/* * Lantiq SoC SPI controller * * Copyright (C) 2011 Daniel Schwierzeck * Copyright (C) 2012 John Crispin * * This program is free software; you can distribute it and/or modify it * under the terms of the GNU General Public License (Version 2) as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define LTQ_SPI_CLC 0x00 /* Clock control */ #define LTQ_SPI_PISEL 0x04 /* Port input select */ #define LTQ_SPI_ID 0x08 /* Identification */ #define LTQ_SPI_CON 0x10 /* Control */ #define LTQ_SPI_STAT 0x14 /* Status */ #define LTQ_SPI_WHBSTATE 0x18 /* Write HW modified state */ #define LTQ_SPI_TB 0x20 /* Transmit buffer */ #define LTQ_SPI_RB 0x24 /* Receive buffer */ #define LTQ_SPI_RXFCON 0x30 /* Receive FIFO control */ #define LTQ_SPI_TXFCON 0x34 /* Transmit FIFO control */ #define LTQ_SPI_FSTAT 0x38 /* FIFO status */ #define LTQ_SPI_BRT 0x40 /* Baudrate timer */ #define LTQ_SPI_BRSTAT 0x44 /* Baudrate timer status */ #define LTQ_SPI_SFCON 0x60 /* Serial frame control */ #define LTQ_SPI_SFSTAT 0x64 /* Serial frame status */ #define LTQ_SPI_GPOCON 0x70 /* General purpose output control */ #define LTQ_SPI_GPOSTAT 0x74 /* General purpose output status */ #define LTQ_SPI_FGPO 0x78 /* Forced general purpose output */ #define LTQ_SPI_RXREQ 0x80 /* Receive request */ #define LTQ_SPI_RXCNT 0x84 /* Receive count */ #define LTQ_SPI_DMACON 0xEC /* DMA control */ #define LTQ_SPI_IRNEN 0xF4 /* Interrupt node enable */ #define LTQ_SPI_IRNCR 0xF8 /* Interrupt node control */ #define LTQ_SPI_IRNICR 0xFC /* Interrupt node interrupt capture */ #define LTQ_SPI_CLC_SMC_SHIFT 16 /* Clock divider for sleep mode */ #define LTQ_SPI_CLC_SMC_MASK 0xFF #define LTQ_SPI_CLC_RMC_SHIFT 8 /* Clock divider for normal run mode */ #define LTQ_SPI_CLC_RMC_MASK 0xFF #define LTQ_SPI_CLC_DISS BIT(1) /* Disable status bit */ #define LTQ_SPI_CLC_DISR BIT(0) /* Disable request bit */ #define LTQ_SPI_ID_TXFS_SHIFT 24 /* Implemented TX FIFO size */ #define LTQ_SPI_ID_TXFS_MASK 0x3F #define LTQ_SPI_ID_RXFS_SHIFT 16 /* Implemented RX FIFO size */ #define LTQ_SPI_ID_RXFS_MASK 0x3F #define LTQ_SPI_ID_REV_MASK 0x1F /* Hardware revision number */ #define LTQ_SPI_ID_CFG BIT(5) /* DMA interface support */ #define LTQ_SPI_CON_BM_SHIFT 16 /* Data width selection */ #define LTQ_SPI_CON_BM_MASK 0x1F #define LTQ_SPI_CON_LTCLKDEL_SHIFT 28 /*Latch clock delay */ #define LTQ_SPI_CON_LTCLKDEL_MASK 0xF #define LTQ_SPI_CON_RX_SWP BIT(26) /* Rx Byte swap */ #define LTQ_SPI_CON_TX_SWP BIT(25) /* Tx Byte swap */ #define LTQ_SPI_CON_EM BIT(24) /* Echo mode */ #define LTQ_SPI_CON_IDLE BIT(23) /* Idle bit value */ #define LTQ_SPI_CON_ENBV BIT(22) /* Enable byte valid control */ #define LTQ_SPI_CON_RUEN BIT(12) /* Receive underflow error enable */ #define LTQ_SPI_CON_TUEN BIT(11) /* Transmit underflow error enable */ #define LTQ_SPI_CON_AEN BIT(10) /* Abort error enable */ #define LTQ_SPI_CON_REN BIT(9) /* Receive overflow error enable */ #define LTQ_SPI_CON_TEN BIT(8) /* Transmit overflow error enable */ #define LTQ_SPI_CON_LB BIT(7) /* Loopback control */ #define LTQ_SPI_CON_PO BIT(6) /* Clock polarity control */ #define LTQ_SPI_CON_PH BIT(5) /* Clock phase control */ #define LTQ_SPI_CON_HB BIT(4) /* Heading control */ #define LTQ_SPI_CON_RXOFF BIT(1) /* Switch receiver off */ #define LTQ_SPI_CON_TXOFF BIT(0) /* Switch transmitter off */ #define LTQ_SPI_STAT_RXBV_MASK 0x7 #define LTQ_SPI_STAT_RXBV_SHIFT 28 #define LTQ_SPI_STAT_BSY BIT(13) /* Busy flag */ #define LTQ_SPI_STAT_RUE BIT(12) /* Receive underflow error flag */ #define LTQ_SPI_STAT_TUE BIT(11) /* Transmit underflow error flag */ #define LTQ_SPI_STAT_AE BIT(10) /* Abort error flag */ #define LTQ_SPI_STAT_RE BIT(9) /* Receive error flag */ #define LTQ_SPI_STAT_TE BIT(8) /* Transmit error flag */ #define LTQ_SPI_STAT_MS BIT(1) /* Master/slave select bit */ #define LTQ_SPI_STAT_EN BIT(0) /* Enable bit */ #define LTQ_SPI_WHBSTATE_SETTUE BIT(15) /* Set transmit underflow error flag */ #define LTQ_SPI_WHBSTATE_SETAE BIT(14) /* Set abort error flag */ #define LTQ_SPI_WHBSTATE_SETRE BIT(13) /* Set receive error flag */ #define LTQ_SPI_WHBSTATE_SETTE BIT(12) /* Set transmit error flag */ #define LTQ_SPI_WHBSTATE_CLRTUE BIT(11) /* Clear transmit underflow error flag */ #define LTQ_SPI_WHBSTATE_CLRAE BIT(10) /* Clear abort error flag */ #define LTQ_SPI_WHBSTATE_CLRRE BIT(9) /* Clear receive error flag */ #define LTQ_SPI_WHBSTATE_CLRTE BIT(8) /* Clear transmit error flag */ #define LTQ_SPI_WHBSTATE_SETME BIT(7) /* Set mode error flag */ #define LTQ_SPI_WHBSTATE_CLRME BIT(6) /* Clear mode error flag */ #define LTQ_SPI_WHBSTATE_SETRUE BIT(5) /* Set receive underflow error flag */ #define LTQ_SPI_WHBSTATE_CLRRUE BIT(4) /* Clear receive underflow error flag */ #define LTQ_SPI_WHBSTATE_SETMS BIT(3) /* Set master select bit */ #define LTQ_SPI_WHBSTATE_CLRMS BIT(2) /* Clear master select bit */ #define LTQ_SPI_WHBSTATE_SETEN BIT(1) /* Set enable bit (operational mode) */ #define LTQ_SPI_WHBSTATE_CLREN BIT(0) /* Clear enable bit (config mode */ #define LTQ_SPI_WHBSTATE_CLR_ERRORS 0x0F50 #define LTQ_SPI_RXFCON_RXFITL_SHIFT 8 /* FIFO interrupt trigger level */ #define LTQ_SPI_RXFCON_RXFITL_MASK 0x3F #define LTQ_SPI_RXFCON_RXFLU BIT(1) /* FIFO flush */ #define LTQ_SPI_RXFCON_RXFEN BIT(0) /* FIFO enable */ #define LTQ_SPI_TXFCON_TXFITL_SHIFT 8 /* FIFO interrupt trigger level */ #define LTQ_SPI_TXFCON_TXFITL_MASK 0x3F #define LTQ_SPI_TXFCON_TXFLU BIT(1) /* FIFO flush */ #define LTQ_SPI_TXFCON_TXFEN BIT(0) /* FIFO enable */ #define LTQ_SPI_FSTAT_RXFFL_MASK 0x3f #define LTQ_SPI_FSTAT_RXFFL_SHIFT 0 #define LTQ_SPI_FSTAT_TXFFL_MASK 0x3f #define LTQ_SPI_FSTAT_TXFFL_SHIFT 8 #define LTQ_SPI_GPOCON_ISCSBN_SHIFT 8 #define LTQ_SPI_GPOCON_INVOUTN_SHIFT 0 #define LTQ_SPI_FGPO_SETOUTN_SHIFT 8 #define LTQ_SPI_FGPO_CLROUTN_SHIFT 0 #define LTQ_SPI_RXREQ_RXCNT_MASK 0xFFFF /* Receive count value */ #define LTQ_SPI_RXCNT_TODO_MASK 0xFFFF /* Recevie to-do value */ #define LTQ_SPI_IRNEN_F BIT(3) /* Frame end interrupt request */ #define LTQ_SPI_IRNEN_E BIT(2) /* Error end interrupt request */ #define LTQ_SPI_IRNEN_T BIT(0) /* Transmit end interrupt request */ #define LTQ_SPI_IRNEN_R BIT(1) /* Receive end interrupt request */ #define LTQ_SPI_IRNEN_T_XWAY BIT(1) /* Transmit end interrupt request */ #define LTQ_SPI_IRNEN_R_XWAY BIT(0) /* Receive end interrupt request */ #define LTQ_SPI_IRNEN_ALL 0xF #define LTQ_SPI_IRNCR_F BIT(3) /* Frame end interrupt request */ #define LTQ_SPI_IRNCR_E BIT(2) /* Error end interrupt request */ #define LTQ_SPI_IRNCR_T BIT(0) /* Transmit end interrupt request */ #define LTQ_SPI_IRNCR_R BIT(1) /* Receive end interrupt request */ #define LTQ_SPI_IRNCR_ALL 0xF struct ltq_spi { struct spi_bitbang bitbang; struct completion done; spinlock_t lock; struct device *dev; void __iomem *base; struct clk *fpiclk; struct clk *spiclk; int status; int irq[3]; const u8 *tx; u8 *rx; u32 tx_cnt; u32 rx_cnt; u32 len; struct spi_transfer *curr_transfer; u32 bits_per_word; u32 speed_hz; u32 mode; u16 txfs; u16 rxfs; unsigned dma_support : 1; unsigned cfg_mode : 1; unsigned lsb_first : 1; u32 irnen_t; u32 irnen_r; u32 rx_trig_lvl; }; static inline struct ltq_spi *ltq_spi_to_hw(struct spi_device *spi) { return spi_master_get_devdata(spi->master); } static inline u32 ltq_spi_reg_read(struct ltq_spi *hw, u32 reg) { return __raw_readl(hw->base + reg); } static inline void ltq_spi_reg_write(struct ltq_spi *hw, u32 val, u32 reg) { __raw_writel(val, hw->base + reg); } static inline void ltq_spi_reg_setbit(struct ltq_spi *hw, u32 bits, u32 reg) { u32 val; val = ltq_spi_reg_read(hw, reg); val |= bits; ltq_spi_reg_write(hw, val, reg); } static inline void ltq_spi_reg_clearbit(struct ltq_spi *hw, u32 bits, u32 reg) { u32 val; val = ltq_spi_reg_read(hw, reg); val &= ~bits; ltq_spi_reg_write(hw, val, reg); } static void ltq_spi_hw_enable(struct ltq_spi *hw) { u32 clc; /* Power-up module */ clk_prepare_enable(hw->spiclk); /* * Set clock divider for run mode to 1 to * run at same frequency as FPI bus */ clc = (1 << LTQ_SPI_CLC_RMC_SHIFT); ltq_spi_reg_write(hw, clc, LTQ_SPI_CLC); } static void ltq_spi_hw_disable(struct ltq_spi *hw) { /* Set clock divider to 0 and set module disable bit */ ltq_spi_reg_write(hw, LTQ_SPI_CLC_DISS, LTQ_SPI_CLC); /* Power-down module */ clk_disable(hw->spiclk); } static void ltq_spi_reset_fifos(struct ltq_spi *hw) { u32 val; /* * Enable and flush FIFOs. Set interrupt trigger level to * half of FIFO count implemented in hardware. */ if (hw->txfs > 1) { val = hw->txfs << (LTQ_SPI_TXFCON_TXFITL_SHIFT - 1); val |= LTQ_SPI_TXFCON_TXFEN | LTQ_SPI_TXFCON_TXFLU; ltq_spi_reg_write(hw, val, LTQ_SPI_TXFCON); } if (hw->rxfs > 1) { val = hw->rxfs << (LTQ_SPI_RXFCON_RXFITL_SHIFT - 1); val |= LTQ_SPI_RXFCON_RXFEN | LTQ_SPI_RXFCON_RXFLU; ltq_spi_reg_write(hw, val, LTQ_SPI_RXFCON); hw->rx_trig_lvl = hw->rxfs << 1; } } static inline int ltq_spi_wait_ready(struct ltq_spi *hw) { u32 stat; unsigned long timeout = jiffies + msecs_to_jiffies(1000); do { stat = ltq_spi_reg_read(hw, LTQ_SPI_STAT); if (!(stat & LTQ_SPI_STAT_BSY)) return 0; cond_resched(); } while (!time_after_eq(jiffies, timeout)); dev_err(hw->dev, "SPI wait ready timed out stat: %x\n", stat); return -ETIMEDOUT; } static void ltq_spi_config_mode_set(struct ltq_spi *hw) { if (hw->cfg_mode) return; /* * Putting the SPI module in config mode is only safe if no * transfer is in progress as indicated by busy flag STATE.BSY. */ if (ltq_spi_wait_ready(hw)) { ltq_spi_reset_fifos(hw); hw->status = -ETIMEDOUT; } ltq_spi_reg_write(hw, LTQ_SPI_WHBSTATE_CLREN, LTQ_SPI_WHBSTATE); hw->cfg_mode = 1; } static void ltq_spi_run_mode_set(struct ltq_spi *hw) { if (!hw->cfg_mode) return; ltq_spi_reg_write(hw, LTQ_SPI_WHBSTATE_SETEN, LTQ_SPI_WHBSTATE); hw->cfg_mode = 0; } /** * Transform bytes to ssc word * * We need to take care of shift-register direction, according to SSC spec * section 2.1 the direction will follow LSB/MSB-first option: * SPI standard: MSB first * 8051-like serial interface: LSB first */ static u32 ltq_spi_tx_word(struct ltq_spi *hw, u32 num_of_bytes) { const u8 *tx = hw->tx; u32 data = 0; int i; int start; int step; if (hw->lsb_first) { start = num_of_bytes - 1; step = -1; } else { start = 0; step = 1; } for (i = start; i < num_of_bytes && i >= 0; i += step) { data = data << 8; data |= (u32)tx[i]; } hw->tx_cnt += num_of_bytes; hw->tx += num_of_bytes; return data; } /** * Transform ssc word to bytes */ static void ltq_spi_rx_word(struct ltq_spi *hw, u32 num_of_bytes, u32 data) { u8 *rx = hw->rx; int i; int start; int step; if (hw->lsb_first) { start = 0; step = 1; } else { start = num_of_bytes - 1; step = -1; } for (i = start; i < num_of_bytes && i >= 0; i += step) { rx[i] = data & 0xFF; data = data >> 8; } hw->rx_cnt += num_of_bytes; hw->rx += num_of_bytes; } static void ltq_spi_bits_per_word_set(struct spi_device *spi) { struct ltq_spi *hw = ltq_spi_to_hw(spi); u32 bm; u8 bits_per_word = spi->bits_per_word; /* * Use either default value of SPI device or value * from current transfer. */ if (hw->curr_transfer && hw->curr_transfer->bits_per_word) bits_per_word = hw->curr_transfer->bits_per_word; /* CON.BM value = bits_per_word - 1 */ bm = (bits_per_word - 1) << LTQ_SPI_CON_BM_SHIFT; ltq_spi_reg_clearbit(hw, LTQ_SPI_CON_BM_MASK << LTQ_SPI_CON_BM_SHIFT, LTQ_SPI_CON); ltq_spi_reg_setbit(hw, bm, LTQ_SPI_CON); } static void ltq_spi_speed_set(struct spi_device *spi) { struct ltq_spi *hw = ltq_spi_to_hw(spi); u32 br, max_speed_hz, spi_clk; u32 speed_hz = spi->max_speed_hz; pr_debug("[%s]\n", __func__); /* * SPI module clock is derived from FPI bus clock dependent on * divider value in CLC.RMS which is always set to 1. */ spi_clk = clk_get_rate(hw->fpiclk); /* * Use either default value of SPI device or value * from current transfer. */ if (hw->curr_transfer && hw->curr_transfer->speed_hz) speed_hz = hw->curr_transfer->speed_hz; /* * Maximum SPI clock frequency in master mode is half of * SPI module clock frequency. Maximum reload value of * baudrate generator BR is 2^16. */ max_speed_hz = spi_clk / 2; if (speed_hz >= max_speed_hz) br = 0; else br = ((max_speed_hz + speed_hz / 2) / speed_hz) - 1; if (br > 0xFFFF) br = 0xFFFF; ltq_spi_reg_write(hw, br, LTQ_SPI_BRT); } static void ltq_spi_clockmode_set(struct spi_device *spi) { struct ltq_spi *hw = ltq_spi_to_hw(spi); u32 con; con = ltq_spi_reg_read(hw, LTQ_SPI_CON); /* * SPI mode mapping in CON register: * Mode CPOL CPHA CON.PO CON.PH * 0 0 0 0 1 * 1 0 1 0 0 * 2 1 0 1 1 * 3 1 1 1 0 */ if (spi->mode & SPI_CPHA) con &= ~LTQ_SPI_CON_PH; else con |= LTQ_SPI_CON_PH; if (spi->mode & SPI_CPOL) con |= LTQ_SPI_CON_PO; else con &= ~LTQ_SPI_CON_PO; /* Set heading control. * This affects the direction of transmit/receive in the shift-register * and TB/RB, i.e.: for MSB-first, we need to put 1st-byte as MSB, * regardless of CPU endianness. Refer to SSC spec section 2.1. */ if (spi->mode & SPI_LSB_FIRST) { con &= ~LTQ_SPI_CON_HB; hw->lsb_first = 1; } else { con |= LTQ_SPI_CON_HB; hw->lsb_first = 0; } ltq_spi_reg_write(hw, con, LTQ_SPI_CON); } static void ltq_spi_xmit_set(struct ltq_spi *hw, struct spi_transfer *t) { u32 con; con = ltq_spi_reg_read(hw, LTQ_SPI_CON); if (t) { if (t->tx_buf && t->rx_buf) { con &= ~(LTQ_SPI_CON_TXOFF | LTQ_SPI_CON_RXOFF); } else if (t->rx_buf) { con &= ~LTQ_SPI_CON_RXOFF; con |= LTQ_SPI_CON_TXOFF; } else if (t->tx_buf) { con &= ~LTQ_SPI_CON_TXOFF; con |= LTQ_SPI_CON_RXOFF; } } else con |= (LTQ_SPI_CON_TXOFF | LTQ_SPI_CON_RXOFF); ltq_spi_reg_write(hw, con, LTQ_SPI_CON); } static void ltq_spi_internal_cs_activate(struct spi_device *spi) { struct ltq_spi *hw = ltq_spi_to_hw(spi); u32 fgpo; fgpo = (1 << (spi->chip_select + LTQ_SPI_FGPO_CLROUTN_SHIFT)); ltq_spi_reg_setbit(hw, fgpo, LTQ_SPI_FGPO); } static void ltq_spi_internal_cs_deactivate(struct spi_device *spi) { struct ltq_spi *hw = ltq_spi_to_hw(spi); u32 fgpo; fgpo = (1 << (spi->chip_select + LTQ_SPI_FGPO_SETOUTN_SHIFT)); ltq_spi_reg_setbit(hw, fgpo, LTQ_SPI_FGPO); } static void ltq_spi_chipselect(struct spi_device *spi, int cs) { struct ltq_spi *hw = ltq_spi_to_hw(spi); if (ltq_spi_wait_ready(hw)) dev_err(&spi->dev, "wait failed\n"); switch (cs) { case BITBANG_CS_ACTIVE: ltq_spi_internal_cs_activate(spi); break; case BITBANG_CS_INACTIVE: ltq_spi_internal_cs_deactivate(spi); break; } } static int ltq_spi_setup_transfer(struct spi_device *spi, struct spi_transfer *t) { struct ltq_spi *hw = ltq_spi_to_hw(spi); u8 bits_per_word = spi->bits_per_word; u32 speed_hz = spi->max_speed_hz; hw->curr_transfer = t; if (t && t->bits_per_word) bits_per_word = t->bits_per_word; if (bits_per_word > 32) return -EINVAL; if (t && t->speed_hz) speed_hz = t->speed_hz; if (speed_hz > spi->max_speed_hz) return -EINVAL; if (hw->bits_per_word != bits_per_word || hw->speed_hz != speed_hz || hw->mode != spi->mode) { ltq_spi_config_mode_set(hw); ltq_spi_bits_per_word_set(spi); ltq_spi_speed_set(spi); ltq_spi_clockmode_set(spi); ltq_spi_run_mode_set(hw); hw->bits_per_word = bits_per_word; hw->speed_hz = speed_hz; hw->mode = spi->mode; } return 0; } static int ltq_spi_setup(struct spi_device *spi) { struct ltq_spi *hw = ltq_spi_to_hw(spi); u32 gpocon, fgpo; /* Set default word length to 8 if not set */ if (!spi->bits_per_word) spi->bits_per_word = 8; if (spi->bits_per_word > 32) return -EINVAL; /* Set the Polarity */ ltq_spi_clockmode_set(spi); /* GPIOs are used for CS */ if (gpio_is_valid(spi->cs_gpio)) return 0; /* * Up to six GPIOs can be connected to the SPI module * via GPIO alternate function to control the chip select lines. */ gpocon = (1 << (spi->chip_select + LTQ_SPI_GPOCON_ISCSBN_SHIFT)); if (spi->mode & SPI_CS_HIGH) gpocon |= (1 << spi->chip_select); fgpo = (1 << (spi->chip_select + LTQ_SPI_FGPO_SETOUTN_SHIFT)); ltq_spi_reg_setbit(hw, gpocon, LTQ_SPI_GPOCON); ltq_spi_reg_setbit(hw, fgpo, LTQ_SPI_FGPO); return 0; } static void ltq_spi_cleanup(struct spi_device *spi) { struct ltq_spi *hw = ltq_spi_to_hw(spi); ltq_spi_config_mode_set(hw); } static void ltq_spi_txfifo_write(struct ltq_spi *hw) { u32 fstat, data; u16 fifo_space; u32 bytes_per_word; /* Determine how much FIFOs are free for TX data */ fstat = ltq_spi_reg_read(hw, LTQ_SPI_FSTAT); fifo_space = hw->txfs - ((fstat >> LTQ_SPI_FSTAT_TXFFL_SHIFT) & LTQ_SPI_FSTAT_TXFFL_MASK); if (!fifo_space) return; if (hw->bits_per_word <= 8) { bytes_per_word = 1; } else if (hw->bits_per_word <= 16) { bytes_per_word = 2; } else if (hw->bits_per_word <= 32) { bytes_per_word = 4; } else { dev_err(hw->dev, "invalid bits_per_word %u\n", hw->bits_per_word); return; } while (hw->tx_cnt < hw->len && fifo_space) { data = ltq_spi_tx_word(hw, bytes_per_word); ltq_spi_reg_write(hw, data, LTQ_SPI_TB); fifo_space--; } } static void ltq_spi_rxfifo_read(struct ltq_spi *hw) { u32 fstat; u16 fifo_fill; u8 rxbv; /* Determine how much FIFOs are filled with RX data */ fstat = ltq_spi_reg_read(hw, LTQ_SPI_FSTAT); fifo_fill = ((fstat >> LTQ_SPI_FSTAT_RXFFL_SHIFT) & LTQ_SPI_FSTAT_RXFFL_MASK); if (!fifo_fill) return; /* * The 32 bit FIFO is always used completely independent from the * bits_per_word value. Thus four bytes have to be read at once * per FIFO. */ while (hw->len - hw->rx_cnt >= 4 && fifo_fill) { ltq_spi_rx_word(hw, 4, ltq_spi_reg_read(hw, LTQ_SPI_RB)); fifo_fill--; } /* * If there are remaining bytes, read byte count from STAT.RXBV * register and read the data byte-wise. */ while (fifo_fill && hw->rx_cnt < hw->len) { rxbv = (ltq_spi_reg_read(hw, LTQ_SPI_STAT) >> LTQ_SPI_STAT_RXBV_SHIFT) & LTQ_SPI_STAT_RXBV_MASK; if (rxbv != hw->len - hw->rx_cnt) { pr_warn("%s WARNING last %d bytes might be incorrect!\n", __func__, hw->len - hw->rx_cnt - rxbv); rxbv = hw->len - hw->rx_cnt; /* observe rxbv not the same as remaining bytes, so we do this workaround */ } ltq_spi_rx_word(hw, rxbv, ltq_spi_reg_read(hw, LTQ_SPI_RB)); fifo_fill--; } } static void ltq_spi_rxreq_set(struct ltq_spi *hw) { u32 rxreq, rxreq_max, rxtodo; /* * !len - hw->rx_cnt; rxreq_max = hw->rx_trig_lvl; /* same as rx intr trigger level */ rxreq = min(rxreq_max, rxreq); if (!rxtodo && rxreq) ltq_spi_reg_write(hw, rxreq, LTQ_SPI_RXREQ); } static inline void ltq_spi_complete(struct ltq_spi *hw) { complete(&hw->done); } irqreturn_t ltq_spi_tx_irq(int irq, void *data) { struct ltq_spi *hw = data; unsigned long flags; int completed = 0; #ifndef CONFIG_SPI_GRX500_POLL spin_lock_irqsave(&hw->lock, flags); /* handle only when requested , seen case of dummy irq */ if (ltq_spi_reg_read(hw, LTQ_SPI_IRNCR) & LTQ_SPI_IRNCR_T) { ltq_spi_reg_clearbit(hw, LTQ_SPI_IRNEN_T, LTQ_SPI_IRNEN); ltq_spi_reg_write(hw, LTQ_SPI_IRNCR_T, LTQ_SPI_IRNCR); if (hw->tx_cnt < hw->len) ltq_spi_txfifo_write(hw); /* avoid enabling interrupt if completed */ if (hw->tx_cnt == hw->len) completed = 1; else ltq_spi_reg_setbit(hw, LTQ_SPI_IRNEN_T, LTQ_SPI_IRNEN); } spin_unlock_irqrestore(&hw->lock, flags); if (completed) ltq_spi_complete(hw); #endif /* CONFIG_SPI_GRX500_POLL */ return IRQ_HANDLED; } irqreturn_t ltq_spi_rx_irq(int irq, void *data) { struct ltq_spi *hw = data; unsigned long flags; int completed = 0; #ifndef CONFIG_SPI_GRX500_POLL spin_lock_irqsave(&hw->lock, flags); /* handle only when requested , seen case of dummy irq */ if (ltq_spi_reg_read(hw, LTQ_SPI_IRNCR) & LTQ_SPI_IRNCR_R) { ltq_spi_reg_clearbit(hw, LTQ_SPI_IRNEN_R, LTQ_SPI_IRNEN); ltq_spi_reg_write(hw, LTQ_SPI_IRNCR_R, LTQ_SPI_IRNCR); if (hw->rx_cnt < hw->len) { ltq_spi_rxfifo_read(hw); if (hw->tx && hw->tx_cnt < hw->len) ltq_spi_txfifo_write(hw); } if (hw->rx_cnt == hw->len) completed = 1; else if (!hw->tx) ltq_spi_rxreq_set(hw); /* avoid enabling interrupt if completed */ if (!completed) ltq_spi_reg_setbit(hw, LTQ_SPI_IRNEN_R, LTQ_SPI_IRNEN); } spin_unlock_irqrestore(&hw->lock, flags); if (completed) ltq_spi_complete(hw); #endif /* CONFIG_SPI_GRX500_POLL */ return IRQ_HANDLED; } irqreturn_t ltq_spi_err_irq(int irq, void *data) { struct ltq_spi *hw = data; unsigned long flags; #ifndef CONFIG_SPI_GRX500_POLL spin_lock_irqsave(&hw->lock, flags); /* handle only when requested , seen case of dummy irq */ if (ltq_spi_reg_read(hw, LTQ_SPI_IRNCR) & LTQ_SPI_IRNCR_E) { /* clear all interrupt table */ ltq_spi_reg_write(hw, LTQ_SPI_IRNCR_ALL, LTQ_SPI_IRNCR); /* Disable all interrupts */ ltq_spi_reg_clearbit(hw, LTQ_SPI_IRNEN_ALL, LTQ_SPI_IRNEN); /* Clear all error flags */ ltq_spi_reg_write(hw, LTQ_SPI_WHBSTATE_CLR_ERRORS, LTQ_SPI_WHBSTATE); /* Flush FIFOs */ ltq_spi_reg_setbit(hw, LTQ_SPI_RXFCON_RXFLU, LTQ_SPI_RXFCON); ltq_spi_reg_setbit(hw, LTQ_SPI_TXFCON_TXFLU, LTQ_SPI_TXFCON); hw->status = -EIO; } spin_unlock_irqrestore(&hw->lock, flags); ltq_spi_complete(hw); #endif /* CONFIG_SPI_GRX500_POLL */ return IRQ_HANDLED; } #ifdef CONFIG_SPI_GRX500_POLL static void ltq_spi_tx_poll(struct ltq_spi *hw) { unsigned long flags; spin_lock_irqsave(&hw->lock, flags); while (1) { /* fill TX FIFO with as much data as possible */ if (hw->tx_cnt < hw->len) ltq_spi_txfifo_write(hw); if (hw->tx_cnt == hw->len) break; } spin_unlock_irqrestore(&hw->lock, flags); /* try to wait until tx really finished */ while ((ltq_spi_reg_read(hw, LTQ_SPI_STAT) & LTQ_SPI_STAT_BSY) != 0) ; return; } static u32 ltq_spi_rxreq_poll_set(struct ltq_spi *hw) { u32 rxreq, rxreq_max; /* * In RX-only mode the serial clock is activated only after writing * the expected amount of RX bytes into RXREQ register. * To avoid receive overflows at high clocks it is better to request * only the amount of bytes that fits into all FIFOs. This value * depends on the FIFO size implemented in hardware. */ rxreq = hw->len - hw->rx_cnt; rxreq_max = hw->rxfs << 2; rxreq = min(rxreq_max, rxreq); if (rxreq) { ltq_spi_reg_write(hw, rxreq, LTQ_SPI_RXREQ); return rxreq; } return 0; } /** * \fn static void ltq_spi_rx_poll(struct ltq_spi *hw) * \brief Start FIFO data reception. * This function processes received data. It will read data from the FIFO * * \param hw Pointer to structure #ltq_spi * \return NULL * Description: * In Rx mode, to void memory copy, where rx data starts must be determined * several special cases * 1) If rxsize is divisable by 4, all tx data will be skipped. * 2) If rxsize is not divisable by 4,including less than 4 bytes. * The remaining 1~3 bytes have to do swap. * \ingroup IFX_SSC_INTERNAL */ static void ltq_spi_rx_poll(struct ltq_spi *hw) { u32 rxreq_fifo_fill, rxreq_bytes; unsigned long flags; /* dma con disable rx , not needed since nobody touch the LTQ_SPI_DMACON register */ // ltq_spi_reg_setbit(hw, LTQ_SPI_DMACON_RXON, LTQ_SPI_DMACON); /* sort of spin_lock moreever with irq disabled, wonder if really needed * now dat we run in bitbang work queue, work queue can sleep! * and we are out of irq context now + it is single work queue per controller. */ spin_lock_irqsave(&hw->lock, flags); while (1) { /* request & start Rx clock */ rxreq_bytes = ltq_spi_rxreq_poll_set(hw); rxreq_fifo_fill = (rxreq_bytes >> 2) + ((rxreq_bytes & 0x3) > 0 ? 1 : 0); //get fifo level needed for num of bytes /* wait till filling level in rx fifo achieve all our request */ while (rxreq_fifo_fill != ((ltq_spi_reg_read(hw, LTQ_SPI_FSTAT) >> LTQ_SPI_FSTAT_RXFFL_SHIFT) & LTQ_SPI_FSTAT_RXFFL_MASK)) ; ltq_spi_rxfifo_read(hw); /* check if read complete */ if (hw->rx_cnt == hw->len) break; } spin_unlock_irqrestore(&hw->lock, flags); return; } #endif /* CONFIG_SPI_GRX500_POLL */ static int ltq_spi_txrx_bufs(struct spi_device *spi, struct spi_transfer *t) { struct ltq_spi *hw = ltq_spi_to_hw(spi); u32 irq_flags = 0; unsigned long long ms; #ifndef CONFIG_SPI_GRX500_POLL unsigned long flags; #endif hw->tx = t->tx_buf; hw->rx = t->rx_buf; hw->len = t->len; hw->tx_cnt = 0; hw->rx_cnt = 0; hw->status = 0; reinit_completion(&(hw->done)); ltq_spi_xmit_set(hw, t); #ifdef CONFIG_SPI_GRX500_POLL /* Enable error interrupts */ //ltq_spi_reg_setbit(hw, LTQ_SPI_IRNEN_E, LTQ_SPI_IRNEN); /* !tx) { ltq_spi_tx_poll(hw); } else if (hw->rx) { ltq_spi_rx_poll(hw); } /* Disable all interrupts */ //ltq_spi_reg_clearbit(hw, LTQ_SPI_IRNEN_ALL, LTQ_SPI_IRNEN); #else /* CONFIG_SPI_GRX500_POLL */ /* Enable error interrupts */ ltq_spi_reg_setbit(hw, LTQ_SPI_IRNEN_E, LTQ_SPI_IRNEN); if (hw->tx) { spin_lock_irqsave(&hw->lock, flags); /* Initially fill TX FIFO with as much data as possible */ ltq_spi_txfifo_write(hw); spin_unlock_irqrestore(&hw->lock, flags); irq_flags |= hw->irnen_t; /* Always enable RX interrupt in Full Duplex mode */ if (hw->rx) irq_flags |= hw->irnen_r; } else if (hw->rx) { /* Start RX clock */ ltq_spi_rxreq_set(hw); /* Enable RX interrupt to receive data from RX FIFOs */ irq_flags |= hw->irnen_r; } /* Enable TX or RX interrupts */ ltq_spi_reg_setbit(hw, irq_flags, LTQ_SPI_IRNEN); /* Wait for interrupt. Timeout calculation is based on spi framework * algorithm. */ ms = 8LL * 1000LL * hw->len; do_div(ms, t->speed_hz); ms += ms + 200; /* some tolerance */ if (ms > UINT_MAX) ms = UINT_MAX; if (!wait_for_completion_timeout(&hw->done, msecs_to_jiffies(ms))) { pr_err("%s - Timedout waiting for interrupt\n", __func__); hw->status = -ETIMEDOUT; } /* Disable all interrupts */ ltq_spi_reg_clearbit(hw, LTQ_SPI_IRNEN_ALL, LTQ_SPI_IRNEN); ltq_spi_reg_write(hw, LTQ_SPI_IRNCR_ALL, LTQ_SPI_IRNCR); /* try to wait until tx really finished */ if (!hw->status) ltq_spi_wait_ready(hw); #endif /* CONFIG_SPI_GRX500_POLL */ /* * Return length of current transfer for bitbang utility code if * no errors occured during transmission. */ if (!hw->status) hw->status = hw->len; return hw->status; } static const struct ltq_spi_irq_map { char *name; irq_handler_t handler; } ltq_spi_irqs[] = { { "spi_rx", ltq_spi_rx_irq }, { "spi_tx", ltq_spi_tx_irq }, { "spi_err", ltq_spi_err_irq }, }; static int ltq_spi_probe(struct platform_device *pdev) { struct resource irqres[3]; struct spi_master *master; struct resource *r; struct ltq_spi *hw; int ret, i; u32 data, id; if (of_irq_to_resource_table(pdev->dev.of_node, irqres, 3) != 3) { dev_err(&pdev->dev, "IRQ settings missing in device tree\n"); return -EINVAL; } master = spi_alloc_master(&pdev->dev, sizeof(struct ltq_spi)); if (!master) { dev_err(&pdev->dev, "spi_alloc_master\n"); ret = -ENOMEM; goto err; } hw = spi_master_get_devdata(master); r = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (r == NULL) { dev_err(&pdev->dev, "platform_get_resource\n"); ret = -ENOENT; goto err_master; } r = devm_request_mem_region(&pdev->dev, r->start, resource_size(r), pdev->name); if (!r) { dev_err(&pdev->dev, "failed to request memory region\n"); ret = -ENXIO; goto err_master; } hw->base = devm_ioremap_nocache(&pdev->dev, r->start, resource_size(r)); if (!hw->base) { dev_err(&pdev->dev, "failed to remap memory region\n"); ret = -ENXIO; goto err_master; } memset(hw->irq, 0, sizeof(hw->irq)); for (i = 0; i < ARRAY_SIZE(ltq_spi_irqs); i++) { hw->irq[i] = irqres[i].start; ret = request_irq(hw->irq[i], ltq_spi_irqs[i].handler, 0, ltq_spi_irqs[i].name, hw); if (ret) { dev_err(&pdev->dev, "failed to request %s irq (%d)\n", ltq_spi_irqs[i].name, hw->irq[i]); goto err_irq; } } hw->fpiclk = of_clk_get_by_name(pdev->dev.of_node, "freq"); if (IS_ERR(hw->fpiclk)) { dev_err(&pdev->dev, "failed to get fpi clock\n"); ret = PTR_ERR(hw->fpiclk); goto err_clk; } hw->spiclk = of_clk_get_by_name(pdev->dev.of_node, "spi"); if (IS_ERR(hw->spiclk)) { dev_err(&pdev->dev, "failed to get spi clock gate\n"); ret = PTR_ERR(hw->spiclk); goto err_clk; } hw->bitbang.master = spi_master_get(master); hw->bitbang.chipselect = ltq_spi_chipselect; hw->bitbang.setup_transfer = ltq_spi_setup_transfer; hw->bitbang.txrx_bufs = ltq_spi_txrx_bufs; if (of_machine_is_compatible("lantiq,ase")) { master->num_chipselect = 3; hw->irnen_t = LTQ_SPI_IRNEN_T_XWAY; hw->irnen_r = LTQ_SPI_IRNEN_R_XWAY; } else { master->num_chipselect = 6; hw->irnen_t = LTQ_SPI_IRNEN_T; hw->irnen_r = LTQ_SPI_IRNEN_R; } master->bus_num = pdev->id; master->bits_per_word_mask = SPI_BPW_RANGE_MASK(2, 8) | SPI_BPW_MASK(16) | SPI_BPW_MASK(32); master->setup = ltq_spi_setup; master->cleanup = ltq_spi_cleanup; master->dev.of_node = pdev->dev.of_node; hw->dev = &pdev->dev; init_completion(&hw->done); spin_lock_init(&hw->lock); ltq_spi_hw_enable(hw); /* Read module capabilities */ id = ltq_spi_reg_read(hw, LTQ_SPI_ID); hw->txfs = (id >> LTQ_SPI_ID_TXFS_SHIFT) & LTQ_SPI_ID_TXFS_MASK; hw->rxfs = (id >> LTQ_SPI_ID_RXFS_SHIFT) & LTQ_SPI_ID_RXFS_MASK; hw->dma_support = (id & LTQ_SPI_ID_CFG) ? 1 : 0; ltq_spi_config_mode_set(hw); /* Enable error checking, disable TX/RX, set idle value high */ data = LTQ_SPI_CON_AEN | LTQ_SPI_CON_TEN | LTQ_SPI_CON_REN | LTQ_SPI_CON_TXOFF | LTQ_SPI_CON_RXOFF | LTQ_SPI_CON_IDLE; ltq_spi_reg_write(hw, data, LTQ_SPI_CON); /* Enable master mode and clear error flags */ ltq_spi_reg_write(hw, LTQ_SPI_WHBSTATE_SETMS | LTQ_SPI_WHBSTATE_CLR_ERRORS, LTQ_SPI_WHBSTATE); /* Reset GPIO/CS registers */ ltq_spi_reg_write(hw, 0x0, LTQ_SPI_GPOCON); ltq_spi_reg_write(hw, 0xFF00, LTQ_SPI_FGPO); /* Enable and flush FIFOs */ ltq_spi_reset_fifos(hw); ret = spi_bitbang_start(&hw->bitbang); if (ret) { dev_err(&pdev->dev, "spi_bitbang_start failed\n"); goto err_bitbang; } platform_set_drvdata(pdev, hw); pr_info("Lantiq SoC SPI controller rev %u (TXFS %u, RXFS %u, DMA %u)\n", id & LTQ_SPI_ID_REV_MASK, hw->txfs, hw->rxfs, hw->dma_support); return 0; err_bitbang: ltq_spi_hw_disable(hw); err_clk: if (hw->fpiclk) clk_put(hw->fpiclk); if (hw->spiclk) clk_put(hw->spiclk); err_irq: clk_put(hw->fpiclk); for (i = 0; i < ARRAY_SIZE(ltq_spi_irqs); i++) free_irq(hw->irq[i], hw); err_master: spi_master_put(master); err: return ret; } static int ltq_spi_remove(struct platform_device *pdev) { struct ltq_spi *hw = platform_get_drvdata(pdev); int i; spi_bitbang_stop(&hw->bitbang); platform_set_drvdata(pdev, NULL); ltq_spi_config_mode_set(hw); ltq_spi_hw_disable(hw); for (i = 0; i < ARRAY_SIZE(hw->irq); i++) if (0 < hw->irq[i]) free_irq(hw->irq[i], hw); if (hw->fpiclk) clk_put(hw->fpiclk); if (hw->spiclk) clk_put(hw->spiclk); spi_master_put(hw->bitbang.master); return 0; } static const struct of_device_id ltq_spi_match[] = { { .compatible = "lantiq,spi-xway" }, { .compatible = "lantiq,spi-lantiq-ssc" }, { .compatible = "lantiq,spi-grx500" }, {}, }; MODULE_DEVICE_TABLE(of, ltq_spi_match); static struct platform_driver ltq_spi_driver = { .probe = ltq_spi_probe, .remove = ltq_spi_remove, .driver = { .name = "spi-lantiq-ssc", .owner = THIS_MODULE, .of_match_table = ltq_spi_match, }, }; module_platform_driver(ltq_spi_driver); MODULE_DESCRIPTION("Lantiq SoC SPI controller driver"); MODULE_AUTHOR("Daniel Schwierzeck "); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:spi-xway"); MODULE_ALIAS("platform:spi-lantiq-ssc"); MODULE_ALIAS("platform:spi-grx500");