/* * Tests x86 Memory Protection Keys (see Documentation/x86/protection-keys.txt) * * There are examples in here of: * * how to set protection keys on memory * * how to set/clear bits in PKRU (the rights register) * * how to handle SEGV_PKRU signals and extract pkey-relevant * information from the siginfo * * Things to add: * make sure KSM and KSM COW breaking works * prefault pages in at malloc, or not * protect MPX bounds tables with protection keys? * make sure VMA splitting/merging is working correctly * OOMs can destroy mm->mmap (see exit_mmap()), so make sure it is immune to pkeys * look for pkey "leaks" where it is still set on a VMA but "freed" back to the kernel * do a plain mprotect() to a mprotect_pkey() area and make sure the pkey sticks * * Compile like this: * gcc -o protection_keys -O2 -g -std=gnu99 -pthread -Wall protection_keys.c -lrt -ldl -lm * gcc -m32 -o protection_keys_32 -O2 -g -std=gnu99 -pthread -Wall protection_keys.c -lrt -ldl -lm */ #define _GNU_SOURCE #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "pkey-helpers.h" int iteration_nr = 1; int test_nr; unsigned int shadow_pkru; #define HPAGE_SIZE (1UL<<21) #define ARRAY_SIZE(x) (sizeof(x) / sizeof(*(x))) #define ALIGN_UP(x, align_to) (((x) + ((align_to)-1)) & ~((align_to)-1)) #define ALIGN_DOWN(x, align_to) ((x) & ~((align_to)-1)) #define ALIGN_PTR_UP(p, ptr_align_to) ((typeof(p))ALIGN_UP((unsigned long)(p), ptr_align_to)) #define ALIGN_PTR_DOWN(p, ptr_align_to) ((typeof(p))ALIGN_DOWN((unsigned long)(p), ptr_align_to)) #define __stringify_1(x...) #x #define __stringify(x...) __stringify_1(x) #define PTR_ERR_ENOTSUP ((void *)-ENOTSUP) int dprint_in_signal; char dprint_in_signal_buffer[DPRINT_IN_SIGNAL_BUF_SIZE]; extern void abort_hooks(void); #define pkey_assert(condition) do { \ if (!(condition)) { \ dprintf0("assert() at %s::%d test_nr: %d iteration: %d\n", \ __FILE__, __LINE__, \ test_nr, iteration_nr); \ dprintf0("errno at assert: %d", errno); \ abort_hooks(); \ assert(condition); \ } \ } while (0) #define raw_assert(cond) assert(cond) void cat_into_file(char *str, char *file) { int fd = open(file, O_RDWR); int ret; dprintf2("%s(): writing '%s' to '%s'\n", __func__, str, file); /* * these need to be raw because they are called under * pkey_assert() */ raw_assert(fd >= 0); ret = write(fd, str, strlen(str)); if (ret != strlen(str)) { perror("write to file failed"); fprintf(stderr, "filename: '%s' str: '%s'\n", file, str); raw_assert(0); } close(fd); } #if CONTROL_TRACING > 0 static int warned_tracing; int tracing_root_ok(void) { if (geteuid() != 0) { if (!warned_tracing) fprintf(stderr, "WARNING: not run as root, " "can not do tracing control\n"); warned_tracing = 1; return 0; } return 1; } #endif void tracing_on(void) { #if CONTROL_TRACING > 0 #define TRACEDIR "/sys/kernel/debug/tracing" char pidstr[32]; if (!tracing_root_ok()) return; sprintf(pidstr, "%d", getpid()); cat_into_file("0", TRACEDIR "/tracing_on"); cat_into_file("\n", TRACEDIR "/trace"); if (1) { cat_into_file("function_graph", TRACEDIR "/current_tracer"); cat_into_file("1", TRACEDIR "/options/funcgraph-proc"); } else { cat_into_file("nop", TRACEDIR "/current_tracer"); } cat_into_file(pidstr, TRACEDIR "/set_ftrace_pid"); cat_into_file("1", TRACEDIR "/tracing_on"); dprintf1("enabled tracing\n"); #endif } void tracing_off(void) { #if CONTROL_TRACING > 0 if (!tracing_root_ok()) return; cat_into_file("0", "/sys/kernel/debug/tracing/tracing_on"); #endif } void abort_hooks(void) { fprintf(stderr, "running %s()...\n", __func__); tracing_off(); #ifdef SLEEP_ON_ABORT sleep(SLEEP_ON_ABORT); #endif } static inline void __page_o_noops(void) { /* 8-bytes of instruction * 512 bytes = 1 page */ asm(".rept 512 ; nopl 0x7eeeeeee(%eax) ; .endr"); } /* * This attempts to have roughly a page of instructions followed by a few * instructions that do a write, and another page of instructions. That * way, we are pretty sure that the write is in the second page of * instructions and has at least a page of padding behind it. * * *That* lets us be sure to madvise() away the write instruction, which * will then fault, which makes sure that the fault code handles * execute-only memory properly. */ __attribute__((__aligned__(PAGE_SIZE))) void lots_o_noops_around_write(int *write_to_me) { dprintf3("running %s()\n", __func__); __page_o_noops(); /* Assume this happens in the second page of instructions: */ *write_to_me = __LINE__; /* pad out by another page: */ __page_o_noops(); dprintf3("%s() done\n", __func__); } /* Define some kernel-like types */ #define u8 uint8_t #define u16 uint16_t #define u32 uint32_t #define u64 uint64_t #ifdef __i386__ #ifndef SYS_mprotect_key # define SYS_mprotect_key 380 #endif #ifndef SYS_pkey_alloc # define SYS_pkey_alloc 381 # define SYS_pkey_free 382 #endif #define REG_IP_IDX REG_EIP #define si_pkey_offset 0x14 #else #ifndef SYS_mprotect_key # define SYS_mprotect_key 329 #endif #ifndef SYS_pkey_alloc # define SYS_pkey_alloc 330 # define SYS_pkey_free 331 #endif #define REG_IP_IDX REG_RIP #define si_pkey_offset 0x20 #endif void dump_mem(void *dumpme, int len_bytes) { char *c = (void *)dumpme; int i; for (i = 0; i < len_bytes; i += sizeof(u64)) { u64 *ptr = (u64 *)(c + i); dprintf1("dump[%03d][@%p]: %016jx\n", i, ptr, *ptr); } } #define SEGV_BNDERR 3 /* failed address bound checks */ #define SEGV_PKUERR 4 static char *si_code_str(int si_code) { if (si_code == SEGV_MAPERR) return "SEGV_MAPERR"; if (si_code == SEGV_ACCERR) return "SEGV_ACCERR"; if (si_code == SEGV_BNDERR) return "SEGV_BNDERR"; if (si_code == SEGV_PKUERR) return "SEGV_PKUERR"; return "UNKNOWN"; } int pkru_faults; int last_si_pkey = -1; void signal_handler(int signum, siginfo_t *si, void *vucontext) { ucontext_t *uctxt = vucontext; int trapno; unsigned long ip; char *fpregs; u32 *pkru_ptr; u64 siginfo_pkey; u32 *si_pkey_ptr; int pkru_offset; fpregset_t fpregset; dprint_in_signal = 1; dprintf1(">>>>===============SIGSEGV============================\n"); dprintf1("%s()::%d, pkru: 0x%x shadow: %x\n", __func__, __LINE__, __rdpkru(), shadow_pkru); trapno = uctxt->uc_mcontext.gregs[REG_TRAPNO]; ip = uctxt->uc_mcontext.gregs[REG_IP_IDX]; fpregset = uctxt->uc_mcontext.fpregs; fpregs = (void *)fpregset; dprintf2("%s() trapno: %d ip: 0x%lx info->si_code: %s/%d\n", __func__, trapno, ip, si_code_str(si->si_code), si->si_code); #ifdef __i386__ /* * 32-bit has some extra padding so that userspace can tell whether * the XSTATE header is present in addition to the "legacy" FPU * state. We just assume that it is here. */ fpregs += 0x70; #endif pkru_offset = pkru_xstate_offset(); pkru_ptr = (void *)(&fpregs[pkru_offset]); dprintf1("siginfo: %p\n", si); dprintf1(" fpregs: %p\n", fpregs); /* * If we got a PKRU fault, we *HAVE* to have at least one bit set in * here. */ dprintf1("pkru_xstate_offset: %d\n", pkru_xstate_offset()); if (DEBUG_LEVEL > 4) dump_mem(pkru_ptr - 128, 256); pkey_assert(*pkru_ptr); si_pkey_ptr = (u32 *)(((u8 *)si) + si_pkey_offset); dprintf1("si_pkey_ptr: %p\n", si_pkey_ptr); dump_mem(si_pkey_ptr - 8, 24); siginfo_pkey = *si_pkey_ptr; pkey_assert(siginfo_pkey < NR_PKEYS); last_si_pkey = siginfo_pkey; if ((si->si_code == SEGV_MAPERR) || (si->si_code == SEGV_ACCERR) || (si->si_code == SEGV_BNDERR)) { printf("non-PK si_code, exiting...\n"); exit(4); } dprintf1("signal pkru from xsave: %08x\n", *pkru_ptr); /* need __rdpkru() version so we do not do shadow_pkru checking */ dprintf1("signal pkru from pkru: %08x\n", __rdpkru()); dprintf1("pkey from siginfo: %jx\n", siginfo_pkey); *(u64 *)pkru_ptr = 0x00000000; dprintf1("WARNING: set PRKU=0 to allow faulting instruction to continue\n"); pkru_faults++; dprintf1("<<<<==================================================\n"); return; if (trapno == 14) { fprintf(stderr, "ERROR: In signal handler, page fault, trapno = %d, ip = %016lx\n", trapno, ip); fprintf(stderr, "si_addr %p\n", si->si_addr); fprintf(stderr, "REG_ERR: %lx\n", (unsigned long)uctxt->uc_mcontext.gregs[REG_ERR]); exit(1); } else { fprintf(stderr, "unexpected trap %d! at 0x%lx\n", trapno, ip); fprintf(stderr, "si_addr %p\n", si->si_addr); fprintf(stderr, "REG_ERR: %lx\n", (unsigned long)uctxt->uc_mcontext.gregs[REG_ERR]); exit(2); } dprint_in_signal = 0; } int wait_all_children(void) { int status; return waitpid(-1, &status, 0); } void sig_chld(int x) { dprint_in_signal = 1; dprintf2("[%d] SIGCHLD: %d\n", getpid(), x); dprint_in_signal = 0; } void setup_sigsegv_handler(void) { int r, rs; struct sigaction newact; struct sigaction oldact; /* #PF is mapped to sigsegv */ int signum = SIGSEGV; newact.sa_handler = 0; newact.sa_sigaction = signal_handler; /*sigset_t - signals to block while in the handler */ /* get the old signal mask. */ rs = sigprocmask(SIG_SETMASK, 0, &newact.sa_mask); pkey_assert(rs == 0); /* call sa_sigaction, not sa_handler*/ newact.sa_flags = SA_SIGINFO; newact.sa_restorer = 0; /* void(*)(), obsolete */ r = sigaction(signum, &newact, &oldact); r = sigaction(SIGALRM, &newact, &oldact); pkey_assert(r == 0); } void setup_handlers(void) { signal(SIGCHLD, &sig_chld); setup_sigsegv_handler(); } pid_t fork_lazy_child(void) { pid_t forkret; forkret = fork(); pkey_assert(forkret >= 0); dprintf3("[%d] fork() ret: %d\n", getpid(), forkret); if (!forkret) { /* in the child */ while (1) { dprintf1("child sleeping...\n"); sleep(30); } } return forkret; } #define PKEY_DISABLE_ACCESS 0x1 #define PKEY_DISABLE_WRITE 0x2 u32 pkey_get(int pkey, unsigned long flags) { u32 mask = (PKEY_DISABLE_ACCESS|PKEY_DISABLE_WRITE); u32 pkru = __rdpkru(); u32 shifted_pkru; u32 masked_pkru; dprintf1("%s(pkey=%d, flags=%lx) = %x / %d\n", __func__, pkey, flags, 0, 0); dprintf2("%s() raw pkru: %x\n", __func__, pkru); shifted_pkru = (pkru >> (pkey * PKRU_BITS_PER_PKEY)); dprintf2("%s() shifted_pkru: %x\n", __func__, shifted_pkru); masked_pkru = shifted_pkru & mask; dprintf2("%s() masked pkru: %x\n", __func__, masked_pkru); /* * shift down the relevant bits to the lowest two, then * mask off all the other high bits. */ return masked_pkru; } int pkey_set(int pkey, unsigned long rights, unsigned long flags) { u32 mask = (PKEY_DISABLE_ACCESS|PKEY_DISABLE_WRITE); u32 old_pkru = __rdpkru(); u32 new_pkru; /* make sure that 'rights' only contains the bits we expect: */ assert(!(rights & ~mask)); /* copy old pkru */ new_pkru = old_pkru; /* mask out bits from pkey in old value: */ new_pkru &= ~(mask << (pkey * PKRU_BITS_PER_PKEY)); /* OR in new bits for pkey: */ new_pkru |= (rights << (pkey * PKRU_BITS_PER_PKEY)); __wrpkru(new_pkru); dprintf3("%s(pkey=%d, rights=%lx, flags=%lx) = %x pkru now: %x old_pkru: %x\n", __func__, pkey, rights, flags, 0, __rdpkru(), old_pkru); return 0; } void pkey_disable_set(int pkey, int flags) { unsigned long syscall_flags = 0; int ret; int pkey_rights; u32 orig_pkru; dprintf1("START->%s(%d, 0x%x)\n", __func__, pkey, flags); pkey_assert(flags & (PKEY_DISABLE_ACCESS | PKEY_DISABLE_WRITE)); pkey_rights = pkey_get(pkey, syscall_flags); dprintf1("%s(%d) pkey_get(%d): %x\n", __func__, pkey, pkey, pkey_rights); pkey_assert(pkey_rights >= 0); pkey_rights |= flags; ret = pkey_set(pkey, pkey_rights, syscall_flags); assert(!ret); /*pkru and flags have the same format */ shadow_pkru |= flags << (pkey * 2); dprintf1("%s(%d) shadow: 0x%x\n", __func__, pkey, shadow_pkru); pkey_assert(ret >= 0); pkey_rights = pkey_get(pkey, syscall_flags); dprintf1("%s(%d) pkey_get(%d): %x\n", __func__, pkey, pkey, pkey_rights); dprintf1("%s(%d) pkru: 0x%x\n", __func__, pkey, rdpkru()); if (flags) pkey_assert(rdpkru() > orig_pkru); dprintf1("END<---%s(%d, 0x%x)\n", __func__, pkey, flags); } void pkey_disable_clear(int pkey, int flags) { unsigned long syscall_flags = 0; int ret; int pkey_rights = pkey_get(pkey, syscall_flags); u32 orig_pkru = rdpkru(); pkey_assert(flags & (PKEY_DISABLE_ACCESS | PKEY_DISABLE_WRITE)); dprintf1("%s(%d) pkey_get(%d): %x\n", __func__, pkey, pkey, pkey_rights); pkey_assert(pkey_rights >= 0); pkey_rights |= flags; ret = pkey_set(pkey, pkey_rights, 0); /* pkru and flags have the same format */ shadow_pkru &= ~(flags << (pkey * 2)); pkey_assert(ret >= 0); pkey_rights = pkey_get(pkey, syscall_flags); dprintf1("%s(%d) pkey_get(%d): %x\n", __func__, pkey, pkey, pkey_rights); dprintf1("%s(%d) pkru: 0x%x\n", __func__, pkey, rdpkru()); if (flags) assert(rdpkru() > orig_pkru); } void pkey_write_allow(int pkey) { pkey_disable_clear(pkey, PKEY_DISABLE_WRITE); } void pkey_write_deny(int pkey) { pkey_disable_set(pkey, PKEY_DISABLE_WRITE); } void pkey_access_allow(int pkey) { pkey_disable_clear(pkey, PKEY_DISABLE_ACCESS); } void pkey_access_deny(int pkey) { pkey_disable_set(pkey, PKEY_DISABLE_ACCESS); } int sys_mprotect_pkey(void *ptr, size_t size, unsigned long orig_prot, unsigned long pkey) { int sret; dprintf2("%s(0x%p, %zx, prot=%lx, pkey=%lx)\n", __func__, ptr, size, orig_prot, pkey); errno = 0; sret = syscall(SYS_mprotect_key, ptr, size, orig_prot, pkey); if (errno) { dprintf2("SYS_mprotect_key sret: %d\n", sret); dprintf2("SYS_mprotect_key prot: 0x%lx\n", orig_prot); dprintf2("SYS_mprotect_key failed, errno: %d\n", errno); if (DEBUG_LEVEL >= 2) perror("SYS_mprotect_pkey"); } return sret; } int sys_pkey_alloc(unsigned long flags, unsigned long init_val) { int ret = syscall(SYS_pkey_alloc, flags, init_val); dprintf1("%s(flags=%lx, init_val=%lx) syscall ret: %d errno: %d\n", __func__, flags, init_val, ret, errno); return ret; } int alloc_pkey(void) { int ret; unsigned long init_val = 0x0; dprintf1("alloc_pkey()::%d, pkru: 0x%x shadow: %x\n", __LINE__, __rdpkru(), shadow_pkru); ret = sys_pkey_alloc(0, init_val); /* * pkey_alloc() sets PKRU, so we need to reflect it in * shadow_pkru: */ dprintf4("alloc_pkey()::%d, ret: %d pkru: 0x%x shadow: 0x%x\n", __LINE__, ret, __rdpkru(), shadow_pkru); if (ret) { /* clear both the bits: */ shadow_pkru &= ~(0x3 << (ret * 2)); dprintf4("alloc_pkey()::%d, ret: %d pkru: 0x%x shadow: 0x%x\n", __LINE__, ret, __rdpkru(), shadow_pkru); /* * move the new state in from init_val * (remember, we cheated and init_val == pkru format) */ shadow_pkru |= (init_val << (ret * 2)); } dprintf4("alloc_pkey()::%d, ret: %d pkru: 0x%x shadow: 0x%x\n", __LINE__, ret, __rdpkru(), shadow_pkru); dprintf1("alloc_pkey()::%d errno: %d\n", __LINE__, errno); /* for shadow checking: */ rdpkru(); dprintf4("alloc_pkey()::%d, ret: %d pkru: 0x%x shadow: 0x%x\n", __LINE__, ret, __rdpkru(), shadow_pkru); return ret; } int sys_pkey_free(unsigned long pkey) { int ret = syscall(SYS_pkey_free, pkey); dprintf1("%s(pkey=%ld) syscall ret: %d\n", __func__, pkey, ret); return ret; } /* * I had a bug where pkey bits could be set by mprotect() but * not cleared. This ensures we get lots of random bit sets * and clears on the vma and pte pkey bits. */ int alloc_random_pkey(void) { int max_nr_pkey_allocs; int ret; int i; int alloced_pkeys[NR_PKEYS]; int nr_alloced = 0; int random_index; memset(alloced_pkeys, 0, sizeof(alloced_pkeys)); /* allocate every possible key and make a note of which ones we got */ max_nr_pkey_allocs = NR_PKEYS; for (i = 0; i < max_nr_pkey_allocs; i++) { int new_pkey = alloc_pkey(); if (new_pkey < 0) break; alloced_pkeys[nr_alloced++] = new_pkey; } pkey_assert(nr_alloced > 0); /* select a random one out of the allocated ones */ random_index = rand() % nr_alloced; ret = alloced_pkeys[random_index]; /* now zero it out so we don't free it next */ alloced_pkeys[random_index] = 0; /* go through the allocated ones that we did not want and free them */ for (i = 0; i < nr_alloced; i++) { int free_ret; if (!alloced_pkeys[i]) continue; free_ret = sys_pkey_free(alloced_pkeys[i]); pkey_assert(!free_ret); } dprintf1("%s()::%d, ret: %d pkru: 0x%x shadow: 0x%x\n", __func__, __LINE__, ret, __rdpkru(), shadow_pkru); return ret; } int mprotect_pkey(void *ptr, size_t size, unsigned long orig_prot, unsigned long pkey) { int nr_iterations = random() % 100; int ret; while (0) { int rpkey = alloc_random_pkey(); ret = sys_mprotect_pkey(ptr, size, orig_prot, pkey); dprintf1("sys_mprotect_pkey(%p, %zx, prot=0x%lx, pkey=%ld) ret: %d\n", ptr, size, orig_prot, pkey, ret); if (nr_iterations-- < 0) break; dprintf1("%s()::%d, ret: %d pkru: 0x%x shadow: 0x%x\n", __func__, __LINE__, ret, __rdpkru(), shadow_pkru); sys_pkey_free(rpkey); dprintf1("%s()::%d, ret: %d pkru: 0x%x shadow: 0x%x\n", __func__, __LINE__, ret, __rdpkru(), shadow_pkru); } pkey_assert(pkey < NR_PKEYS); ret = sys_mprotect_pkey(ptr, size, orig_prot, pkey); dprintf1("mprotect_pkey(%p, %zx, prot=0x%lx, pkey=%ld) ret: %d\n", ptr, size, orig_prot, pkey, ret); pkey_assert(!ret); dprintf1("%s()::%d, ret: %d pkru: 0x%x shadow: 0x%x\n", __func__, __LINE__, ret, __rdpkru(), shadow_pkru); return ret; } struct pkey_malloc_record { void *ptr; long size; }; struct pkey_malloc_record *pkey_malloc_records; long nr_pkey_malloc_records; void record_pkey_malloc(void *ptr, long size) { long i; struct pkey_malloc_record *rec = NULL; for (i = 0; i < nr_pkey_malloc_records; i++) { rec = &pkey_malloc_records[i]; /* find a free record */ if (rec) break; } if (!rec) { /* every record is full */ size_t old_nr_records = nr_pkey_malloc_records; size_t new_nr_records = (nr_pkey_malloc_records * 2 + 1); size_t new_size = new_nr_records * sizeof(struct pkey_malloc_record); dprintf2("new_nr_records: %zd\n", new_nr_records); dprintf2("new_size: %zd\n", new_size); pkey_malloc_records = realloc(pkey_malloc_records, new_size); pkey_assert(pkey_malloc_records != NULL); rec = &pkey_malloc_records[nr_pkey_malloc_records]; /* * realloc() does not initialize memory, so zero it from * the first new record all the way to the end. */ for (i = 0; i < new_nr_records - old_nr_records; i++) memset(rec + i, 0, sizeof(*rec)); } dprintf3("filling malloc record[%d/%p]: {%p, %ld}\n", (int)(rec - pkey_malloc_records), rec, ptr, size); rec->ptr = ptr; rec->size = size; nr_pkey_malloc_records++; } void free_pkey_malloc(void *ptr) { long i; int ret; dprintf3("%s(%p)\n", __func__, ptr); for (i = 0; i < nr_pkey_malloc_records; i++) { struct pkey_malloc_record *rec = &pkey_malloc_records[i]; dprintf4("looking for ptr %p at record[%ld/%p]: {%p, %ld}\n", ptr, i, rec, rec->ptr, rec->size); if ((ptr < rec->ptr) || (ptr >= rec->ptr + rec->size)) continue; dprintf3("found ptr %p at record[%ld/%p]: {%p, %ld}\n", ptr, i, rec, rec->ptr, rec->size); nr_pkey_malloc_records--; ret = munmap(rec->ptr, rec->size); dprintf3("munmap ret: %d\n", ret); pkey_assert(!ret); dprintf3("clearing rec->ptr, rec: %p\n", rec); rec->ptr = NULL; dprintf3("done clearing rec->ptr, rec: %p\n", rec); return; } pkey_assert(false); } void *malloc_pkey_with_mprotect(long size, int prot, u16 pkey) { void *ptr; int ret; rdpkru(); dprintf1("doing %s(size=%ld, prot=0x%x, pkey=%d)\n", __func__, size, prot, pkey); pkey_assert(pkey < NR_PKEYS); ptr = mmap(NULL, size, prot, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); pkey_assert(ptr != (void *)-1); ret = mprotect_pkey((void *)ptr, PAGE_SIZE, prot, pkey); pkey_assert(!ret); record_pkey_malloc(ptr, size); rdpkru(); dprintf1("%s() for pkey %d @ %p\n", __func__, pkey, ptr); return ptr; } void *malloc_pkey_anon_huge(long size, int prot, u16 pkey) { int ret; void *ptr; dprintf1("doing %s(size=%ld, prot=0x%x, pkey=%d)\n", __func__, size, prot, pkey); /* * Guarantee we can fit at least one huge page in the resulting * allocation by allocating space for 2: */ size = ALIGN_UP(size, HPAGE_SIZE * 2); ptr = mmap(NULL, size, PROT_NONE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); pkey_assert(ptr != (void *)-1); record_pkey_malloc(ptr, size); mprotect_pkey(ptr, size, prot, pkey); dprintf1("unaligned ptr: %p\n", ptr); ptr = ALIGN_PTR_UP(ptr, HPAGE_SIZE); dprintf1(" aligned ptr: %p\n", ptr); ret = madvise(ptr, HPAGE_SIZE, MADV_HUGEPAGE); dprintf1("MADV_HUGEPAGE ret: %d\n", ret); ret = madvise(ptr, HPAGE_SIZE, MADV_WILLNEED); dprintf1("MADV_WILLNEED ret: %d\n", ret); memset(ptr, 0, HPAGE_SIZE); dprintf1("mmap()'d thp for pkey %d @ %p\n", pkey, ptr); return ptr; } int hugetlb_setup_ok; #define GET_NR_HUGE_PAGES 10 void setup_hugetlbfs(void) { int err; int fd; int validated_nr_pages; int i; char buf[] = "123"; if (geteuid() != 0) { fprintf(stderr, "WARNING: not run as root, can not do hugetlb test\n"); return; } cat_into_file(__stringify(GET_NR_HUGE_PAGES), "/proc/sys/vm/nr_hugepages"); /* * Now go make sure that we got the pages and that they * are 2M pages. Someone might have made 1G the default. */ fd = open("/sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages", O_RDONLY); if (fd < 0) { perror("opening sysfs 2M hugetlb config"); return; } /* -1 to guarantee leaving the trailing \0 */ err = read(fd, buf, sizeof(buf)-1); close(fd); if (err <= 0) { perror("reading sysfs 2M hugetlb config"); return; } if (atoi(buf) != GET_NR_HUGE_PAGES) { fprintf(stderr, "could not confirm 2M pages, got: '%s' expected %d\n", buf, GET_NR_HUGE_PAGES); return; } hugetlb_setup_ok = 1; } void *malloc_pkey_hugetlb(long size, int prot, u16 pkey) { void *ptr; int flags = MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB; if (!hugetlb_setup_ok) return PTR_ERR_ENOTSUP; dprintf1("doing %s(%ld, %x, %x)\n", __func__, size, prot, pkey); size = ALIGN_UP(size, HPAGE_SIZE * 2); pkey_assert(pkey < NR_PKEYS); ptr = mmap(NULL, size, PROT_NONE, flags, -1, 0); pkey_assert(ptr != (void *)-1); mprotect_pkey(ptr, size, prot, pkey); record_pkey_malloc(ptr, size); dprintf1("mmap()'d hugetlbfs for pkey %d @ %p\n", pkey, ptr); return ptr; } void *malloc_pkey_mmap_dax(long size, int prot, u16 pkey) { void *ptr; int fd; dprintf1("doing %s(size=%ld, prot=0x%x, pkey=%d)\n", __func__, size, prot, pkey); pkey_assert(pkey < NR_PKEYS); fd = open("/dax/foo", O_RDWR); pkey_assert(fd >= 0); ptr = mmap(0, size, prot, MAP_SHARED, fd, 0); pkey_assert(ptr != (void *)-1); mprotect_pkey(ptr, size, prot, pkey); record_pkey_malloc(ptr, size); dprintf1("mmap()'d for pkey %d @ %p\n", pkey, ptr); close(fd); return ptr; } void *(*pkey_malloc[])(long size, int prot, u16 pkey) = { malloc_pkey_with_mprotect, malloc_pkey_anon_huge, malloc_pkey_hugetlb /* can not do direct with the pkey_mprotect() API: malloc_pkey_mmap_direct, malloc_pkey_mmap_dax, */ }; void *malloc_pkey(long size, int prot, u16 pkey) { void *ret; static int malloc_type; int nr_malloc_types = ARRAY_SIZE(pkey_malloc); pkey_assert(pkey < NR_PKEYS); while (1) { pkey_assert(malloc_type < nr_malloc_types); ret = pkey_malloc[malloc_type](size, prot, pkey); pkey_assert(ret != (void *)-1); malloc_type++; if (malloc_type >= nr_malloc_types) malloc_type = (random()%nr_malloc_types); /* try again if the malloc_type we tried is unsupported */ if (ret == PTR_ERR_ENOTSUP) continue; break; } dprintf3("%s(%ld, prot=%x, pkey=%x) returning: %p\n", __func__, size, prot, pkey, ret); return ret; } int last_pkru_faults; void expected_pk_fault(int pkey) { dprintf2("%s(): last_pkru_faults: %d pkru_faults: %d\n", __func__, last_pkru_faults, pkru_faults); dprintf2("%s(%d): last_si_pkey: %d\n", __func__, pkey, last_si_pkey); pkey_assert(last_pkru_faults + 1 == pkru_faults); pkey_assert(last_si_pkey == pkey); /* * The signal handler shold have cleared out PKRU to let the * test program continue. We now have to restore it. */ if (__rdpkru() != 0) pkey_assert(0); __wrpkru(shadow_pkru); dprintf1("%s() set PKRU=%x to restore state after signal nuked it\n", __func__, shadow_pkru); last_pkru_faults = pkru_faults; last_si_pkey = -1; } void do_not_expect_pk_fault(void) { pkey_assert(last_pkru_faults == pkru_faults); } int test_fds[10] = { -1 }; int nr_test_fds; void __save_test_fd(int fd) { pkey_assert(fd >= 0); pkey_assert(nr_test_fds < ARRAY_SIZE(test_fds)); test_fds[nr_test_fds] = fd; nr_test_fds++; } int get_test_read_fd(void) { int test_fd = open("/etc/passwd", O_RDONLY); __save_test_fd(test_fd); return test_fd; } void close_test_fds(void) { int i; for (i = 0; i < nr_test_fds; i++) { if (test_fds[i] < 0) continue; close(test_fds[i]); test_fds[i] = -1; } nr_test_fds = 0; } #define barrier() __asm__ __volatile__("": : :"memory") __attribute__((noinline)) int read_ptr(int *ptr) { /* * Keep GCC from optimizing this away somehow */ barrier(); return *ptr; } void test_read_of_write_disabled_region(int *ptr, u16 pkey) { int ptr_contents; dprintf1("disabling write access to PKEY[1], doing read\n"); pkey_write_deny(pkey); ptr_contents = read_ptr(ptr); dprintf1("*ptr: %d\n", ptr_contents); dprintf1("\n"); } void test_read_of_access_disabled_region(int *ptr, u16 pkey) { int ptr_contents; dprintf1("disabling access to PKEY[%02d], doing read @ %p\n", pkey, ptr); rdpkru(); pkey_access_deny(pkey); ptr_contents = read_ptr(ptr); dprintf1("*ptr: %d\n", ptr_contents); expected_pk_fault(pkey); } void test_write_of_write_disabled_region(int *ptr, u16 pkey) { dprintf1("disabling write access to PKEY[%02d], doing write\n", pkey); pkey_write_deny(pkey); *ptr = __LINE__; expected_pk_fault(pkey); } void test_write_of_access_disabled_region(int *ptr, u16 pkey) { dprintf1("disabling access to PKEY[%02d], doing write\n", pkey); pkey_access_deny(pkey); *ptr = __LINE__; expected_pk_fault(pkey); } void test_kernel_write_of_access_disabled_region(int *ptr, u16 pkey) { int ret; int test_fd = get_test_read_fd(); dprintf1("disabling access to PKEY[%02d], " "having kernel read() to buffer\n", pkey); pkey_access_deny(pkey); ret = read(test_fd, ptr, 1); dprintf1("read ret: %d\n", ret); pkey_assert(ret); } void test_kernel_write_of_write_disabled_region(int *ptr, u16 pkey) { int ret; int test_fd = get_test_read_fd(); pkey_write_deny(pkey); ret = read(test_fd, ptr, 100); dprintf1("read ret: %d\n", ret); if (ret < 0 && (DEBUG_LEVEL > 0)) perror("verbose read result (OK for this to be bad)"); pkey_assert(ret); } void test_kernel_gup_of_access_disabled_region(int *ptr, u16 pkey) { int pipe_ret, vmsplice_ret; struct iovec iov; int pipe_fds[2]; pipe_ret = pipe(pipe_fds); pkey_assert(pipe_ret == 0); dprintf1("disabling access to PKEY[%02d], " "having kernel vmsplice from buffer\n", pkey); pkey_access_deny(pkey); iov.iov_base = ptr; iov.iov_len = PAGE_SIZE; vmsplice_ret = vmsplice(pipe_fds[1], &iov, 1, SPLICE_F_GIFT); dprintf1("vmsplice() ret: %d\n", vmsplice_ret); pkey_assert(vmsplice_ret == -1); close(pipe_fds[0]); close(pipe_fds[1]); } void test_kernel_gup_write_to_write_disabled_region(int *ptr, u16 pkey) { int ignored = 0xdada; int futex_ret; int some_int = __LINE__; dprintf1("disabling write to PKEY[%02d], " "doing futex gunk in buffer\n", pkey); *ptr = some_int; pkey_write_deny(pkey); futex_ret = syscall(SYS_futex, ptr, FUTEX_WAIT, some_int-1, NULL, &ignored, ignored); if (DEBUG_LEVEL > 0) perror("futex"); dprintf1("futex() ret: %d\n", futex_ret); } /* Assumes that all pkeys other than 'pkey' are unallocated */ void test_pkey_syscalls_on_non_allocated_pkey(int *ptr, u16 pkey) { int err; int i; /* Note: 0 is the default pkey, so don't mess with it */ for (i = 1; i < NR_PKEYS; i++) { if (pkey == i) continue; dprintf1("trying get/set/free to non-allocated pkey: %2d\n", i); err = sys_pkey_free(i); pkey_assert(err); /* not enforced when pkey_get() is not a syscall err = pkey_get(i, 0); pkey_assert(err < 0); */ err = sys_pkey_free(i); pkey_assert(err); err = sys_mprotect_pkey(ptr, PAGE_SIZE, PROT_READ, i); pkey_assert(err); } } /* Assumes that all pkeys other than 'pkey' are unallocated */ void test_pkey_syscalls_bad_args(int *ptr, u16 pkey) { int err; int bad_flag = (PKEY_DISABLE_ACCESS | PKEY_DISABLE_WRITE) + 1; int bad_pkey = NR_PKEYS+99; /* not enforced when pkey_get() is not a syscall err = pkey_get(bad_pkey, bad_flag); pkey_assert(err < 0); */ /* pass a known-invalid pkey in: */ err = sys_mprotect_pkey(ptr, PAGE_SIZE, PROT_READ, bad_pkey); pkey_assert(err); } void become_child(void) { pid_t forkret; forkret = fork(); pkey_assert(forkret >= 0); dprintf3("[%d] fork() ret: %d\n", getpid(), forkret); if (!forkret) { /* in the child */ return; } exit(0); } /* Assumes that all pkeys other than 'pkey' are unallocated */ void test_pkey_alloc_exhaust(int *ptr, u16 pkey) { unsigned long flags; unsigned long init_val; int err; int allocated_pkeys[NR_PKEYS] = {0}; int nr_allocated_pkeys = 0; int i; for (i = 0; i < NR_PKEYS*3; i++) { int new_pkey; dprintf1("%s() alloc loop: %d\n", __func__, i); new_pkey = alloc_pkey(); dprintf4("%s()::%d, err: %d pkru: 0x%x shadow: 0x%x\n", __func__, __LINE__, err, __rdpkru(), shadow_pkru); rdpkru(); /* for shadow checking */ dprintf2("%s() errno: %d ENOSPC: %d\n", __func__, errno, ENOSPC); if ((new_pkey == -1) && (errno == ENOSPC)) { dprintf2("%s() failed to allocate pkey after %d tries\n", __func__, nr_allocated_pkeys); } else { /* * Ensure the number of successes never * exceeds the number of keys supported * in the hardware. */ pkey_assert(nr_allocated_pkeys < NR_PKEYS); allocated_pkeys[nr_allocated_pkeys++] = new_pkey; } /* * Make sure that allocation state is properly * preserved across fork(). */ if (i == NR_PKEYS*2) become_child(); } dprintf3("%s()::%d\n", __func__, __LINE__); /* * There are 16 pkeys supported in hardware. One is taken * up for the default (0) and another can be taken up by * an execute-only mapping. Ensure that we can allocate * at least 14 (16-2). */ pkey_assert(i >= NR_PKEYS-2); for (i = 0; i < nr_allocated_pkeys; i++) { err = sys_pkey_free(allocated_pkeys[i]); pkey_assert(!err); rdpkru(); /* for shadow checking */ } } void test_ptrace_of_child(int *ptr, u16 pkey) { __attribute__((__unused__)) int peek_result; pid_t child_pid; void *ignored = 0; long ret; int status; /* * This is the "control" for our little expermient. Make sure * we can always access it when ptracing. */ int *plain_ptr_unaligned = malloc(HPAGE_SIZE); int *plain_ptr = ALIGN_PTR_UP(plain_ptr_unaligned, PAGE_SIZE); /* * Fork a child which is an exact copy of this process, of course. * That means we can do all of our tests via ptrace() and then plain * memory access and ensure they work differently. */ child_pid = fork_lazy_child(); dprintf1("[%d] child pid: %d\n", getpid(), child_pid); ret = ptrace(PTRACE_ATTACH, child_pid, ignored, ignored); if (ret) perror("attach"); dprintf1("[%d] attach ret: %ld %d\n", getpid(), ret, __LINE__); pkey_assert(ret != -1); ret = waitpid(child_pid, &status, WUNTRACED); if ((ret != child_pid) || !(WIFSTOPPED(status))) { fprintf(stderr, "weird waitpid result %ld stat %x\n", ret, status); pkey_assert(0); } dprintf2("waitpid ret: %ld\n", ret); dprintf2("waitpid status: %d\n", status); pkey_access_deny(pkey); pkey_write_deny(pkey); /* Write access, untested for now: ret = ptrace(PTRACE_POKEDATA, child_pid, peek_at, data); pkey_assert(ret != -1); dprintf1("poke at %p: %ld\n", peek_at, ret); */ /* * Try to access the pkey-protected "ptr" via ptrace: */ ret = ptrace(PTRACE_PEEKDATA, child_pid, ptr, ignored); /* expect it to work, without an error: */ pkey_assert(ret != -1); /* Now access from the current task, and expect an exception: */ peek_result = read_ptr(ptr); expected_pk_fault(pkey); /* * Try to access the NON-pkey-protected "plain_ptr" via ptrace: */ ret = ptrace(PTRACE_PEEKDATA, child_pid, plain_ptr, ignored); /* expect it to work, without an error: */ pkey_assert(ret != -1); /* Now access from the current task, and expect NO exception: */ peek_result = read_ptr(plain_ptr); do_not_expect_pk_fault(); ret = ptrace(PTRACE_DETACH, child_pid, ignored, 0); pkey_assert(ret != -1); ret = kill(child_pid, SIGKILL); pkey_assert(ret != -1); wait(&status); free(plain_ptr_unaligned); } void test_executing_on_unreadable_memory(int *ptr, u16 pkey) { void *p1; int scratch; int ptr_contents; int ret; p1 = ALIGN_PTR_UP(&lots_o_noops_around_write, PAGE_SIZE); dprintf3("&lots_o_noops: %p\n", &lots_o_noops_around_write); /* lots_o_noops_around_write should be page-aligned already */ assert(p1 == &lots_o_noops_around_write); /* Point 'p1' at the *second* page of the function: */ p1 += PAGE_SIZE; madvise(p1, PAGE_SIZE, MADV_DONTNEED); lots_o_noops_around_write(&scratch); ptr_contents = read_ptr(p1); dprintf2("ptr (%p) contents@%d: %x\n", p1, __LINE__, ptr_contents); ret = mprotect_pkey(p1, PAGE_SIZE, PROT_EXEC, (u64)pkey); pkey_assert(!ret); pkey_access_deny(pkey); dprintf2("pkru: %x\n", rdpkru()); /* * Make sure this is an *instruction* fault */ madvise(p1, PAGE_SIZE, MADV_DONTNEED); lots_o_noops_around_write(&scratch); do_not_expect_pk_fault(); ptr_contents = read_ptr(p1); dprintf2("ptr (%p) contents@%d: %x\n", p1, __LINE__, ptr_contents); expected_pk_fault(pkey); } void test_mprotect_pkey_on_unsupported_cpu(int *ptr, u16 pkey) { int size = PAGE_SIZE; int sret; if (cpu_has_pku()) { dprintf1("SKIP: %s: no CPU support\n", __func__); return; } sret = syscall(SYS_mprotect_key, ptr, size, PROT_READ, pkey); pkey_assert(sret < 0); } void (*pkey_tests[])(int *ptr, u16 pkey) = { test_read_of_write_disabled_region, test_read_of_access_disabled_region, test_write_of_write_disabled_region, test_write_of_access_disabled_region, test_kernel_write_of_access_disabled_region, test_kernel_write_of_write_disabled_region, test_kernel_gup_of_access_disabled_region, test_kernel_gup_write_to_write_disabled_region, test_executing_on_unreadable_memory, test_ptrace_of_child, test_pkey_syscalls_on_non_allocated_pkey, test_pkey_syscalls_bad_args, test_pkey_alloc_exhaust, }; void run_tests_once(void) { int *ptr; int prot = PROT_READ|PROT_WRITE; for (test_nr = 0; test_nr < ARRAY_SIZE(pkey_tests); test_nr++) { int pkey; int orig_pkru_faults = pkru_faults; dprintf1("======================\n"); dprintf1("test %d preparing...\n", test_nr); tracing_on(); pkey = alloc_random_pkey(); dprintf1("test %d starting with pkey: %d\n", test_nr, pkey); ptr = malloc_pkey(PAGE_SIZE, prot, pkey); dprintf1("test %d starting...\n", test_nr); pkey_tests[test_nr](ptr, pkey); dprintf1("freeing test memory: %p\n", ptr); free_pkey_malloc(ptr); sys_pkey_free(pkey); dprintf1("pkru_faults: %d\n", pkru_faults); dprintf1("orig_pkru_faults: %d\n", orig_pkru_faults); tracing_off(); close_test_fds(); printf("test %2d PASSED (itertation %d)\n", test_nr, iteration_nr); dprintf1("======================\n\n"); } iteration_nr++; } void pkey_setup_shadow(void) { shadow_pkru = __rdpkru(); } int main(void) { int nr_iterations = 22; srand((unsigned int)time(NULL)); setup_handlers(); printf("has pku: %d\n", cpu_has_pku()); if (!cpu_has_pku()) { int size = PAGE_SIZE; int *ptr; printf("running PKEY tests for unsupported CPU/OS\n"); ptr = mmap(NULL, size, PROT_NONE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); assert(ptr != (void *)-1); test_mprotect_pkey_on_unsupported_cpu(ptr, 1); exit(0); } pkey_setup_shadow(); printf("startup pkru: %x\n", rdpkru()); setup_hugetlbfs(); while (nr_iterations-- > 0) run_tests_once(); printf("done (all tests OK)\n"); return 0; }