info = 0; } status->tx_csum_info = tx_csum_info; } return skb; } static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev) { struct bcmgenet_priv *priv = netdev_priv(dev); struct bcmgenet_tx_ring *ring = NULL; struct netdev_queue *txq; unsigned long flags = 0; int nr_frags, index; u16 dma_desc_flags; int ret; int i; index = skb_get_queue_mapping(skb); /* Mapping strategy: * queue_mapping = 0, unclassified, packet xmited through ring16 * queue_mapping = 1, goes to ring 0. (highest priority queue * queue_mapping = 2, goes to ring 1. * queue_mapping = 3, goes to ring 2. * queue_mapping = 4, goes to ring 3. */ if (index == 0) index = DESC_INDEX; else index -= 1; ring = &priv->tx_rings[index]; txq = netdev_get_tx_queue(dev, ring->queue); nr_frags = skb_shinfo(skb)->nr_frags; spin_lock_irqsave(&ring->lock, flags); if (ring->free_bds <= (nr_frags + 1)) { if (!netif_tx_queue_stopped(txq)) { netif_tx_stop_queue(txq); netdev_err(dev, "%s: tx ring %d full when queue %d awake\n", __func__, index, ring->queue); } ret = NETDEV_TX_BUSY; goto out; } if (skb_padto(skb, ETH_ZLEN)) { ret = NETDEV_TX_OK; goto out; } /* Retain how many bytes will be sent on the wire, without TSB inserted * by transmit checksum offload */ GENET_CB(skb)->bytes_sent = skb->len; /* set the SKB transmit checksum */ if (priv->desc_64b_en) { skb = bcmgenet_put_tx_csum(dev, skb); if (!skb) { ret = NETDEV_TX_OK; goto out; } } dma_desc_flags = DMA_SOP; if (nr_frags == 0) dma_desc_flags |= DMA_EOP; /* Transmit single SKB or head of fragment list */ ret = bcmgenet_xmit_single(dev, skb, dma_desc_flags, ring); if (ret) { ret = NETDEV_TX_OK; goto out; } /* xmit fragment */ for (i = 0; i < nr_frags; i++) { ret = bcmgenet_xmit_frag(dev, &skb_shinfo(skb)->frags[i], (i == nr_frags - 1) ? DMA_EOP : 0, ring); if (ret) { ret = NETDEV_TX_OK; goto out; } } skb_tx_timestamp(skb); /* Decrement total BD count and advance our write pointer */ ring->free_bds -= nr_frags + 1; ring->prod_index += nr_frags + 1; ring->prod_index &= DMA_P_INDEX_MASK; netdev_tx_sent_queue(txq, GENET_CB(skb)->bytes_sent); if (ring->free_bds <= (MAX_SKB_FRAGS + 1)) netif_tx_stop_queue(txq); if (!skb->xmit_more || netif_xmit_stopped(txq)) /* Packets are ready, update producer index */ bcmgenet_tdma_ring_writel(priv, ring->index, ring->prod_index, TDMA_PROD_INDEX); out: spin_unlock_irqrestore(&ring->lock, flags); return ret; } static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv, struct enet_cb *cb) { struct device *kdev = &priv->pdev->dev; struct sk_buff *skb; struct sk_buff *rx_skb; dma_addr_t mapping; /* Allocate a new Rx skb */ skb = __netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT, GFP_ATOMIC | __GFP_NOWARN); if (!skb) { priv->mib.alloc_rx_buff_failed++; netif_err(priv, rx_err, priv->dev, "%s: Rx skb allocation failed\n", __func__); return NULL; } /* DMA-map the new Rx skb */ mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len, DMA_FROM_DEVICE); if (dma_mapping_error(kdev, mapping)) { priv->mib.rx_dma_failed++; dev_kfree_skb_any(skb); netif_err(priv, rx_err, priv->dev, "%s: Rx skb DMA mapping failed\n", __func__); return NULL; } /* Grab the current Rx skb from the ring and DMA-unmap it */ rx_skb = cb->skb; if (likely(rx_skb)) dma_unmap_single(kdev, dma_unmap_addr(cb, dma_addr), priv->rx_buf_len, DMA_FROM_DEVICE); /* Put the new Rx skb on the ring */ cb->skb = skb; dma_unmap_addr_set(cb, dma_addr, mapping); dmadesc_set_addr(priv, cb->bd_addr, mapping); /* Return the current Rx skb to caller */ return rx_skb; } /* bcmgenet_desc_rx - descriptor based rx process. * this could be called from bottom half, or from NAPI polling method. */ static unsigned int bcmgenet_desc_rx(struct bcmgenet_rx_ring *ring, unsigned int budget) { struct bcmgenet_priv *priv = ring->priv; struct net_device *dev = priv->dev; struct enet_cb *cb; struct sk_buff *skb; u32 dma_length_status; unsigned long dma_flag; int len; unsigned int rxpktprocessed = 0, rxpkttoprocess; unsigned int p_index; unsigned int discards; unsigned int chksum_ok = 0; p_index = bcmgenet_rdma_ring_readl(priv, ring->index, RDMA_PROD_INDEX); discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) & DMA_P_INDEX_DISCARD_CNT_MASK; if (discards > ring->old_discards) { discards = discards - ring->old_discards; dev->stats.rx_missed_errors += discards; dev->stats.rx_errors += discards; ring->old_discards += discards; /* Clear HW register when we reach 75% of maximum 0xFFFF */ if (ring->old_discards >= 0xC000) { ring->old_discards = 0; bcmgenet_rdma_ring_writel(priv, ring->index, 0, RDMA_PROD_INDEX); } } p_index &= DMA_P_INDEX_MASK; if (likely(p_index >= ring->c_index)) rxpkttoprocess = p_index - ring->c_index; else rxpkttoprocess = (DMA_C_INDEX_MASK + 1) - ring->c_index + p_index; netif_dbg(priv, rx_status, dev, "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess); while ((rxpktprocessed < rxpkttoprocess) && (rxpktprocessed < budget)) { cb = &priv->rx_cbs[ring->read_ptr]; skb = bcmgenet_rx_refill(priv, cb); if (unlikely(!skb)) { dev->stats.rx_dropped++; goto next; } if (!priv->desc_64b_en) { dma_length_status = dmadesc_get_length_status(priv, cb->bd_addr); } else { struct status_64 *status; status = (struct status_64 *)skb->data; dma_length_status = status->length_status; } /* DMA flags and length are still valid no matter how * we got the Receive Status Vector (64B RSB or register) */ dma_flag = dma_length_status & 0xffff; len = dma_length_status >> DMA_BUFLENGTH_SHIFT; netif_dbg(priv, rx_status, dev, "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n", __func__, p_index, ring->c_index, ring->read_ptr, dma_length_status); if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) { netif_err(priv, rx_status, dev, "dropping fragmented packet!\n"); dev->stats.rx_errors++; dev_kfree_skb_any(skb); goto next; } /* report errors */ if (unlikely(dma_flag & (DMA_RX_CRC_ERROR | DMA_RX_OV | DMA_RX_NO | DMA_RX_LG | DMA_RX_RXER))) { netif_err(priv, rx_status, dev, "dma_flag=0x%x\n", (unsigned int)dma_flag); if (dma_flag & DMA_RX_CRC_ERROR) dev->stats.rx_crc_errors++; if (dma_flag & DMA_RX_OV) dev->stats.rx_over_errors++; if (dma_flag & DMA_RX_NO) dev->stats.rx_frame_errors++; if (dma_flag & DMA_RX_LG) dev->stats.rx_length_errors++; dev->stats.rx_errors++; dev_kfree_skb_any(skb); goto next; } /* error packet */ chksum_ok = (dma_flag & priv->dma_rx_chk_bit) && priv->desc_rxchk_en; skb_put(skb, len); if (priv->desc_64b_en) { skb_pull(skb, 64); len -= 64; } if (likely(chksum_ok)) skb->ip_summed = CHECKSUM_UNNECESSARY; /* remove hardware 2bytes added for IP alignment */ skb_pull(skb, 2); len -= 2; if (priv->crc_fwd_en) { skb_trim(skb, len - ETH_FCS_LEN); len -= ETH_FCS_LEN; } /*Finish setting up the received SKB and send it to the kernel*/ skb->protocol = eth_type_trans(skb, priv->dev); dev->stats.rx_packets++; dev->stats.rx_bytes += len; if (dma_flag & DMA_RX_MULT) dev->stats.multicast++; /* Notify kernel */ napi_gro_receive(&ring->napi, skb); netif_dbg(priv, rx_status, dev, "pushed up to kernel\n"); next: rxpktprocessed++; if (likely(ring->read_ptr < ring->end_ptr)) ring->read_ptr++; else ring->read_ptr = ring->cb_ptr; ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK; bcmgenet_rdma_ring_writel(priv, ring->index, ring->c_index, RDMA_CONS_INDEX); } return rxpktprocessed; } /* Rx NAPI polling method */ static int bcmgenet_rx_poll(struct napi_struct *napi, int budget) { struct bcmgenet_rx_ring *ring = container_of(napi, struct bcmgenet_rx_ring, napi); unsigned int work_done; work_done = bcmgenet_desc_rx(ring, budget); if (work_done < budget) { napi_complete_done(napi, work_done); ring->int_enable(ring); } return work_done; } /* Assign skb to RX DMA descriptor. */ static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv, struct bcmgenet_rx_ring *ring) { struct enet_cb *cb; struct sk_buff *skb; int i; netif_dbg(priv, hw, priv->dev, "%s\n", __func__); /* loop here for each buffer needing assign */ for (i = 0; i < ring->size; i++) { cb = ring->cbs + i; skb = bcmgenet_rx_refill(priv, cb); if (skb) dev_kfree_skb_any(skb); if (!cb->skb) return -ENOMEM; } return 0; } static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv) { struct device *kdev = &priv->pdev->dev; struct enet_cb *cb; int i; for (i = 0; i < priv->num_rx_bds; i++) { cb = &priv->rx_cbs[i]; if (dma_unmap_addr(cb, dma_addr)) { dma_unmap_single(kdev, dma_unmap_addr(cb, dma_addr), priv->rx_buf_len, DMA_FROM_DEVICE); dma_unmap_addr_set(cb, dma_addr, 0); } if (cb->skb) bcmgenet_free_cb(cb); } } static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable) { u32 reg; reg = bcmgenet_umac_readl(priv, UMAC_CMD); if (enable) reg |= mask; else reg &= ~mask; bcmgenet_umac_writel(priv, reg, UMAC_CMD); /* UniMAC stops on a packet boundary, wait for a full-size packet * to be processed */ if (enable == 0) usleep_range(1000, 2000); } static int reset_umac(struct bcmgenet_priv *priv) { struct device *kdev = &priv->pdev->dev; unsigned int timeout = 0; u32 reg; /* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */ bcmgenet_rbuf_ctrl_set(priv, 0); udelay(10); /* disable MAC while updating its registers */ bcmgenet_umac_writel(priv, 0, UMAC_CMD); /* issue soft reset, wait for it to complete */ bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD); while (timeout++ < 1000) { reg = bcmgenet_umac_readl(priv, UMAC_CMD); if (!(reg & CMD_SW_RESET)) return 0; udelay(1); } if (timeout == 1000) { dev_err(kdev, "timeout waiting for MAC to come out of reset\n"); return -ETIMEDOUT; } return 0; } static void bcmgenet_intr_disable(struct bcmgenet_priv *priv) { /* Mask all interrupts.*/ bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET); bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR); bcmgenet_intrl2_0_writel(priv, 0, INTRL2_CPU_MASK_CLEAR); bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET); bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR); bcmgenet_intrl2_1_writel(priv, 0, INTRL2_CPU_MASK_CLEAR); } static void bcmgenet_link_intr_enable(struct bcmgenet_priv *priv) { u32 int0_enable = 0; /* Monitor cable plug/unplugged event for internal PHY, external PHY * and MoCA PHY */ if (priv->internal_phy) { int0_enable |= UMAC_IRQ_LINK_EVENT; if (GENET_IS_V1(priv) || GENET_IS_V2(priv) || GENET_IS_V3(priv)) int0_enable |= UMAC_IRQ_PHY_DET_R; } else if (priv->ext_phy) { int0_enable |= UMAC_IRQ_LINK_EVENT; } else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) { if (priv->hw_params->flags & GENET_HAS_MOCA_LINK_DET) int0_enable |= UMAC_IRQ_LINK_EVENT; } bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR); } static int init_umac(struct bcmgenet_priv *priv) { struct device *kdev = &priv->pdev->dev; int ret; u32 reg; u32 int0_enable = 0; u32 int1_enable = 0; int i; dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n"); ret = reset_umac(priv); if (ret) return ret; bcmgenet_umac_writel(priv, 0, UMAC_CMD); /* clear tx/rx counter */ bcmgenet_umac_writel(priv, MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT, UMAC_MIB_CTRL); bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL); bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN); /* init rx registers, enable ip header optimization */ reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL); reg |= RBUF_ALIGN_2B; bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL); if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv)) bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL); bcmgenet_intr_disable(priv); /* Enable Rx default queue 16 interrupts */ int0_enable |= UMAC_IRQ_RXDMA_DONE; /* Enable Tx default queue 16 interrupts */ int0_enable |= UMAC_IRQ_TXDMA_DONE; /* Configure backpressure vectors for MoCA */ if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) { reg = bcmgenet_bp_mc_get(priv); reg |= BIT(priv->hw_params->bp_in_en_shift); /* bp_mask: back pressure mask */ if (netif_is_multiqueue(priv->dev)) reg |= priv->hw_params->bp_in_mask; else reg &= ~priv->hw_params->bp_in_mask; bcmgenet_bp_mc_set(priv, reg); } /* Enable MDIO interrupts on GENET v3+ */ if (priv->hw_params->flags & GENET_HAS_MDIO_INTR) int0_enable |= (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR); /* Enable Rx priority queue interrupts */ for (i = 0; i < priv->hw_params->rx_queues; ++i) int1_enable |= (1 << (UMAC_IRQ1_RX_INTR_SHIFT + i)); /* Enable Tx priority queue interrupts */ for (i = 0; i < priv->hw_params->tx_queues; ++i) int1_enable |= (1 << i); bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR); bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR); /* Enable rx/tx engine.*/ dev_dbg(kdev, "done init umac\n"); return 0; } /* Initialize a Tx ring along with corresponding hardware registers */ static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv, unsigned int index, unsigned int size, unsigned int start_ptr, unsigned int end_ptr) { struct bcmgenet_tx_ring *ring = &priv->tx_rings[index]; u32 words_per_bd = WORDS_PER_BD(priv); u32 flow_period_val = 0; spin_lock_init(&ring->lock); ring->priv = priv; ring->index = index; if (index == DESC_INDEX) { ring->queue = 0; ring->int_enable = bcmgenet_tx_ring16_int_enable; ring->int_disable = bcmgenet_tx_ring16_int_disable; } else { ring->queue = index + 1; ring->int_enable = bcmgenet_tx_ring_int_enable; ring->int_disable = bcmgenet_tx_ring_int_disable; } ring->cbs = priv->tx_cbs + start_ptr; ring->size = size; ring->clean_ptr = start_ptr; ring->c_index = 0; ring->free_bds = size; ring->write_ptr = start_ptr; ring->cb_ptr = start_ptr; ring->end_ptr = end_ptr - 1; ring->prod_index = 0; /* Set flow period for ring != 16 */ if (index != DESC_INDEX) flow_period_val = ENET_MAX_MTU_SIZE << 16; bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX); bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX); bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH); /* Disable rate control for now */ bcmgenet_tdma_ring_writel(priv, index, flow_period_val, TDMA_FLOW_PERIOD); bcmgenet_tdma_ring_writel(priv, index, ((size << DMA_RING_SIZE_SHIFT) | RX_BUF_LENGTH), DMA_RING_BUF_SIZE); /* Set start and end address, read and write pointers */ bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd, DMA_START_ADDR); bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd, TDMA_READ_PTR); bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd, TDMA_WRITE_PTR); bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1, DMA_END_ADDR); } /* Initialize a RDMA ring */ static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv, unsigned int index, unsigned int size, unsigned int start_ptr, unsigned int end_ptr) { struct bcmgenet_rx_ring *ring = &priv->rx_rings[index]; u32 words_per_bd = WORDS_PER_BD(priv); int ret; ring->priv = priv; ring->index = index; if (index == DESC_INDEX) { ring->int_enable = bcmgenet_rx_ring16_int_enable; ring->int_disable = bcmgenet_rx_ring16_int_disable; } else { ring->int_enable = bcmgenet_rx_ring_int_enable; ring->int_disable = bcmgenet_rx_ring_int_disable; } ring->cbs = priv->rx_cbs + start_ptr; ring->size = size; ring->c_index = 0; ring->read_ptr = start_ptr; ring->cb_ptr = start_ptr; ring->end_ptr = end_ptr - 1; ret = bcmgenet_alloc_rx_buffers(priv, ring); if (ret) return ret; bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX); bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX); bcmgenet_rdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH); bcmgenet_rdma_ring_writel(priv, index, ((size << DMA_RING_SIZE_SHIFT) | RX_BUF_LENGTH), DMA_RING_BUF_SIZE); bcmgenet_rdma_ring_writel(priv, index, (DMA_FC_THRESH_LO << DMA_XOFF_THRESHOLD_SHIFT) | DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH); /* Set start and end address, read and write pointers */ bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd, DMA_START_ADDR); bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd, RDMA_READ_PTR); bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd, RDMA_WRITE_PTR); bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1, DMA_END_ADDR); return ret; } static void bcmgenet_init_tx_napi(struct bcmgenet_priv *priv) { unsigned int i; struct bcmgenet_tx_ring *ring; for (i = 0; i < priv->hw_params->tx_queues; ++i) { ring = &priv->tx_rings[i]; netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64); } ring = &priv->tx_rings[DESC_INDEX]; netif_tx_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64); } static void bcmgenet_enable_tx_napi(struct bcmgenet_priv *priv) { unsigned int i; struct bcmgenet_tx_ring *ring; for (i = 0; i < priv->hw_params->tx_queues; ++i) { ring = &priv->tx_rings[i]; napi_enable(&ring->napi); } ring = &priv->tx_rings[DESC_INDEX]; napi_enable(&ring->napi); } static void bcmgenet_disable_tx_napi(struct bcmgenet_priv *priv) { unsigned int i; struct bcmgenet_tx_ring *ring; for (i = 0; i < priv->hw_params->tx_queues; ++i) { ring = &priv->tx_rings[i]; napi_disable(&ring->napi); } ring = &priv->tx_rings[DESC_INDEX]; napi_disable(&ring->napi); } static void bcmgenet_fini_tx_napi(struct bcmgenet_priv *priv) { unsigned int i; struct bcmgenet_tx_ring *ring; for (i = 0; i < priv->hw_params->tx_queues; ++i) { ring = &priv->tx_rings[i]; netif_napi_del(&ring->napi); } ring = &priv->tx_rings[DESC_INDEX]; netif_napi_del(&ring->napi); } /* Initialize Tx queues * * Queues 0-3 are priority-based, each one has 32 descriptors, * with queue 0 being the highest priority queue. * * Queue 16 is the default Tx queue with * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors. * * The transmit control block pool is then partitioned as follows: * - Tx queue 0 uses tx_cbs[0..31] * - Tx queue 1 uses tx_cbs[32..63] * - Tx queue 2 uses tx_cbs[64..95] * - Tx queue 3 uses tx_cbs[96..127] * - Tx queue 16 uses tx_cbs[128..255] */ static void bcmgenet_init_tx_queues(struct net_device *dev) { struct bcmgenet_priv *priv = netdev_priv(dev); u32 i, dma_enable; u32 dma_ctrl, ring_cfg; u32 dma_priority[3] = {0, 0, 0}; dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL); dma_enable = dma_ctrl & DMA_EN; dma_ctrl &= ~DMA_EN; bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL); dma_ctrl = 0; ring_cfg = 0; /* Enable strict priority arbiter mode */ bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL); /* Initialize Tx priority queues */ for (i = 0; i < priv->hw_params->tx_queues; i++) { bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q, i * priv->hw_params->tx_bds_per_q, (i + 1) * priv->hw_params->tx_bds_per_q); ring_cfg |= (1 << i); dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT)); dma_priority[DMA_PRIO_REG_INDEX(i)] |= ((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i)); } /* Initialize Tx default queue 16 */ bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT, priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q, TOTAL_DESC); ring_cfg |= (1 << DESC_INDEX); dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT)); dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |= ((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) << DMA_PRIO_REG_SHIFT(DESC_INDEX)); /* Set Tx queue priorities */ bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0); bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1); bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2); /* Initialize Tx NAPI */ bcmgenet_init_tx_napi(priv); /* Enable Tx queues */ bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG); /* Enable Tx DMA */ if (dma_enable) dma_ctrl |= DMA_EN; bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL); } static void bcmgenet_init_rx_napi(struct bcmgenet_priv *priv) { unsigned int i; struct bcmgenet_rx_ring *ring; for (i = 0; i < priv->hw_params->rx_queues; ++i) { ring = &priv->rx_rings[i]; netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64); } ring = &priv->rx_rings[DESC_INDEX]; netif_napi_add(priv->dev, &ring->napi, bcmgenet_rx_poll, 64); } static void bcmgenet_enable_rx_napi(struct bcmgenet_priv *priv) { unsigned int i; struct bcmgenet_rx_ring *ring; for (i = 0; i < priv->hw_params->rx_queues; ++i) { ring = &priv->rx_rings[i]; napi_enable(&ring->napi); } ring = &priv->rx_rings[DESC_INDEX]; napi_enable(&ring->napi); } static void bcmgenet_disable_rx_napi(struct bcmgenet_priv *priv) { unsigned int i; struct bcmgenet_rx_ring *ring; for (i = 0; i < priv->hw_params->rx_queues; ++i) { ring = &priv->rx_rings[i]; napi_disable(&ring->napi); } ring = &priv->rx_rings[DESC_INDEX]; napi_disable(&ring->napi); } static void bcmgenet_fini_rx_napi(struct bcmgenet_priv *priv) { unsigned int i; struct bcmgenet_rx_ring *ring; for (i = 0; i < priv->hw_params->rx_queues; ++i) { ring = &priv->rx_rings[i]; netif_napi_del(&ring->napi); } ring = &priv->rx_rings[DESC_INDEX]; netif_napi_del(&ring->napi); } /* Initialize Rx queues * * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be * used to direct traffic to these queues. * * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors. */ static int bcmgenet_init_rx_queues(struct net_device *dev) { struct bcmgenet_priv *priv = netdev_priv(dev); u32 i; u32 dma_enable; u32 dma_ctrl; u32 ring_cfg; int ret; dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL); dma_enable = dma_ctrl & DMA_EN; dma_ctrl &= ~DMA_EN; bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL); dma_ctrl = 0; ring_cfg = 0; /* Initialize Rx priority queues */ for (i = 0; i < priv->hw_params->rx_queues; i++) { ret = bcmgenet_init_rx_ring(priv, i, priv->hw_params->rx_bds_per_q, i * priv->hw_params->rx_bds_per_q, (i + 1) * priv->hw_params->rx_bds_per_q); if (ret) return ret; ring_cfg |= (1 << i); dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT)); } /* Initialize Rx default queue 16 */ ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT, priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q, TOTAL_DESC); if (ret) return ret; ring_cfg |= (1 << DESC_INDEX); dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT)); /* Initialize Rx NAPI */ bcmgenet_init_rx_napi(priv); /* Enable rings */ bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG); /* Configure ring as descriptor ring and re-enable DMA if enabled */ if (dma_enable) dma_ctrl |= DMA_EN; bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL); return 0; } static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv) { int ret = 0; int timeout = 0; u32 reg; u32 dma_ctrl; int i; /* Disable TDMA to stop add more frames in TX DMA */ reg = bcmgenet_tdma_readl(priv, DMA_CTRL); reg &= ~DMA_EN; bcmgenet_tdma_writel(priv, reg, DMA_CTRL); /* Check TDMA status register to confirm TDMA is disabled */ while (timeout++ < DMA_TIMEOUT_VAL) { reg = bcmgenet_tdma_readl(priv, DMA_STATUS); if (reg & DMA_DISABLED) break; udelay(1); } if (timeout == DMA_TIMEOUT_VAL) { netdev_warn(priv->dev, "Timed out while disabling TX DMA\n"); ret = -ETIMEDOUT; } /* Wait 10ms for packet drain in both tx and rx dma */ usleep_range(10000, 20000); /* Disable RDMA */ reg = bcmgenet_rdma_readl(priv, DMA_CTRL); reg &= ~DMA_EN; bcmgenet_rdma_writel(priv, reg, DMA_CTRL); timeout = 0; /* Check RDMA status register to confirm RDMA is disabled */ while (timeout++ < DMA_TIMEOUT_VAL) { reg = bcmgenet_rdma_readl(priv, DMA_STATUS); if (reg & DMA_DISABLED) break; udelay(1); } if (timeout == DMA_TIMEOUT_VAL) { netdev_warn(priv->dev, "Timed out while disabling RX DMA\n"); ret = -ETIMEDOUT; } dma_ctrl = 0; for (i = 0; i < priv->hw_params->rx_queues; i++) dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT)); reg = bcmgenet_rdma_readl(priv, DMA_CTRL); reg &= ~dma_ctrl; bcmgenet_rdma_writel(priv, reg, DMA_CTRL); dma_ctrl = 0; for (i = 0; i < priv->hw_params->tx_queues; i++) dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT)); reg = bcmgenet_tdma_readl(priv, DMA_CTRL); reg &= ~dma_ctrl; bcmgenet_tdma_writel(priv, reg, DMA_CTRL); return ret; } static void bcmgenet_fini_dma(struct bcmgenet_priv *priv) { int i; struct netdev_queue *txq; bcmgenet_fini_rx_napi(priv); bcmgenet_fini_tx_napi(priv); /* disable DMA */ bcmgenet_dma_teardown(priv); for (i = 0; i < priv->num_tx_bds; i++) { if (priv->tx_cbs[i].skb != NULL) { dev_kfree_skb(priv->tx_cbs[i].skb); priv->tx_cbs[i].skb = NULL; } } for (i = 0; i < priv->hw_params->tx_queues; i++) { txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[i].queue); netdev_tx_reset_queue(txq); } txq = netdev_get_tx_queue(priv->dev, priv->tx_rings[DESC_INDEX].queue); netdev_tx_reset_queue(txq); bcmgenet_free_rx_buffers(priv); kfree(priv->rx_cbs); kfree(priv->tx_cbs); } /* init_edma: Initialize DMA control register */ static int bcmgenet_init_dma(struct bcmgenet_priv *priv) { int ret; unsigned int i; struct enet_cb *cb; netif_dbg(priv, hw, priv->dev, "%s\n", __func__); /* Initialize common Rx ring structures */ priv->rx_bds = priv->base + priv->hw_params->rdma_offset; priv->num_rx_bds = TOTAL_DESC; priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb), GFP_KERNEL); if (!priv->rx_cbs) return -ENOMEM; for (i = 0; i < priv->num_rx_bds; i++) { cb = priv->rx_cbs + i; cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE; } /* Initialize common TX ring structures */ priv->tx_bds = priv->base + priv->hw_params->tdma_offset; priv->num_tx_bds = TOTAL_DESC; priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb), GFP_KERNEL); if (!priv->tx_cbs) { kfree(priv->rx_cbs); return -ENOMEM; } for (i = 0; i < priv->num_tx_bds; i++) { cb = priv->tx_cbs + i; cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE; } /* Init rDma */ bcmgenet_rdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE); /* Initialize Rx queues */ ret = bcmgenet_init_rx_queues(priv->dev); if (ret) { netdev_err(priv->dev, "failed to initialize Rx queues\n"); bcmgenet_free_rx_buffers(priv); kfree(priv->rx_cbs); kfree(priv->tx_cbs); return ret; } /* Init tDma */ bcmgenet_tdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE); /* Initialize Tx queues */ bcmgenet_init_tx_queues(priv->dev); return 0; } /* Interrupt bottom half */ static void bcmgenet_irq_task(struct work_struct *work) { unsigned long flags; unsigned int status; struct bcmgenet_priv *priv = container_of( work, struct bcmgenet_priv, bcmgenet_irq_work); netif_dbg(priv, intr, priv->dev, "%s\n", __func__); spin_lock_irqsave(&priv->lock, flags); status = priv->irq0_stat; priv->irq0_stat = 0; spin_unlock_irqrestore(&priv->lock, flags); if (status & UMAC_IRQ_MPD_R) { netif_dbg(priv, wol, priv->dev, "magic packet detected, waking up\n"); bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC); } if (status & UMAC_IRQ_PHY_DET_R && priv->dev->phydev->autoneg != AUTONEG_ENABLE) phy_init_hw(priv->dev->phydev); /* Link UP/DOWN event */ if (status & UMAC_IRQ_LINK_EVENT) phy_mac_interrupt(priv->phydev, !!(status & UMAC_IRQ_LINK_UP)); } /* bcmgenet_isr1: handle Rx and Tx priority queues */ static irqreturn_t bcmgenet_isr1(int irq, void *dev_id) { struct bcmgenet_priv *priv = dev_id; struct bcmgenet_rx_ring *rx_ring; struct bcmgenet_tx_ring *tx_ring; unsigned int index, status; /* Read irq status */ status = bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) & ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS); /* clear interrupts */ bcmgenet_intrl2_1_writel(priv, status, INTRL2_CPU_CLEAR); netif_dbg(priv, intr, priv->dev, "%s: IRQ=0x%x\n", __func__, status); /* Check Rx priority queue interrupts */ for (index = 0; index < priv->hw_params->rx_queues; index++) { if (!(status & BIT(UMAC_IRQ1_RX_INTR_SHIFT + index))) continue; rx_ring = &priv->rx_rings[index]; if (likely(napi_schedule_prep(&rx_ring->napi))) { rx_ring->int_disable(rx_ring); __napi_schedule_irqoff(&rx_ring->napi); } } /* Check Tx priority queue interrupts */ for (index = 0; index < priv->hw_params->tx_queues; index++) { if (!(status & BIT(index))) continue; tx_ring = &priv->tx_rings[index]; if (likely(napi_schedule_prep(&tx_ring->napi))) { tx_ring->int_disable(tx_ring); __napi_schedule_irqoff(&tx_ring->napi); } } return IRQ_HANDLED; } /* bcmgenet_isr0: handle Rx and Tx default queues + other stuff */ static irqreturn_t bcmgenet_isr0(int irq, void *dev_id) { struct bcmgenet_priv *priv = dev_id; struct bcmgenet_rx_ring *rx_ring; struct bcmgenet_tx_ring *tx_ring; unsigned int status; unsigned long flags; /* Read irq status */ status = bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) & ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS); /* clear interrupts */ bcmgenet_intrl2_0_writel(priv, status, INTRL2_CPU_CLEAR); netif_dbg(priv, intr, priv->dev, "IRQ=0x%x\n", status); if (status & UMAC_IRQ_RXDMA_DONE) { rx_ring = &priv->rx_rings[DESC_INDEX]; if (likely(napi_schedule_prep(&rx_ring->napi))) { rx_ring->int_disable(rx_ring); __napi_schedule_irqoff(&rx_ring->napi); } } if (status & UMAC_IRQ_TXDMA_DONE) { tx_ring = &priv->tx_rings[DESC_INDEX]; if (likely(napi_schedule_prep(&tx_ring->napi))) { tx_ring->int_disable(tx_ring); __napi_schedule_irqoff(&tx_ring->napi); } } if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) && status & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) { wake_up(&priv->wq); } /* all other interested interrupts handled in bottom half */ status &= (UMAC_IRQ_LINK_EVENT | UMAC_IRQ_MPD_R | UMAC_IRQ_PHY_DET_R); if (status) { /* Save irq status for bottom-half processing. */ spin_lock_irqsave(&priv->lock, flags); priv->irq0_stat |= status; spin_unlock_irqrestore(&priv->lock, flags); schedule_work(&priv->bcmgenet_irq_work); } return IRQ_HANDLED; } static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id) { struct bcmgenet_priv *priv = dev_id; pm_wakeup_event(&priv->pdev->dev, 0); return IRQ_HANDLED; } #ifdef CONFIG_NET_POLL_CONTROLLER static void bcmgenet_poll_controller(struct net_device *dev) { struct bcmgenet_priv *priv = netdev_priv(dev); /* Invoke the main RX/TX interrupt handler */ disable_irq(priv->irq0); bcmgenet_isr0(priv->irq0, priv); enable_irq(priv->irq0); /* And the interrupt handler for RX/TX priority queues */ disable_irq(priv->irq1); bcmgenet_isr1(priv->irq1, priv); enable_irq(priv->irq1); } #endif static void bcmgenet_umac_reset(struct bcmgenet_priv *priv) { u32 reg; reg = bcmgenet_rbuf_ctrl_get(priv); reg |= BIT(1); bcmgenet_rbuf_ctrl_set(priv, reg); udelay(10); reg &= ~BIT(1); bcmgenet_rbuf_ctrl_set(priv, reg); udelay(10); } static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv, unsigned char *addr) { bcmgenet_umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) | (addr[2] << 8) | addr[3], UMAC_MAC0); bcmgenet_umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1); } /* Returns a reusable dma control register value */ static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv) { u32 reg; u32 dma_ctrl; /* disable DMA */ dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN; reg = bcmgenet_tdma_readl(priv, DMA_CTRL); reg &= ~dma_ctrl; bcmgenet_tdma_writel(priv, reg, DMA_CTRL); reg = bcmgenet_rdma_readl(priv, DMA_CTRL); reg &= ~dma_ctrl; bcmgenet_rdma_writel(priv, reg, DMA_CTRL); bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH); udelay(10); bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH); return dma_ctrl; } static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl) { u32 reg; reg = bcmgenet_rdma_readl(priv, DMA_CTRL); reg |= dma_ctrl; bcmgenet_rdma_writel(priv, reg, DMA_CTRL); reg = bcmgenet_tdma_readl(priv, DMA_CTRL); reg |= dma_ctrl; bcmgenet_tdma_writel(priv, reg, DMA_CTRL); } /* bcmgenet_hfb_clear * * Clear Hardware Filter Block and disable all filtering. */ static void bcmgenet_hfb_clear(struct bcmgenet_priv *priv) { u32 i; bcmgenet_hfb_reg_writel(priv, 0x0, HFB_CTRL); bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS); bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_ENABLE_V3PLUS + 4); for (i = DMA_INDEX2RING_0; i <= DMA_INDEX2RING_7; i++) bcmgenet_rdma_writel(priv, 0x0, i); for (i = 0; i < (priv->hw_params->hfb_filter_cnt / 4); i++) bcmgenet_hfb_reg_writel(priv, 0x0, HFB_FLT_LEN_V3PLUS + i * sizeof(u32)); for (i = 0; i < priv->hw_params->hfb_filter_cnt * priv->hw_params->hfb_filter_size; i++) bcmgenet_hfb_writel(priv, 0x0, i * sizeof(u32)); } static void bcmgenet_hfb_init(struct bcmgenet_priv *priv) { if (GENET_IS_V1(priv) || GENET_IS_V2(priv)) return; bcmgenet_hfb_clear(priv); } static void bcmgenet_netif_start(struct net_device *dev) { struct bcmgenet_priv *priv = netdev_priv(dev); /* Start the network engine */ bcmgenet_enable_rx_napi(priv); bcmgenet_enable_tx_napi(priv); umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true); netif_tx_start_all_queues(dev); /* Monitor link interrupts now */ bcmgenet_link_intr_enable(priv); phy_start(priv->phydev); } static int bcmgenet_open(struct net_device *dev) { struct bcmgenet_priv *priv = netdev_priv(dev); unsigned long dma_ctrl; u32 reg; int ret; netif_dbg(priv, ifup, dev, "bcmgenet_open\n"); /* Turn on the clock */ clk_prepare_enable(priv->clk); /* If this is an internal GPHY, power it back on now, before UniMAC is * brought out of reset as absolutely no UniMAC activity is allowed */ if (priv->internal_phy) bcmgenet_power_up(priv, GENET_POWER_PASSIVE); /* take MAC out of reset */ bcmgenet_umac_reset(priv); ret = init_umac(priv); if (ret) goto err_clk_disable; /* disable ethernet MAC while updating its registers */ umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false); /* Make sure we reflect the value of CRC_CMD_FWD */ reg = bcmgenet_umac_readl(priv, UMAC_CMD); priv->crc_fwd_en = !!(reg & CMD_CRC_FWD); bcmgenet_set_hw_addr(priv, dev->dev_addr); if (priv->internal_phy) { reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT); reg |= EXT_ENERGY_DET_MASK; bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT); } /* Disable RX/TX DMA and flush TX queues */ dma_ctrl = bcmgenet_dma_disable(priv); /* Reinitialize TDMA and RDMA and SW housekeeping */ ret = bcmgenet_init_dma(priv); if (ret) { netdev_err(dev, "failed to initialize DMA\n"); goto err_clk_disable; } /* Always enable ring 16 - descriptor ring */ bcmgenet_enable_dma(priv, dma_ctrl); /* HFB init */ bcmgenet_hfb_init(priv); ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED, dev->name, priv); if (ret < 0) { netdev_err(dev, "can't request IRQ %d\n", priv->irq0); goto err_fini_dma; } ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED, dev->name, priv); if (ret < 0) { netdev_err(dev, "can't request IRQ %d\n", priv->irq1); goto err_irq0; } ret = bcmgenet_mii_probe(dev); if (ret) { netdev_err(dev, "failed to connect to PHY\n"); goto err_irq1; } bcmgenet_netif_start(dev); return 0; err_irq1: free_irq(priv->irq1, priv); err_irq0: free_irq(priv->irq0, priv); err_fini_dma: bcmgenet_fini_dma(priv); err_clk_disable: if (priv->internal_phy) bcmgenet_power_down(priv, GENET_POWER_PASSIVE); clk_disable_unprepare(priv->clk); return ret; } static void bcmgenet_netif_stop(struct net_device *dev) { struct bcmgenet_priv *priv = netdev_priv(dev); netif_tx_stop_all_queues(dev); phy_stop(priv->phydev); bcmgenet_intr_disable(priv); bcmgenet_disable_rx_napi(priv); bcmgenet_disable_tx_napi(priv); /* Wait for pending work items to complete. Since interrupts are * disabled no new work will be scheduled. */ cancel_work_sync(&priv->bcmgenet_irq_work); priv->old_link = -1; priv->old_speed = -1; priv->old_duplex = -1; priv->old_pause = -1; } static int bcmgenet_close(struct net_device *dev) { struct bcmgenet_priv *priv = netdev_priv(dev); int ret; netif_dbg(priv, ifdown, dev, "bcmgenet_close\n"); bcmgenet_netif_stop(dev); /* Really kill the PHY state machine and disconnect from it */ phy_disconnect(priv->phydev); /* Disable MAC receive */ umac_enable_set(priv, CMD_RX_EN, false); ret = bcmgenet_dma_teardown(priv); if (ret) return ret; /* Disable MAC transmit. TX DMA disabled have to done before this */ umac_enable_set(priv, CMD_TX_EN, false); /* tx reclaim */ bcmgenet_tx_reclaim_all(dev); bcmgenet_fini_dma(priv); free_irq(priv->irq0, priv); free_irq(priv->irq1, priv); if (priv->internal_phy) ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE); clk_disable_unprepare(priv->clk); return ret; } static void bcmgenet_dump_tx_queue(struct bcmgenet_tx_ring *ring) { struct bcmgenet_priv *priv = ring->priv; u32 p_index, c_index, intsts, intmsk; struct netdev_queue *txq; unsigned int free_bds; unsigned long flags; bool txq_stopped; if (!netif_msg_tx_err(priv)) return; txq = netdev_get_tx_queue(priv->dev, ring->queue); spin_lock_irqsave(&ring->lock, flags); if (ring->index == DESC_INDEX) { intsts = ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS); intmsk = UMAC_IRQ_TXDMA_DONE | UMAC_IRQ_TXDMA_MBDONE; } else { intsts = ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS); intmsk = 1 << ring->index; } c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX); p_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_PROD_INDEX); txq_stopped = netif_tx_queue_stopped(txq); free_bds = ring->free_bds; spin_unlock_irqrestore(&ring->lock, flags); netif_err(priv, tx_err, priv->dev, "Ring %d queue %d status summary\n" "TX queue status: %s, interrupts: %s\n" "(sw)free_bds: %d (sw)size: %d\n" "(sw)p_index: %d (hw)p_index: %d\n" "(sw)c_index: %d (hw)c_index: %d\n" "(sw)clean_p: %d (sw)write_p: %d\n" "(sw)cb_ptr: %d (sw)end_ptr: %d\n", ring->index, ring->queue, txq_stopped ? "stopped" : "active", intsts & intmsk ? "enabled" : "disabled", free_bds, ring->size, ring->prod_index, p_index & DMA_P_INDEX_MASK, ring->c_index, c_index & DMA_C_INDEX_MASK, ring->clean_ptr, ring->write_ptr, ring->cb_ptr, ring->end_ptr); } static void bcmgenet_timeout(struct net_device *dev) { struct bcmgenet_priv *priv = netdev_priv(dev); u32 int0_enable = 0; u32 int1_enable = 0; unsigned int q; netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n"); for (q = 0; q < priv->hw_params->tx_queues; q++) bcmgenet_dump_tx_queue(&priv->tx_rings[q]); bcmgenet_dump_tx_queue(&priv->tx_rings[DESC_INDEX]); bcmgenet_tx_reclaim_all(dev); for (q = 0; q < priv->hw_params->tx_queues; q++) int1_enable |= (1 << q); int0_enable = UMAC_IRQ_TXDMA_DONE; /* Re-enable TX interrupts if disabled */ bcmgenet_intrl2_0_writel(priv, int0_enable, INTRL2_CPU_MASK_CLEAR); bcmgenet_intrl2_1_writel(priv, int1_enable, INTRL2_CPU_MASK_CLEAR); netif_trans_update(dev); dev->stats.tx_errors++; netif_tx_wake_all_queues(dev); } #define MAX_MDF_FILTER 17 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv, unsigned char *addr, int *i) { bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1], UMAC_MDF_ADDR + (*i * 4)); bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 | addr[4] << 8 | addr[5], UMAC_MDF_ADDR + ((*i + 1) * 4)); *i += 2; } static void bcmgenet_set_rx_mode(struct net_device *dev) { struct bcmgenet_priv *priv = netdev_priv(dev); struct netdev_hw_addr *ha; int i, nfilter; u32 reg; netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags); /* Number of filters needed */ nfilter = netdev_uc_count(dev) + netdev_mc_count(dev) + 2; /* * Turn on promicuous mode for three scenarios * 1. IFF_PROMISC flag is set * 2. IFF_ALLMULTI flag is set * 3. The number of filters needed exceeds the number filters * supported by the hardware. */ reg = bcmgenet_umac_readl(priv, UMAC_CMD); if ((dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) || (nfilter > MAX_MDF_FILTER)) { reg |= CMD_PROMISC; bcmgenet_umac_writel(priv, reg, UMAC_CMD); bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL); return; } else { reg &= ~CMD_PROMISC; bcmgenet_umac_writel(priv, reg, UMAC_CMD); } /* update MDF filter */ i = 0; /* Broadcast */ bcmgenet_set_mdf_addr(priv, dev->broadcast, &i); /* my own address.*/ bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i); /* Unicast */ netdev_for_each_uc_addr(ha, dev) bcmgenet_set_mdf_addr(priv, ha->addr, &i); /* Multicast */ netdev_for_each_mc_addr(ha, dev) bcmgenet_set_mdf_addr(priv, ha->addr, &i); /* Enable filters */ reg = GENMASK(MAX_MDF_FILTER - 1, MAX_MDF_FILTER - nfilter); bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL); } /* Set the hardware MAC address. */ static int bcmgenet_set_mac_addr(struct net_device *dev, void *p) { struct sockaddr *addr = p; /* Setting the MAC address at the hardware level is not possible * without disabling the UniMAC RX/TX enable bits. */ if (netif_running(dev)) return -EBUSY; ether_addr_copy(dev->dev_addr, addr->sa_data); return 0; } static const struct net_device_ops bcmgenet_netdev_ops = { .ndo_open = bcmgenet_open, .ndo_stop = bcmgenet_close, .ndo_start_xmit = bcmgenet_xmit, .ndo_tx_timeout = bcmgenet_timeout, .ndo_set_rx_mode = bcmgenet_set_rx_mode, .ndo_set_mac_address = bcmgenet_set_mac_addr, .ndo_do_ioctl = bcmgenet_ioctl, .ndo_set_features = bcmgenet_set_features, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = bcmgenet_poll_controller, #endif }; /* Array of GENET hardware parameters/characteristics */ static struct bcmgenet_hw_params bcmgenet_hw_params[] = { [GENET_V1] = { .tx_queues = 0, .tx_bds_per_q = 0, .rx_queues = 0, .rx_bds_per_q = 0, .bp_in_en_shift = 16, .bp_in_mask = 0xffff, .hfb_filter_cnt = 16, .qtag_mask = 0x1F, .hfb_offset = 0x1000, .rdma_offset = 0x2000, .tdma_offset = 0x3000, .words_per_bd = 2, }, [GENET_V2] = { .tx_queues = 4, .tx_bds_per_q = 32, .rx_queues = 0, .rx_bds_per_q = 0, .bp_in_en_shift = 16, .bp_in_mask = 0xffff, .hfb_filter_cnt = 16, .qtag_mask = 0x1F, .tbuf_offset = 0x0600, .hfb_offset = 0x1000, .hfb_reg_offset = 0x2000, .rdma_offset = 0x3000, .tdma_offset = 0x4000, .words_per_bd = 2, .flags = GENET_HAS_EXT, }, [GENET_V3] = { .tx_queues = 4, .tx_bds_per_q = 32, .rx_queues = 0, .rx_bds_per_q = 0, .bp_in_en_shift = 17, .bp_in_mask = 0x1ffff, .hfb_filter_cnt = 48, .hfb_filter_size = 128, .qtag_mask = 0x3F, .tbuf_offset = 0x0600, .hfb_offset = 0x8000, .hfb_reg_offset = 0xfc00, .rdma_offset = 0x10000, .tdma_offset = 0x11000, .words_per_bd = 2, .flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET, }, [GENET_V4] = { .tx_queues = 4, .tx_bds_per_q = 32, .rx_queues = 0, .rx_bds_per_q = 0, .bp_in_en_shift = 17, .bp_in_mask = 0x1ffff, .hfb_filter_cnt = 48, .hfb_filter_size = 128, .qtag_mask = 0x3F, .tbuf_offset = 0x0600, .hfb_offset = 0x8000, .hfb_reg_offset = 0xfc00, .rdma_offset = 0x2000, .tdma_offset = 0x4000, .words_per_bd = 3, .flags = GENET_HAS_40BITS | GENET_HAS_EXT | GENET_HAS_MDIO_INTR | GENET_HAS_MOCA_LINK_DET, }, }; /* Infer hardware parameters from the detected GENET version */ static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv) { struct bcmgenet_hw_params *params; u32 reg; u8 major; u16 gphy_rev; if (GENET_IS_V4(priv)) { bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus; genet_dma_ring_regs = genet_dma_ring_regs_v4; priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS; priv->version = GENET_V4; } else if (GENET_IS_V3(priv)) { bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus; genet_dma_ring_regs = genet_dma_ring_regs_v123; priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS; priv->version = GENET_V3; } else if (GENET_IS_V2(priv)) { bcmgenet_dma_regs = bcmgenet_dma_regs_v2; genet_dma_ring_regs = genet_dma_ring_regs_v123; priv->dma_rx_chk_bit = DMA_RX_CHK_V12; priv->version = GENET_V2; } else if (GENET_IS_V1(priv)) { bcmgenet_dma_regs = bcmgenet_dma_regs_v1; genet_dma_ring_regs = genet_dma_ring_regs_v123; priv->dma_rx_chk_bit = DMA_RX_CHK_V12; priv->version = GENET_V1; } /* enum genet_version starts at 1 */ priv->hw_params = &bcmgenet_hw_params[priv->version]; params = priv->hw_params; /* Read GENET HW version */ reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL); major = (reg >> 24 & 0x0f); if (major == 5) major = 4; else if (major == 0) major = 1; if (major != priv->version) { dev_err(&priv->pdev->dev, "GENET version mismatch, got: %d, configured for: %d\n", major, priv->version); } /* Print the GENET core version */ dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT, major, (reg >> 16) & 0x0f, reg & 0xffff); /* Store the integrated PHY revision for the MDIO probing function * to pass this information to the PHY driver. The PHY driver expects * to find the PHY major revision in bits 15:8 while the GENET register * stores that information in bits 7:0, account for that. * * On newer chips, starting with PHY revision G0, a new scheme is * deployed similar to the Starfighter 2 switch with GPHY major * revision in bits 15:8 and patch level in bits 7:0. Major revision 0 * is reserved as well as special value 0x01ff, we have a small * heuristic to check for the new GPHY revision and re-arrange things * so the GPHY driver is happy. */ gphy_rev = reg & 0xffff; /* This is reserved so should require special treatment */ if (gphy_rev == 0 || gphy_rev == 0x01ff) { pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev); return; } /* This is the good old scheme, just GPHY major, no minor nor patch */ if ((gphy_rev & 0xf0) != 0) priv->gphy_rev = gphy_rev << 8; /* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */ else if ((gphy_rev & 0xff00) != 0) priv->gphy_rev = gphy_rev; #ifdef CONFIG_PHYS_ADDR_T_64BIT if (!(params->flags & GENET_HAS_40BITS)) pr_warn("GENET does not support 40-bits PA\n"); #endif pr_debug("Configuration for version: %d\n" "TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n" "BP << en: %2d, BP msk: 0x%05x\n" "HFB count: %2d, QTAQ msk: 0x%05x\n" "TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n" "RDMA: 0x%05x, TDMA: 0x%05x\n" "Words/BD: %d\n", priv->version, params->tx_queues, params->tx_bds_per_q, params->rx_queues, params->rx_bds_per_q, params->bp_in_en_shift, params->bp_in_mask, params->hfb_filter_cnt, params->qtag_mask, params->tbuf_offset, params->hfb_offset, params->hfb_reg_offset, params->rdma_offset, params->tdma_offset, params->words_per_bd); } static const struct of_device_id bcmgenet_match[] = { { .compatible = "brcm,genet-v1", .data = (void *)GENET_V1 }, { .compatible = "brcm,genet-v2", .data = (void *)GENET_V2 }, { .compatible = "brcm,genet-v3", .data = (void *)GENET_V3 }, { .compatible = "brcm,genet-v4", .data = (void *)GENET_V4 }, { }, }; MODULE_DEVICE_TABLE(of, bcmgenet_match); static int bcmgenet_probe(struct platform_device *pdev) { struct bcmgenet_platform_data *pd = pdev->dev.platform_data; struct device_node *dn = pdev->dev.of_node; const struct of_device_id *of_id = NULL; struct bcmgenet_priv *priv; struct net_device *dev; const void *macaddr; struct resource *r; int err = -EIO; const char *phy_mode_str; /* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */ dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1, GENET_MAX_MQ_CNT + 1); if (!dev) { dev_err(&pdev->dev, "can't allocate net device\n"); return -ENOMEM; } if (dn) { of_id = of_match_node(bcmgenet_match, dn); if (!of_id) return -EINVAL; } priv = netdev_priv(dev); priv->irq0 = platform_get_irq(pdev, 0); priv->irq1 = platform_get_irq(pdev, 1); priv->wol_irq = platform_get_irq(pdev, 2); if (!priv->irq0 || !priv->irq1) { dev_err(&pdev->dev, "can't find IRQs\n"); err = -EINVAL; goto err; } if (dn) { macaddr = of_get_mac_address(dn); if (!macaddr) { dev_err(&pdev->dev, "can't find MAC address\n"); err = -EINVAL; goto err; } } else { macaddr = pd->mac_address; } r = platform_get_resource(pdev, IORESOURCE_MEM, 0); priv->base = devm_ioremap_resource(&pdev->dev, r); if (IS_ERR(priv->base)) { err = PTR_ERR(priv->base); goto err; } spin_lock_init(&priv->lock); SET_NETDEV_DEV(dev, &pdev->dev); dev_set_drvdata(&pdev->dev, dev); ether_addr_copy(dev->dev_addr, macaddr); dev->watchdog_timeo = 2 * HZ; dev->ethtool_ops = &bcmgenet_ethtool_ops; dev->netdev_ops = &bcmgenet_netdev_ops; priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT); /* Set hardware features */ dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM; /* Request the WOL interrupt and advertise suspend if available */ priv->wol_irq_disabled = true; err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0, dev->name, priv); if (!err) device_set_wakeup_capable(&pdev->dev, 1); /* Set the needed headroom to account for any possible * features enabling/disabling at runtime */ dev->needed_headroom += 64; netdev_boot_setup_check(dev); priv->dev = dev; priv->pdev = pdev; if (of_id) priv->version = (enum bcmgenet_version)of_id->data; else priv->version = pd->genet_version; priv->clk = devm_clk_get(&priv->pdev->dev, "enet"); if (IS_ERR(priv->clk)) { dev_warn(&priv->pdev->dev, "failed to get enet clock\n"); priv->clk = NULL; } clk_prepare_enable(priv->clk); bcmgenet_set_hw_params(priv); /* Mii wait queue */ init_waitqueue_head(&priv->wq); /* Always use RX_BUF_LENGTH (2KB) buffer for all chips */ priv->rx_buf_len = RX_BUF_LENGTH; INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task); priv->clk_wol = devm_clk_get(&priv->pdev->dev, "enet-wol"); if (IS_ERR(priv->clk_wol)) { dev_warn(&priv->pdev->dev, "failed to get enet-wol clock\n"); priv->clk_wol = NULL; } priv->clk_eee = devm_clk_get(&priv->pdev->dev, "enet-eee"); if (IS_ERR(priv->clk_eee)) { dev_warn(&priv->pdev->dev, "failed to get enet-eee clock\n"); priv->clk_eee = NULL; } /* If this is an internal GPHY, power it on now, before UniMAC is * brought out of reset as absolutely no UniMAC activity is allowed */ if (dn && !of_property_read_string(dn, "phy-mode", &phy_mode_str) && !strcasecmp(phy_mode_str, "internal")) bcmgenet_power_up(priv, GENET_POWER_PASSIVE); err = reset_umac(priv); if (err) goto err_clk_disable; err = bcmgenet_mii_init(dev); if (err) goto err_clk_disable; /* setup number of real queues + 1 (GENET_V1 has 0 hardware queues * just the ring 16 descriptor based TX */ netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1); netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1); /* libphy will determine the link state */ netif_carrier_off(dev); /* Turn off the main clock, WOL clock is handled separately */ clk_disable_unprepare(priv->clk); err = register_netdev(dev); if (err) { bcmgenet_mii_exit(dev); goto err; } return err; err_clk_disable: clk_disable_unprepare(priv->clk); err: free_netdev(dev); return err; } static int bcmgenet_remove(struct platform_device *pdev) { struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev); dev_set_drvdata(&pdev->dev, NULL); unregister_netdev(priv->dev); bcmgenet_mii_exit(priv->dev); free_netdev(priv->dev); return 0; } #ifdef CONFIG_PM_SLEEP static int bcmgenet_suspend(struct device *d) { struct net_device *dev = dev_get_drvdata(d); struct bcmgenet_priv *priv = netdev_priv(dev); int ret; if (!netif_running(dev)) return 0; bcmgenet_netif_stop(dev); if (!device_may_wakeup(d)) phy_suspend(priv->phydev); netif_device_detach(dev); /* Disable MAC receive */ umac_enable_set(priv, CMD_RX_EN, false); ret = bcmgenet_dma_teardown(priv); if (ret) return ret; /* Disable MAC transmit. TX DMA disabled have to done before this */ umac_enable_set(priv, CMD_TX_EN, false); /* tx reclaim */ bcmgenet_tx_reclaim_all(dev); bcmgenet_fini_dma(priv); /* Prepare the device for Wake-on-LAN and switch to the slow clock */ if (device_may_wakeup(d) && priv->wolopts) { ret = bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC); clk_prepare_enable(priv->clk_wol); } else if (priv->internal_phy) { ret = bcmgenet_power_down(priv, GENET_POWER_PASSIVE); } /* Turn off the clocks */ clk_disable_unprepare(priv->clk); return ret; } static int bcmgenet_resume(struct device *d) { struct net_device *dev = dev_get_drvdata(d); struct bcmgenet_priv *priv = netdev_priv(dev); unsigned long dma_ctrl; int ret; u32 reg; if (!netif_running(dev)) return 0; /* Turn on the clock */ ret = clk_prepare_enable(priv->clk); if (ret) return ret; /* If this is an internal GPHY, power it back on now, before UniMAC is * brought out of reset as absolutely no UniMAC activity is allowed */ if (priv->internal_phy) bcmgenet_power_up(priv, GENET_POWER_PASSIVE); bcmgenet_umac_reset(priv); ret = init_umac(priv); if (ret) goto out_clk_disable; /* From WOL-enabled suspend, switch to regular clock */ if (priv->wolopts) clk_disable_unprepare(priv->clk_wol); phy_init_hw(priv->phydev); /* Speed settings must be restored */ bcmgenet_mii_config(priv->dev); /* disable ethernet MAC while updating its registers */ umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false); bcmgenet_set_hw_addr(priv, dev->dev_addr); if (priv->internal_phy) { reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT); reg |= EXT_ENERGY_DET_MASK; bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT); } if (priv->wolopts) bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC); /* Disable RX/TX DMA and flush TX queues */ dma_ctrl = bcmgenet_dma_disable(priv); /* Reinitialize TDMA and RDMA and SW housekeeping */ ret = bcmgenet_init_dma(priv); if (ret) { netdev_err(dev, "failed to initialize DMA\n"); goto out_clk_disable; } /* Always enable ring 16 - descriptor ring */ bcmgenet_enable_dma(priv, dma_ctrl); netif_device_attach(dev); if (!device_may_wakeup(d)) phy_resume(priv->phydev); if (priv->eee.eee_enabled) bcmgenet_eee_enable_set(dev, true); bcmgenet_netif_start(dev); return 0; out_clk_disable: if (priv->internal_phy) bcmgenet_power_down(priv, GENET_POWER_PASSIVE); clk_disable_unprepare(priv->clk); return ret; } #endif /* CONFIG_PM_SLEEP */ static SIMPLE_DEV_PM_OPS(bcmgenet_pm_ops, bcmgenet_suspend, bcmgenet_resume); static struct platform_driver bcmgenet_driver = { .probe = bcmgenet_probe, .remove = bcmgenet_remove, .driver = { .name = "bcmgenet", .of_match_table = bcmgenet_match, .pm = &bcmgenet_pm_ops, }, }; module_platform_driver(bcmgenet_driver); MODULE_AUTHOR("Broadcom Corporation"); MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver"); MODULE_ALIAS("platform:bcmgenet"); MODULE_LICENSE("GPL");